首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Ehrlich ascites tumor cells were permeabilized using low concentrations of digitonin, 8 g/106 cells. Permeabilization was monitored by the assay of lactate dehydrogenase released into the incubation medium and of hexokinase partially bound to mitochondria. Integrity of the cellular organelles was unaffected as determined by assay of the mitochondrial enzyme glutamate dehydrogenase. Cells were stained with rhodamine 123 as a mitochondrial specific dye and propidium iodide/mithramycin as DNA specific dyes. The green fluorescence of bound rhodamine 123 versus red fluorescence of DNA in individual cells was analysed by dual parameter flow cytometry. Incubation of cells with inhibitors of mitochondrial energy metabolism, such as, potassium cyanide and carbonyl cyanide m-chlorophenylhydrazone abolished binding of rhodamine 123. Flow cytometric data allowed a correlation between cell position in the mitotic cycle with total mitochondrial activity. In addition, comparison of the characteristics of propidium iodide and ethidium bromide staining further elucidated the molecular basis of the staining with the positively-charged fluorescent dye rhodamine 123.Abbreviations BSA bovine serum albumin - CCCP carbonyl cyanide m-chlorophenylhydrazone - EAT Ehrlich ascites tumor - EGTA ethylene glycol bis (-aminoethylether) N,N,N,N-tetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethansulfonic acid - IM incubation medium - Rh 123 rhodamine 123 Dedicated to Professor K.J. Netter on the occasion of his 60th birthday Enzymes: Ribonuclease (EC 3.1.27.5), Hexokinase (EC 2.7.1.1), Glutamate dehydrogenase (EC 1.4.1.2), Lactate dehydrogenase (EC 1.1.1.28)  相似文献   

2.
Washed and purified rat- or mouse-liver mitochondria exhibiting high membrane integrity and metabolic activity were studied by flow cytometry. The electrophoretic accumulation/redistribution of cationic lipophilic probes, rhodamine 123, safranine O and a cyanine derivative, 3,3'-dihexyloxadicarbocyanine iodide, during the energization process was studied and was consistent with the generation of a negative internal membrane potential. An exception to this was nonylacridine orange which spontaneously bound to the mitochondrial membrane by hydrophobic interactions via its hydrocarbon chain. Energized purified mitochondria stained with potentiometric dyes exhibited both higher fluorescence and population homogeneity than the non-energized or deenergized (nigericin plus valinomycin) mitochondria. By contrast, under non-energized or deenergized conditions, the mitochondrial population exhibited fluorescence intensity heterogeneity related to the residual membrane potential; two subpopulations were evident, one of low fluorescence which may be related to the autofluorescence of the mitochondria (plus non-specific dye binding) and a second population which exhibited high fluorescence. Flow cytometry of the unpurified, simply washed, rat-liver mitochondria stained with rhodamine 123, a classically used dye, provided evidence of their heterogeneity in terms of light-scattering properties and membrane-potential-related fluorescence. One third of the washed mitochondria were found to be non-functional by such assays. The fluorescence of purified rat-liver mitochondria due to the membrane potential built up by endogenous substrates indicates heterogeneity of the mitochondrial population with respect to levels of endogenous substrates. The low-angle light scattering increases upon energization and provides some original information about the shape and modification of the inner mitochondrial conformation accompanying the energization. The heterogeneity of the rat liver mitochondrial population, from a structural, metabolic (existence of endogenous substrates) and functional (active and non-active mitochondrial population dispersion) point of view could thus be demonstrated by flow-cytometry analysis. Two animal models were examined with regard to the alteration of the mitochondrial membrane potential under the effects of drugs (rat-liver mitochondria), and the effects of ammonium toxicity (mouse-liver mitochondria). These results are promising and open new perspectives in the study of mitochondriopathies.  相似文献   

3.
A triple staining procedure was developed to evaluate bull spermatozoa using flow cytometry. Flow cytometric estimates of cell viability, measured by propidium iodide (PI) exclusion, and acrosomal integrity, measured by Pisum sativum agglutinin (PSA) binding acrosomal contents, were equivalent to estimates made by using standard laboratory assays. Mitochondrial function, measured by rhodamine 123 (R123) fluorescence, was depressed by the mitochondrial inhibitors rotenone (64%) or monensin (52%), establishing that mitochondrial damage can be detected. Dilauroylphosphatidylcholine (PC12) or lysophosphatidylcholine (LPC) was used to destabilize sperm membranes. When challenged with 15-30 microM PC12, selective exposure of PSA binding sites occurred without induction of PI uptake or loss of R123 staining. However, PC12 concentrations greater than 60 microM resulted in a loss of R123 fluorescence intensity. In contrast, greater than 1200 microM LPC was required to expose PSA binding sites, which also resulted in PI uptake. By using flow cytometry, these three stains in combination can be used to correlate three different features simultaneously on individual spermatozoa and assay thousands of cells per sample without extensive preparation.  相似文献   

4.
Sperm cells from control donors of proven fertility and men from barren couples were studied by conventional procedures, i.e., light microscopy as well as flow cytometry. Light microscopy analysis of semen included the measurement of spermatozoa concentration, morphology, and motility. All the men from barren couples were asthenozoospermic at the conventional analysis of semen samples. Flow cytometry was applied to study two important parameters of sperm cells: mitochondrial membrane potential (MMP) assessed by the cationic dye JC-1 and DNA stainability with propidium iodide (PI). JC-1 staining was more reliable than the classical procedure used for this purpose, i.e., rhodamine 123 (Rh123) staining, and allowed us to show a positive correlation between MMP and spermatozoa motility. Regarding DNA analysis, a higher relative percentage of immature spermatozoa, showing a high accessibility of DNA to the intercalating PI fluorochrome, was found in men from barren couples compared to donors of proven fertility. The relative percentage of immature spermatozoa was significantly higher in semen from oligoasthenozoospermic subjects. Moreover, a positive correlation was found between immature spermatozoa, as evaluated by PI staining, and cells with depolarized mitochondria, as evaluated by JC-1 staining, suggesting that spermatozoa defective for nuclear maturity could be functionally defective cells. No correlation between immature spermatozoa determined by FCM and immature spermatozoa determined by light microscopy was found, suggesting that these two techniques assess sperm cell maturity at different levels.  相似文献   

5.
Objectives:  The aim of this study was to investigate mechanisms involved in the growth inhibitory effect of silymarin, in humanhepatocellular carcinoma.
Materials and Methods:  The human hepatocellular carcinoma cell line HepG2 was utilized and the MTT assay was performed to study the antiproliferative effect of silymarin. Dual staining was undertaken for ethidium bromide/acridine orange, propidium iodide staining and DNA fragmentation studies were executed to confirm the presence of apoptosis. Cell-cycle analysis was revealed by flow cytometry and mitochondrial transmembrane potential was measured by uptake of the mitochondrial-specific lipophilic cationic dye rhodamine 123. Western blotting analysis for cytochrome c, p53, Bax, Bcl-2, APAF-1, caspase-3, survivin, β-catenin, cyclin D1, c-Myc and PCNA was carried out.
Results:  Silymarin inhibited population growth of the hepatocellular carcinoma cells in a dose-dependent manner, and the percentage of apoptotic cells was increased after treatment with 50 and 75 µg/ml silymarin for 24 h. Silymarin treatment increased the proportion of cells with reduced DNA content (sub-G0/G1 or A0 peak), indicative of apoptosis with loss of cells in the G1 phase. Silymarin also decreased mitochondrial transmembrane potential of the cells, thereby increasing levels of cytosolic cytochrome c while up-regulating expression of pro-apoptotic proteins (such as p53, Bax, APAF-1 and caspase-3) with concomitant decrease in anti-apoptotic proteins (Bcl-2 and survivin) and proliferation-associated proteins (β-catenin, cyclin D1, c-Myc and PCNA).
Conclusions:  Our results demonstrate that silymarin treatment inhibited proliferation and induced apoptosis in the human hepatocellular carcinoma cell line HepG2.  相似文献   

6.
Rhodamine 123, a laser dye, has been demonstrated to inhibit import of the precursor to pyridine dinucleotide transhydrogenase into mitochondria in rat liver cells. When rat hepatocytes were labeled with 35[S] methionine in the presence of 0.4 mM rhodamine 123, the precursor to transhydrogenase was found to have a half-life in the cytoplasm of 15 minutes as opposed to a half-life of 1-2 minutes when cells were radiolabeled in the absence of the dye. To clarify the mechanism of import inhibition, studies were initiated to assess the effect of rhodamine 123 on mitochondrial respiration. Upon addition of the dye to a mitochondrial suspension, respiration was initially enhanced, then inhibited. The inability of FCCP, a classical uncoupler, to enhance respiration during the inhibitory phase suggests that rhodamine 123 is primarily inhibiting respiration through the electron transport system rather than through the ATPase. These results suggest that rhodamine 123 may inhibit import of the transhydrogenase precursor into mitochondria by disrupting components in the mitochondrial membrane necessary for efficient import.  相似文献   

7.
The cationic permeant fluorescent dye rhodamine 123 (R123) was used to stain Plasmodium yoelii-infected mouse erythrocytes. Fluorescence microscopic observations demonstrated that the parasite, but not the matrix of the infected erythrocyte, accumulated the dye. Differences in fluorescence intensity could not be found at the various developmental stages of the parasite; however, quantitation of the cell-associated dye revealed an increase in R123 uptake with parasite development. The retention of the parasite-associated dye, as measured by fluorescence microscopy and spectrophotometry after extraction of R123 with butanol, was markedly reduced by treatment of the infected erythrocytes with a proton ionophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and an inhibitor of proton ATPase, dicyclohexylcarbodiimide (DCCD). These results indicate that the accumulation and retention of R123 in P. yoelii reflect the parasite membrane potential and suggest that the parasite plasma membrane has a membrane potential-generating proton pump.  相似文献   

8.
Hematopoietic stem cells show reduced staining with a mitochondrial fluorescent dye, rhodamine 123 (Rh-123), which was supposed to indicate decreased mitochondrial activity in these cells. Rh123 and several other fluorescent dyes are substrates for transport mediated by P-glycoprotein (P-gp), an efflux pump responsible for multidrug resistance in tumor cells. We have found that staining of human bone marrow cells with fluorescent dyes is potentiated by P-gp inhibitors and inversely correlated with P-gp expression. P-gp is expressed in practically all hematopoietic progenitor cells, including long-term culture-initiating cells. The highest levels of P-gp among the progenitors are associated with cells displaying characteristics of pluripotent stem cells. These results have implications for stem cell purification and bone marrow resistance to cancer chemotherapy.  相似文献   

9.
The purpose of the present study was to examine mitochondrial function in differently transformed cells relative to their tumorigenic state and proliferative activity in vitro. An established two-step carcinogenesis model consisting of immortal and tumorigenic rat embryo fibroblasts that can be cultured as monolayers and multicellular spheroids was investigated. Flow cytometric measurements were carried out using the two mitochondrial-specific fluorochromes rhodamine 123 (Rh123) and 10-N-nonyl acridine orange (NAO), in combination with the DNA dye Hoechst 33342 for simultaneous cell cycle analysis. Since the accumulation of Rh123 depends on mitochondrial membrane potential, Rh123 fluorescence intensity gives an estimate of mitochondrial activity per cell, as determined by both overall mitochondrial function and mass. In contrast, NAO uptake reflects mitochondrial mass only, as it binds to cardiolipin in the inner mitochondrial membrane independently of membrane potential. Aliquots of cell suspensions derived from exponential monolayer, confluent monolayer, and a range of sizes of multicellular spheroids were stained with either Rh123 or NAO and Hoechst 33342, then mitochondrial mass and activity per unit cell volume and cellular DNA content were measured by flow cytometry. Differences in the average mitochondrial activity per cell in different cell lines and culture conditions were primarily due to alterations in cell volume. Importantly, tumorigenic conversion by ras-transfection did not consistently change mitochondrial activity per unit cell volume. The mitochondrial mass per unit cell volume increased for all cells when cellular quiescence was induced, either in monolayers or spheroids. However, mitochondrial function (activity/mass) decreased when cells became quiescent, resulting in a positive correlation between mitochondrial function and S-phase fraction, independent of transformation status or culture condition. We conclude that mitochondrial function reflects proliferative activity rather than tumorigenic conversion.  相似文献   

10.
Multidrug-resistant (MDR) cells demonstrate the increased activity of the membrane transport system performing efflux of diverse lipophylic drugs and fluorescent dyes from the cells. In order to detect MDR cells we have developed a simple test consisting of three steps: staining of the cells with fluorescent dye rhodamine 123, incubation in the dye-free medium and, finally, detection by fluorescence microscopy of the cells that have lost accumulated dye. The experiments with B-lymphoma cell lines with different degrees of MDR have shown that the cell fluorescence after the poststaining incubation is indeed inversely proportional to the degree of resistance. Application of this testing procedure to normal human or mouse leukocytes revealed the presence of the cells rapidly losing the dye in these populations. Cell fractionation experiments have shown that there are T-lymphocytes (most T-killers/suppressors and a part of T-helpers) that demonstrate rapid efflux of rhodamine 123. This characteristic was detected also in T-killer clones and cell line and in some T-lymphomas. The inhibitors of the MDR transport system, reserpine and verapamil, blocked the efflux of the dye from these cells. Rhodamine-losing T-lymphoma contained large amounts of the mRNA coding P-glycoprotein, the MDR efflux pump, and demonstrated increased resistance to rhodamine 123, gramicidin D, colchicine, and vincristine, the drugs belonging to the cross-resistance group for the MDR cells. The role of the increased activity of the MDR membrane transport system in T-lymphocytes is discussed.  相似文献   

11.
Liu Z  Bushnell WR  Brambl R 《Plant physiology》1987,84(4):1385-1390
Selected fluorescent dyes were tested for uptake by mitochrondria in intact cells of barley, maize, and onion. The cationic cyanine dye 3,3′-diheptyloxacarbocyanine iodide [DiOC7(3)] accumulated in mitochondria within 15 to 30 minutes without appreciable staining of other protoplasmic constituents. The number, shape, and movement of the fluorescent mitochondria could be seen readily, and the fluorescence intensity of the mitochondria could be monitored with a microscope photometer. Fluorescence was eliminated in 1 to 5 minutes by the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) indicating that maintenance of dye concentration was dependent on the inside-negative transmembrane potential maintained by functional mitochondria. Fluorescence of prestained mitochondria was enhanced within 5 to 10 minutes after addition of 0.1 millimolar kinetin to cells. The fluorescence in kinetintreated cells was dissipated by CCCP. These results suggest that kinetin interacted with respiratory processes resulting in higher potential across the mitochondrial membrane.  相似文献   

12.
Rhodamine 123 is a lipophilic cationic fluorescent dye that localizes in mitochondria. We found that 17 beta-estradiol changes the ability of GH4C1 cells, clonal rat pituitary tumor cells, to retain rhodamine 123. Cells incubated with 10 micrograms/ml rhodamine 123 for 30 min at 37 C took up about equal amounts of rhodamine 123, as determined by fluorescence microscopy, regardless of whether they had been treated with estradiol. After three 5-min washes at 37 C, cells treated with 1 nM estradiol for 7 days before incubation with rhodamine 123 had lost more fluorescence than untreated cells. We further characterized the effect by flow cytometry. The difference in fluorescence between control and treated cells ranged from 50- to 500-fold. The effect of estradiol was maximal at 10(-10) M and took a week to develop fully. The effect is specific for estradiol, because estradiol and diethylstilbestrol reduced retention of rhodamine 123 fluorescence at 10(-10) M, but the same concentrations of dihydrotestosterone, progesterone, dexamethasone, and cholesterol did not. To test if the effect on rhodamine 123 fluorescence was caused by activation of the multidrug resistance transport system, we examined the effect of estradiol on the retention of daunomycin, a known substrate of the transport system. Estradiol treatment caused a 3-fold decrease in daunomycin fluorescence. We isolated clones resistant to estradiol-induced loss of rhodamine 123 fluorescence by flow cytometry and found that two clones still showed an estradiol-induced decrease in daunomycin fluorescence equivalent to that of the parent line.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A.S. KAPRELYANTS AND D.B. KELL. 1992. The fluorescent dye rhodamine 123 (Rh 123) is concentrated by microbial cells in an uncoupler-sensitive fashion. Steady-state fluorescence measurements with Micrococcus luteus indicated that provided the added dye concentration is below approximately 1 mmol/1, uptake is fully uncoupler-sensitive and is not accompanied by significant self-quenching of the fluorescence of accumulated dye molecules. 'Viable' and 'non-viable' cells are easily and quantitatively distinguished in a flow cytometer by the extent to which they accumulate the dye. The viability of a very slowly growing chemostat culture of Mic. luteus is apparently only about40–50%, as judged by plate counts, but most of the 'non-viable' cells can be resuscitated by incubation of the culture in nutrient medium before plating. The extent to which individual cells accumulate rhodamine 123 can be rapidly assessed by flow cytometry, and reflects the three distinguishable physiological states exhibited by the culture ('non-viable', 'viable' and 'non-viable-but-resuscitable'). Gram-negative bacteria do not accumulate rhodamine 123 significantly because their outer membrane is not permeable to it; a simple treatment overcomes this. Flow cytometry using rhodamine 123 should prove of general utility for the rapid assessment of microbial viability and vitality.  相似文献   

14.
A general method to isolate and purify substantial numbers of viable cybrids from cultured mammalian cells immediately following cytoplast-cell fusion is described. This method uses cytoplasts whose mitochondria are selectively stained in vivo by the cationic fluorescent rhodamine dye, rhodamine 123. Large numbers of highly purified, rhodamine-stained cytoplasts are fused to appropriate recipient cell lines and then the fusion mixture is sorted based on forward angle scatter and fluorescence parameters. Plating the positively sorted population in culture for as short as 12 h eliminates contaminating cytoplasts which, lacking a nucleus, are unable to adhere or survive. The resultant population, based on an analysis of genetic markers, is 75-100% cybrids, an enrichment of 1000- to 10,000-fold over the initial fusion mixture. Cybrids purified by cell sorting may be useful for detailed molecular studies of mitochondrial DNA gene expression and in the specific induction of new mitochondrial DNA mutants.  相似文献   

15.
Mitochondria of early Drosophila embryos were observed with a transmission electron microscope and a fluorescent microscope after vital staining with rhodamine 123, which accumulates only in active mitochondria. Rhodamine 123 accumulated particularly in the posterior pole region in early cleavage embryos, whereas the spatial distribution of mitochondria in an embryo was uniform throughout cleavage stages. In late cleavage stages, the dye showed very weak and uniform accumulation in all regions of periplasm. Polar plasm, sequestered in pole cells, restored the ability to accumulate the dye. Therefore, it is concluded that the respiratory activity of mitochondria is higher in the polar plasm than in the other regions of periplasm in early embryos, and this changes during development. The temporal changes in rhodamine 123-staining of polar plasm were not affected by u.v. irradiation at the posterior of early cleavage embryos at a sufficient dosage to prevent pole cell formation. This suggests that the inhibition of pole cell formation by u.v. irradiation is not due to the inactivation of the respiratory activities of mitochondria. In addition, we found that the anterior of Bicaudal-D mutant embryos at cleavage stage was stained with rhodamine 123 with the same intensity as the posterior of wild-type embryos. No pole cells form in the anterior of Bic-D embryos, where no restoration of mitochondrial activity occurs in the blastoderm stage. The posterior group mutations that we tested (staufen, oskar, tudor, nanos) and the terminal mutation (torso) did not alter staining pattern of the posterior with rhodamine 123.  相似文献   

16.
The spectral and metabolic properties of Rhodamine 123, a fluorescent cationic dye used to label mitochondria in living cells, were investigated in suspensions of isolated rat-liver mitochondria. A red shift of Rhodamine 123 absorbance and fluorescence occurred following mitochondrial energization. Fluorescence quenching of as much as 75% also occurred. The red shift and quenching varied linearly with the potassium diffusion potential, but did not respond to delta pH. These energy-linked changes were accompanied by dye uptake into the matrix space. Concentration ratios, in-to-out, approached 4000:1. A large fraction of internalized dye was bound. At concentrations higher than those needed to record these spectral changes, Rhodamine 123 inhibited ADP-stimulated (State 3) respiration of mitochondria (Ki = 12 microM) and ATPase activity of inverted inner membrane vesicles (Ki = 126 microM) and partially purified F1-ATPase (Ki = 177 microM). The smaller Ki for coupled mitochondria was accounted for by energy-dependent Rhodamine 123 uptake into the matrix. Above about 20 nmol/mg protein (10 microM), Rhodamine 123 caused rapid swelling of energized mitochondria. Effects on electron-transfer reactions and coupling were small or negligible even at the highest Rhodamine 123 concentrations employed. delta psi-dependent Rhodamine 123 uptake together with Rhodamine 123 binding account for the intense fluorescent staining of mitochondria in living cells. Inhibition of mitochondria ATPase likely accounts for the cytotoxicity of Rhodamine 123. At concentrations which do not inhibit mitochondrial function, Rhodamine 123 is a sensitive and specific probe of delta psi in isolated mitochondria.  相似文献   

17.
The spectral and metabolic properties of Rhodamine 123, a fluorescent cationic dye used to label mitochondria in living cells, were investigated in suspensions of isolated rat-liver mitochondria. A red shift of Rhodamine 123 absorbance and fluorescence occurred following mitochondrial energization. Fluorescence quenching of as much as 75% also occurred. The red shift and quenching varied linearly with the potassium diffusion potential, but did not respond to ΔpH. These energy-linked changes were accompanied by dye uptake into the matrix space. Concentration ratios, in-to-out, approached 4000:1. A large fraction of internalized dye was bound. At concentrations higher than those needed to record these spectral changes, Rhodamine 123 inhibited ADP-stimulated (State 3) respiration of mitochondria (Ki = 12 μM) and ATPase activity of inverted inner membrane vesicles (Ki = 126 μM) and partially purified F1-ATPase (Ki = 177 μM). The smaller Ki for coupled mitochondria was accounted for by energy-dependent Rhodamine 123 uptake into the matrix. Above about 20 nmol/mg protein (10 μM), Rhodamine 123 caused rapid swelling of energized mitochondria. Effects on electron-transfer reactions and coupling were small or negligible even at the highest Rhodamine 123 concentrations employed. Δψ-dependent Rhodamine 123 uptake together with Rhodamine 123 binding account for the intense fluorescent staining of mitochondria in living cells. Inhibition of mitochondria ATPase likely accounts for the cytotoxicity of Rhodamine 123. At concentrations which do not inhibit mitochondrial function, Rhodamine 123 is a sensitive and specific probe of Δψ in isolated mitochondria.  相似文献   

18.
We have investigated the kinetics of interaction of cationic fluorescent lipophiles (dyes) rhodamine 123, rhodamine 6G, tetramethyl rhodamine ethyl ester, safranine O, 1,1'-diethyloxacarbocyanine, 1,1'-diethyloxadicarbocyanine, and 1,1'-diethylthiadicarbocyanine iodide with isolated respiring rat-liver mitochondria (RLM). Dye flux across the RLM inner membrane was measured by following the kinetics of fluorescence signal change after mixing of dye and RLM. The time course of fluorescence was analysed in terms of a kinetic model of the binding and transport processes involved. The rate constants of dye influx and efflux were extracted from the observed effect on the apparent time constant of fluorescence change to equilibrium intensity upon mixing dye with increasing concentrations of RLM. From the influx rate constants obtained, the apparent permeability constants for dye influx (at zero potential) across the membrane were calculated and ranged from 3 to 140 x 10(-4) cm/s. The influx rate constant was found to be linearly related to relative dye lipophilicity, as predicted by the model. As another test of the model, from the ratio of the influx and efflux rate constants, the apparent trans-membrane potential, psi, was calculated and found generally to agree with reported values, but to depend on the lipophilicity of the dye used. Not predicted by the simple model was a dissymmtry observed in the influx and efflux time constants for fluorescence change to equilibrium intensity. Inferences are made relating to the utility of these dyes as probes of psi.  相似文献   

19.
The cationic permeant fluorescent dye rhodamine 123 (R123) was used to stain Plasmodium yoelii-infected mouse erythrocytes. Fluorescence microscopic observations demonstrated that the parasite, but not the matrix of the infected erythrocyte, accumulated the dye. Differences in fluorescence intensity could not be found at the various developmental stages of the parasite; however, quantitation of the cell-associated dye revealed an increase in R123 uptake with parasite development. The retention of the parasite-associated dye, as measured by fluorescence microscopy and spectrophotometry after extraction of R123 with butanol, was markedly reduced by treatment of the infected erythrocytes with a proton ionophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and an inhibitor of proton ATPase, dicyclohexylcarbodiimide (DCCD). These results indicate that the accumulation and retention of R123 in P. yoelii reflect the parasite membrane potential and suggest that the parasite plasma membrane has a membrane potential-generating proton pump.  相似文献   

20.
Rhodamine 123, a fluorescent laser dye that is selectively taken up into mitochondria of living cells, was used to examine mitochondrial morphology in early-passage (young), late-passage (old), and progeric human fibroblasts. Mitochondria were readily visualized in all cell types during growth (mid-log) and confluent stages. In all cell strains at confluence, mitochondria became shorter, more randomly aligned, and developed a higher proportion of bead-like forms. Treatment of cells for six days with Tevenel, a chloramphenicol analog that inhibits mitochondrial protein synthesis, brought about a marked depletion of mitochondria and a diffuse background fluorescence. Cyanide produced a rapid release of preloaded mitochondrial fluorescence followed by detachment and killing of cells. Colcemid caused a random coiling and fragmentation of mitochondria particularly in the confluent stage. No gross differences were discernible in mitochondria of the three cell strains in mid-log and confluent states or after these treatments. Butanol-extractable fluorescence after loading with rhodamine 123 was lower in all cell strains in confluent compared to mid-log stages. At confluence all three cell strains had similar rhodamine contents at zero-time and after washout up to 24 h. At the mid-log stage, young cells contained more rhodamine initially and lost it more rapidly than old or progeria cells, in that order. The data indicate no gross derangement in the morphology or number of mitochondria in old and progeria fibroblasts but there is a reduction of protonmotive force evident in these cells at the mid-log stage that may be growth limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号