首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enhancement of glutamate release from hippocampal neurons has been implicated in long-term potentiation, which is thought to be a cellular correlate of learning and memory. This phenomenom appears to be involved the activation of protein kinase C and lipid second messengers have been implicated in this process. The purpose of this study was to examine how lipid-derived second messengers, which are known to potentiate glutamate release, influence the accumulation of intraterminal free Ca2+, since exocytosis requires Ca2+ and a potentiation of Ca2+ accumulation may provide a molecular mechanism for enhancing glutamate release. The activation of protein kinase C with phorbol esters potentiates the depolarization-evoked release of glutamate from mossy fiber and other hippocampal nerve terminals. Here we show that the activation of protein kinase C also enhances evoked presynaptic Ca2+ accumulation and this effect is attenuated by the protein kinase C inhibitor staurosporine. In addition, the protein kinase C-dependent increase in evoked Ca2+ accumulation was reduced by inhibitors of phospholipase A2 and voltage-sensitive Ca2+ channels, as well as by a lipoxygenase product of arachidonic acid metabolism. That some of the effects of protein kinase C activation were mediated through phospholipase A2 was also indicated by the ability of staurosporine to reduce the Ca2+ accumulation induced by arachidonic acid or the phospholipase A2 activator melittin. Similarly, the synergistic facilitation of evoked Ca2+ accumulation induced by a combination of arachidonic acid and diacylglycerol analogs was attenuated by staurosporine. We suggest, therefore, that the protein kinase C-dependent potentiation of evoked glutamate release is reflected by increases in presynaptic Ca2+ and that the lipid second messengers play a central role in this enhancement of chemical transmission processes.  相似文献   

2.
Exposure of rabbit pulmonary arterial smooth muscle cells to 10 M of the calcium ionophore A23187 dramatically stimulates cell membrane-associated phospholipase A2 activity and arachidonic acid release. In addition, A23187 also enhances cell membrane-associated serine esterase activity. Serine esterase inhibitors phenylmethylsulfonylfuoride and diisopropyl fluorophosphate prevent the increase in serine esterase and phospholipase A2 activities and arachidonic acid release caused by A23187. A23187 still stimulated serine esterase and phospholipase A2 activities and arachidonic acid release in cells pretreated with nominal Ca2+ free buffer. Treatment of the cell membrane with A23187 does not cause any appreciable change in serine esterase and phospholipase A2 activities. Pretreatment of the cells with actinomycin D or cycloheximide did not prevent the increase in the cell membrane associated serine esterase and phospholipase A2 activities, and arachidonic acid release caused by A23187. These results suggest that (i) a membrane-associated serine esterase plays an important role in stimulating the smooth muscle cell membrane associated phospholipase A2 activity (ii) in addition to the presence of extracellular Ca2+, release of Ca2+ from intracellular storage site(s) by A23187 also appears to play a role in stimulating the cell membrane-associated serine esterase and phospholipase A2 activities, and (iii) the increase in the cell membrane-associated serine esterase and phospholipase A2 activities does not appear to require new RNA or protein synthesis.Abbreviations A23187 calcium ionophore - AA arachidonic acid - PMSF phenylmethyl sulfonylfuoride - DFP diisopropyl-fluorophosphate - DMEM Dulbecco's modified Eagles medium - FCS fetal calf serum - PBS phosphate buffered saline - HBPS Hank's buffered physiological saline - PLA2 phospholipase A2  相似文献   

3.
Docosahexaenoic acid (DHA) and arachidonic acid (AA) are found in high concentrations in brain cell membranes and are important for brain function and structure. Studies suggest that AA and DHA are hydrolyzed selectively from the sn-2 position of synaptic membrane phospholipids by Ca2+-dependent cytosolic phospholipase A2 (cPLA2) and Ca2+-independent phospholipase A2 (iPLA2), respectively, resulting in increased levels of the unesterified fatty acids and lysophospholipids. Cell studies also suggest that AA and DHA release depend on increased concentrations of Ca2+, even though iPLA2 has been thought to be Ca2+-independent. The source of Ca2+ for activation of cPLA2 is largely extracellular, whereas Ca2+ released from the endoplasmic reticulum can activate iPLA2 by a number of mechanisms. This review focuses on the role of Ca2+ in modulating cPLA2 and iPLA2 activities in different conditions. Furthermore, a model is suggested in which neurotransmitters regulate the activity of these enzymes and thus the balanced and localized release of AA and DHA from phospholipid in the brain, depending on the primary source of the Ca2+ signal.  相似文献   

4.
The effects of Ca-antagonists on the thrombin-induced mobilization of radiolabeled arachidonate preincorporated into rat platelets as well as the subsequent formation of labeled cyclooxygenase and lipoxygenase products were analyzed in the presence of either Call or Ca2+-substitutes, Sr2+ and Ba2+. Results indicate that following thrombin stimulation (0.2 U/ml) in the presence of Ca2+, nitrendipine (Nit), Cd2+ or Mn2+ reduced the release of arachidonate and the biosynthesis of thromboxane 132- Inhibition of arachidonic acid release and metabolism were also obtained by both Nit and Cd2+ in the presence of Sr2+ and Bat+. Results from studies with a semi-purified phospholipase A2 fraction prepared from rat platelets indicated that the activity was almost unaffected by Nit or Cd2+. From these findings, we concluded that inhibition of platelet-induced release and metabolism of arachidonic acid by the Ca-antagonists tested require intact platelets. These data support the hypothesis of an interaction of these agents at an unknown surface membrane level.Abbreviations AA Arachidonic Acid - 5-HT 5-hydroxy-tryptamine - HETE 12-hydroxyeicosatetraenoic acid - HHT 12-hydroxy-heptadecanoic acid - HHT Nitrendipine - TXB2 Thromboxane B2  相似文献   

5.
The ethanolamine plasmalogens are decreased whereas serine glycerophospholipids are significantly increased in plasma membrane phospholipid in affected regions of brain in Alzheimer's disease. This may be due to stimulation of Ca2+-independent plasmalogen-selective phospholipase A2, which was recently discovered in brain. This phospholipase A2 differs from other Ca2+-independent phospholipases A2 in response to ATP and various inhibitors. It may be responsible for excess release of arachidonic acid and accumulation of prostaglandins and lipid peroxides in AD. Accumulation of the above lipid metabolites due to abnormal receptor function and signal transduction may contribute to neurodegeneration in AD.  相似文献   

6.
Ca2+ mobilization in muscle cells from the circular muscle layer of the mammalian intestine is mediated by IP3-dependent Ca2+ release. Ca2+ mobilization in muscle from the adjacent longitudinal muscle layer involves a distinct, phosphoinositide-independent pathway. Receptors for contractile agonists in longitudinal muscle cells are coupled via a pertussis toxinsensitive G protein to activation of PLA2 and formation of arachidonic acid (AA). The latter activates Cl channels resulting in depolarization of the plasma membrane and opening of voltage-sensitive Ca2+ channels. Ca2+ influx via these channels induces Ca2+ release by activating sarcoplasmic ryanodine receptor/Ca2+ channels. The increase in [Ca2+]i activates membrane-bound ADP ribosyl cyclase, and the resultant formation of cADPR enhances Ca2+-induced Ca2+ release.  相似文献   

7.
Treatment of U937 cells with a sublethal concentration of tert-butylhydroperoxide generates DNA single strand breakage in U937 cells and this response is increased by caffeine, ATP, pyruvate or antimycin A. As we previously reported (Guidarelli, Clementi, Brambilla and Cantoni, (1997) Biochem. J. 328, 801–806), the enhancing effects of antimycin A are mediated by inhibition of complex III and the ensuing formation of superoxides and hydrogen peroxide in a reaction in which ubisemiquinone serves as an electron donor. Active electron transport was required in pyruvate-supplemented cells since the increased genotoxic response occurred as a consequence of enforced mitochondrial Ca2+ accumulation, a process driven by the increased electrochemical gradient. The enhancing effects of caffeine or ATP were also the consequence of mitochondrial Ca2+ accumulation but these responses were independent on electron transport. The increased formation of DNA lesions resulting from exposure to tert-butylhydroperoxide associated with the Ca2+-mobilizing agents or the respiratory substrate was mediated by arachidonic acid generated by Ca2+-dependent activation of phospholipase A2. Melittin, a potent phospholipase A2 activator, and reagent arachidonic acid mimicked the effects of caffeine, ATP or pyruvate on the tert-butylhydroperoxide-induced DNA single strand breakage.  相似文献   

8.
This study characterized the phospholipase A2 (PLA2) activity in cerebral cortex of fetal rat brain and investigated effects of chemical inhibition of Ca2+-independent PLA2 (iPLA2) on neurite outgrowth and cell development of cortical neurons in vitro. The PLA2 activity in fetal brain was insensitive to a Ca2+-chelator EGTA and was significantly impaired by an iPLA2 inhibitor, bromoenol lactone (BEL). Following treatment with BEL, cortical neurons showed acute loss of neurites and impaired cell body, which were clearly dose- and time-dependent. Nuclear staining revealed nuclear regression (shrinkage), but not fragmentation, in BEL-treated cells. The cytotoxic effect of BEL was additive with arachidonic acid (AA) and AA alone also induced neurite demise. BEL treatment resulted in increased production of prostaglandin E2. Overall data suggest that iPLA2, a primary PLA2 isoform in cerebral cortex, displays a housekeeping role in development and neurite outgrowth in cortical neurons in vitro probably via maintaining phospholipid membrane remodeling rather than generating free fatty acids and lysophospholipids.  相似文献   

9.
LA-N-1 neuroblastoma cell cultures contain Ca2+-independent phospholipases A2 hydrolyzing phosphatidylethanolamine and ethanolamine plasmalogens. These enzymes differ from each other in their molecular mass, substrate specificity, and kinetic properties. Subcellular distribution studies have indicated that the activity of these phospholipases is not only localized in the cytosol but also in non-nuclear membranes and in nuclei. The treatment of LA-N-1 neuroblastoma cell cultures with retinoic acid results in a marked stimulation of Ca2+-independent phospholipases A2 hydrolyzing phosphatidylethanolamine and plasmenylethanolamine. The increase of the activities of both enzymes was first observed in nuclei followed by those present in the cytosol. No effect of retinoic acid on either phospholipase activity could be observed in non-nuclear membranes. The stimulation of these enzymes may be involved in the generation and regulation of arachidonic acid and its metabolites during differentiation.  相似文献   

10.
The extent to which Ca2+-induced Ca2+ release (CICR) affects transmitter release is unknown. Continuous nerve stimulation (20–50 Hz) caused slow transient increases in miniature end-plate potential (MEPP) frequency (MEPP-hump) and intracellular free Ca2+ ([Ca2+]i) in presynaptic terminals (Ca2+-hump) in frog skeletal muscles over a period of minutes in a low Ca2+, high Mg2+ solution. Mn2+ quenched Indo-1 and Fura-2 fluorescence, thus indicating that stimulation was accompanied by opening of voltage-dependent Ca2+ channels. MEPP-hump depended on extracellular Ca2+ (0.05–0.2 mM) and stimulation frequency. Both the Ca2+- and MEPP-humps were blocked by 8-(N,N-diethylamino)octyl3,4,5-trimethoxybenzoate hydrochloride (TMB-8), ryanodine, and thapsigargin, but enhanced by CN. Thus, Ca2+-hump is generated by the activation of CICR via ryanodine receptors by Ca2+ entry, producing MEPP-hump. A short interruption of tetanus (<1 min) during MEPP-hump quickly reduced MEPP frequency to a level attained under the effect of TMB-8 or thapsigargin, while resuming tetanus swiftly raised MEPP frequency to the previous or higher level. Thus, the steady/equilibrium condition balancing CICR and Ca2+ clearance occurs in nerve terminals with slow changes toward a greater activation of CICR (priming) during the rising phase of MEPP-hump and toward a smaller activation during the decay phase. A short pause applied after the end of MEPP- or Ca2+-hump affected little MEPP frequency or [Ca2+]i, but caused a quick increase (faster than MEPP- or Ca2+-hump) after the pause, whose magnitude increased with an increase in pause duration (<1 min), suggesting that Ca2+ entry-dependent inactivation, but not depriming process, explains the decay of the humps. The depriming process was seen by giving a much longer pause (>1 min). Thus, ryanodine receptors in frog motor nerve terminals are endowed with Ca2+ entry-dependent slow priming and fast inactivation mechanisms, as well as Ca2+ entry-dependent activation, and involved in asynchronous exocytosis. Physiological significance of CICR in presynaptic terminals was discussed.  相似文献   

11.
The presynaptic P2X7 receptor (P2X7R) plays an important role in the modulation of transmitter release. We recently demonstrated that, in nerve terminals of the adult rat cerebral cortex, P2X7R activation induced Ca2+-dependent vesicular glutamate release and significant Ca2+-independent glutamate efflux through the P2X7R itself. In the present study, we investigated the effect of the new selective P2X7R competitive antagonist 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine (A-438079) on cerebrocortical terminal intracellular calcium (intrasynaptosomal calcium concentration;[Ca2+]i signals and glutamate release, and evaluated whether P2X7R immunoreactivity was consistent with these functional tests. A-438079 inhibited functional responses. P2X7R immunoreactivity was found in about 45% of cerebrocortical terminals, including glutamatergic and non-glutamatergic terminals. This percentage was similar to that of synaptosomes showing P2X7R-mediated [Ca2+]i signals. These findings provide compelling evidence of functional presynaptic P2X7R in cortical nerve terminals.  相似文献   

12.
Presynaptic modulation by eicosanoids in cortical synaptosomes   总被引:1,自引:0,他引:1  
In continuing experiments to determine the ionic basis of inhibitory presynaptic modulation, rat cortical synaptosomes were employed and receptor-activated K+ efflux was determined with a K+ sensitive electrode. When synaptosomes were sub-optimally depolarized by veratridine, the addition of agents that activated purinergic, 2, muscarinic and opioid receptors all promoted K+ efflux. With 2-chloroadenosine as a model inhibitory presynaptic modulator, the increased K+ efflux evoked by this agent was blocked by the cyclooxygenase inhibitor indomethacin suggesting that arachidonic acid or its metabolites was an intermediary in opening the channel. When arachidonic acid and PGE2 were tested, both promoted K+ efflux that was inhibited by dendrotoxin and mast cell degranulating peptide, two agents that are known to inhibit a delayed rectifier K+ current. Our results suggest that via eicosanoid second messengers, inhibitory presynaptic modulators open a sub-class of K channels that hyperpolarize nerve terminals, therefore less Ca2+ would enter per nerve impulse and thus the evoked release of neurotransmitters would be decreased.Abbreviations DTX dendrotoxin - MCDP mast cell degranulating peptide - NHGA norhydroguairetic acid - PGE2 prostaglandin E2  相似文献   

13.
The mechanism underlying the generation of cytosolic free Ca2+ ([Ca2+i) oscillations by bombesin, a receptor agonist activating phospholipase C, in insulin secreting HIT-T15 cells was investigated. At 25 μM, 61% of cells displayed [Ca2+]i oscillations with variable patterns. The bombesin-induced [Ca2+]i oscillations could last more than 1 h and glucose was required for maintaining these [Ca2+ fluctuations. Bombesin-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+ entry and were attenuated by membrane hype rpolarization or by L-type Ca2+ channel blockers. These [Ca2+]i oscillations were apparently not associated with fluctuations in plasma membrane Ca2+ permeability as monitored by the Mn2+ quenching technique. 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) and 4-chloro-m-cresol, which interfere with intracellular Ca2+ stores, respectively, by inhibiting Ca2+-ATPase of endoplasmic reticulum and by affecting Ca2+-induced Ca2+ release, disrupted bombesin-induced [Ca2+]i oscillations. 4-chloro-m-resol raised [Ca2+]i by mobilizing an intracellular Ca2+ pool, an effect not altered by ryanodine. Caffeine exerted complex actions on [Ca2+]i It raised [Ca2+]i by promoting Ca2+ entry while inhibiting bombesin-elicited [Ca2+]i oscillations. Our results suggest that in bombesin-elicited [Ca2+]i oscillations in HIT-T15 cells: (i) the oscillations originate primarily from intracellular Ca2+ stores; and (ii) the Ca2+ influx required for maintaining the oscillations is in part membrane potential-sensitive and not coordinated with [Ca2+]i oscillations. The interplay between intracellular Ca2+ stores and voltage-sensitive and voltage-insensitive extracellular Ca2+ entry determines the [Ca2+]i oscillations evoked by bombesin.  相似文献   

14.
Three phospholipases A2 purified from cobra venoms and two presynaptically acting neurotoxins that exhibit phospholipase A2 activity were subjected to tryptophan modification with 2-hydroxy-5-nitrobenzyl bromide. Associated with the modification of an increasing number of Trp residues were marked decreases in enzymatic activity and lethality, whereas antigenicity remained unchanged. The degree of exposure of tryptophanyl groups as determined by acrylamide quenching was consistent with the relative reactivity toward 2-hydroxy-5-nitrobenzyl bromide, except for Hemachatushaemachatus phospholipase A2, which showed unusually high reactivity due to its characteristic dimeric conformation. Difference spectra of Trp-modified derivatives differed from those of their native enzymes by the presence of a new positive perturbation between 350 and 500 nm, with a maximum at 415 nm. Scatchard plots revealed only one type of binding site for Ca2+, and the binding abilities of the modified enzymes were not impaired. At pH 8.0, all native enzymes enhanced the emission intensity of 8-anilinonaphthalene sulfonate (ANS) dramatically, and the emission intensity of the ANS-enzyme complex increased or decreased in parallel with increasing concentration of Ca2+ for the respective enzyme. The Trp-modified derivatives did not enhance the emission intensity of ANS at all either in the presence or absence of Ca2+. By means of tryptophan modification, we were able to infer that the tryptophan residues are in the vicinity of the Ca2+ binding site and are directly involved in the binding with ANS. This, together with the suggestion that the hydrophobic pocket that interacts with ANS might be the site of binding of the phospholipase A2 enzyme with the substrate, suggests that the Trp residues in phospholipase A2 enzymes and presynaptic toxins are involved in substrate binding.  相似文献   

15.
The Ca2+-independent phospholipase A2 (iPLA2) subfamily of enzymes is associated with arachidonic acid (AA) release and the subsequent increase in fatty acid turnover. This phenomenon occurs not only during apoptosis but also during inflammation and lymphocyte proliferation. In this study, we purified and characterized a novel type of iPLA2 from bovine brain. iPLA2 was purified 4,174-fold from the bovine brain by a sequential process involving DEAE-cellulose anion exchange, phenyl-5PW hydrophobic interaction, heparin-Sepharose affinity, Sephacryl S-300 gel filtration, Mono S cation exchange, Mono Q anion exchange, and Superose 12 gel filtration. A single peak of iPLA2 activity was eluted at an apparent molecular mass of 155 kDa during the final Superose 12 gel-filtration step. The purified enzyme had an isoelectric point of 5.3 on twodimensional gel electrophoresis (2-DE) and was inhibited by arachidonyl trifluoromethyl ketone (AACOCF3), Triton X-100, iron, and Ca2+. However, it was not inhibited by bromoenol lactone (BEL), an inhibitor of iPLA2, and adenosine triphosphate (ATP). The spot with the iPLA2 activity did not match with any known protein sequence, as determined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis. Altogether, these data suggest that the purified enzyme is a novel form of cytosolic iPLA2.  相似文献   

16.
The effect of carvedilol on cytosolic free Ca2+ concentrations ([Ca2+]i) in OC2 human oral cancer cells is unknown. This study examined if carvedilol altered basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent probe. Carvedilol at concentrations between 10 and 40 µM increased [Ca2+]i in a concentration-dependent fashion. The Ca2+ signal was decreased by 50% by removing extracellular Ca2+. Carvedilol-induced Ca2+ entry was not affected by the store-operated Ca2+ channel blockers nifedipine, econazole, and SK&F96365, but was enhanced by activation or inhibition of protein kinase C. In Ca2+-free medium, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin did not change carvedilol-induced [Ca2+]i rise; conversely, incubation with carvedilol did not reduce thapsigargin-induced Ca2+ release. Pretreatment with the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) inhibited carvedilol-induced [Ca2+]i release. Inhibition of phospholipase C with U73122 did not alter carvedilol-induced [Ca2+]i rise. Carvedilol at 5–50 µM induced cell death in a concentration-dependent manner. The death was not reversed when cytosolic Ca2+ was chelated with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM). Annexin V/propidium iodide staining assay suggests that apoptosis played a role in the death. Collectively, in OC2 cells, carvedilol induced [Ca2+]i rise by causing phospholipase C-independent Ca2+ release from mitochondria and non-endoplasmic reticulum stores, and Ca2+ influx via protein kinase C-regulated channels. Carvedilol (up to 50 μM) induced cell death in a Ca2+-independent manner that involved apoptosis.  相似文献   

17.
The proportions of calcium (Ca2+) channel subtypes in chick or rat P2 fraction and NG 108-15 cells were investigated using selective L-, N-, P- and P/Q- type Ca2+ channel blockers. KCl-stimulated 45Ca2+ uptake by chick P2 fraction was blocked by 40~50% using N-type Ca2+ channel blockers [-conotoxin GVIA, aminoglycoside antibiotics and dynorphin A(1–13)], but was not inhibited by P- or P/Q-type blockers (-agatoxin IVA or -conotoxin MVIIC). On the other hand, KCl-stimulated 45Ca2+ uptake by rat P2 fraction was blocked by 30~40% using P- or P/Q-type Ca2+ channel blockers, but was not inhibited by N-type Ca2+ channel blockers. The L-type Ca2+ channel blockers 1,4-dihydropyridines, diltiazem and verapamil, but not calciseptine (CaS), inhibited both KCl-stimulated 45Ca2+ uptake and veratridine-induced 22Na+ uptake by chick or rat P2 fraction with similar IC50 values. CaS did not have any effect on 45Ca2+ uptake by either chick or rat P2 fraction. In NG108-15 cells, CaS, -agatoxin IVA and -conotoxin MVIIC, but not -conotoxin GVIA, inhibited KCl-stimulated 45Ca2+ uptake by 30–40%. Various combinations of these Ca2+ channel blockers had no significant additional effects in chick or rat P2 fraction or NG 108-15 cells. These findings suggest that KCl-stimulated 45Ca2+ uptake by chick or rat P2 fraction and NG 108-15 cells is a convenient and useful model for screening whether or not natural or synthetic substances have selective effects as L-, N-, P-, or P/Q- type Ca2+ channel antagonists or agonists.  相似文献   

18.
We here demonstrate the presence of a plasma membrane-associated phospholipase A2 (EC 3.1.1.4; PLA2) activity in spinach (Spinacia oleracea) leaves. The pH profile of the spinach plasma membrane PLA2 activity revealed two peaks, one at pH 4.4 and one at pH 5.5. The activity at pH 5.5 had an absolute requirement of Ca2+, with full enzyme activity at 10 μmol/L Ca2+. The Ca2+-dependent PLA2 activity was both heat sensitive and stimulated by diacylglycerol, whereas ATP completely inhibited the activity. Thus, the spinach plasma membrane contains a Ca2+-dependent PLA2 activity, which has not previously been characterised in plants. Cold acclimation of spinach resulted in a 2.2-fold higher plasma membrane PLA2 activity whereas the plasma membrane phospholipase D activity remained unaffected. Taken together, our data suggest a role of PLA2 in cold acclimation in plants.  相似文献   

19.
The effect of the natural product diindolylmethane on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in PC3 human prostate cancer cells was explored. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Diindolylmethane at concentrations of 20–50 µM induced [Ca2+]i rise in a concentration-dependent manner. The response was reduced partly by removing Ca2+. Diindolylmethane-evoked Ca2+ entry was suppressed by nifedipine, econazole, SK&F96365, protein kinase C modulators and aristolochic acid. In the absence of extracellular Ca2+, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished diindolylmethane-induced [Ca2+]i rise. Incubation with diindolylmethane also inhibited thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 reduced diindolylmethane-induced [Ca2+]i rise. At concentrations of 50–100 µM, diindolylmethane killed cells in a concentration-dependent manner. This cytotoxic effect was not altered by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Annexin V/PI staining data implicate that diindolylmethane (50 and 100 µM) induced apoptosis in a concentration-dependent manner. In conclusion, diindolylmethane induced a [Ca2+]i rise in PC3 cells by evoking phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via phospholipase A2-sensitive store-operated Ca2+ channels. Diindolylmethane caused cell death in which apoptosis may participate.  相似文献   

20.
Mouse striatum was incubated with [3H]dopamine ([3H]DA) and superfused with and the tritium efflux induced by nicotine, electrical stimulation, or simultaneous nicotine and electrical stimulation was measured, to characterize the role of different Ca2+ channels in the transmitter release. Nicotine stimulation and electrical stimulation exerted additive effects on tritium efflux. Separation of the released radioactivity on alumina columns indicated that nicotine or electrical stimulation increases the release of [3H]DA and that the outflow of3H-labeled metabolites was similar with the two different stimulation procedures. Removal of Ca2+ from the superfusate resulted in a marked reduction in the tritium release evoked by nicotine, whereas the electrical stimulation-evoked tritium release was completely dependent on external Ca2+. The L-and N-type calcium channel blockers omega-conotoxin GVIA and Cd2+ inhibited the tritium release from the striatum evoked by either nicotine or electrical stimulation, whereas the L-type and T-type channel blockers diltiazem and Ni2+ did not alter release of [3H]DA. We conclude that N-type voltage-sensitive Ca2+ channels participate in striatal dopamine release, and we speculate that nicotinic receptor-operated ion channels permeable to cations such as Ca2+ and N-type voltage-sensitive calcium channels may simultaneously open up, and they additively increase free intracellular Ca2+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号