首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We have isolated the Bradyrhizobium japonicum gene encoding glutamine synthetase I (glnA) from a phage lambda library by using a fragment of the Escherichia coli glnA gene as a hybridization probe. The rhizobial glnA gene has homology to the E. coli glnA gene throughout the entire length of the gene and can complement an E. coli glnA mutant when borne on an expression plasmid in the proper orientation to be transcribed from the E. coli lac promoter. High levels of glutamine synthetase activity can be detected in cell-free extracts of the complemented E. coli. The enzyme encoded by the rhizobial gene was identified as glutamine synthetase I on the basis of its sedimentation properties and resistance to heat inactivation. DNA sequence analysis predicts a high level of amino acid sequence homology among the amino termini of B. japonicum, E. coli, and Anabaena sp. strain 7120 glutamine synthetases. S1 nuclease protection mapping indicates that the rhizobial gene is transcribed from a single promoter 131 +/- 2 base pairs upstream from the initiation codon. This glnA promoter is active when B. japonicum is grown both symbiotically and in culture with a variety of nitrogen and carbon sources. There is no detectable sequence homology between the constitutively expressed glnA promoter and the differentially regulated nif promoters of the same B. japonicum strain.  相似文献   

3.
In common with other plant symbionts, Frankia spp., the actinomycete N2-fixing symbionts of certain nonleguminous woody plants, synthesize two glutamine synthetases, GSI and GSII. DNA encoding the Bradyrhizobium japonicum gene for GSII (glnII) hybridized to DNA from three Frankia strains. B. japonicum glnII was used as a probe to clone the glnII gene from a size-selected KpnI library of Frankia strain CpI1 DNA. The region corresponding to the Frankia sp. strain CpI1 glnII gene was sequenced, and the amino acid sequence was compared with that of the GS gene from the pea and glnII from B. japonicum. The Frankia glnII gene product has a high degree of similarity with both GSII from B. japonicum and GS from pea, although the sequence was about equally similar to both the bacterial and eucaryotic proteins. The Frankia glnII gene was also capable of complementing an Escherichia coli delta glnA mutant when transcribed from the vector lac promoter, but not when transcribed from the Frankia promoter. GSII produced in E. coli was heat labile, like the enzyme produced in Frankia sp. strain CpI1 but unlike the wild-type E. coli enzyme.  相似文献   

4.
5.
6.
We have cloned and characterized three distinct Rhizobium meliloti loci involved in glutamine biosynthesis (glnA, glnII, and glnT). The glnA locus shares DNA homology with the glnA gene of Klebsiella pneumoniae, encodes a 55,000-dalton monomer subunit of the heat-stable glutamine synthetase (GS) protein (GSI), and complemented an Escherichia coli glnA mutation. The glnII locus shares DNA homology with the glnII gene of Bradyrhizobium japonicum and encodes a 36,000-dalton monomer subunit of the heat-labile GS protein (GSII). The glnT locus shares no DNA homology with either the glnA or glnII gene and complemented a glnA E. coli strain. The glnT locus codes for an operon encoding polypeptides of 57,000, 48,000, 35,000, 29,000, and 28,000 daltons. glnA and glnII insertion mutants were glutamine prototrophs, lacked the respective GS form (GSI or GSII), grew normally on different nitrogen sources (Asm+), and induced normal, nitrogen-fixing nodules on Medicago sativa plants (Nod+ Fix+). A glnA glnII double mutant was a glutamine auxotroph (Gln-), lacked both GSI and GSII forms, but nevertheless induced normal Fix+ nodules. glnT insertion mutants were prototrophs, contained both GSI and GSII forms, grew normally on different N sources, and induced normal Fix+ nodules. glnII and glnT, but not glnA, expression in R. meliloti was regulated by the nitrogen-regulatory genes ntrA and ntrC and was repressed by rich N sources such as ammonium and glutamine.  相似文献   

7.
8.
9.
10.
11.
12.
The glutamine synthetase (GS)-glutamate synthase pathway is the primary route used by members of the family Rhizobiaceae to assimilate ammonia. Two forms of glutamine synthetase, GSI and GSII, are found in Rhizobium and Bradyrhizobium species. These are encoded by the glnA and glnII genes, respectively. Starting with a Rhizobium meliloti glnA mutant as the parent strain, we isolated mutants unable to grow on minimal medium with ammonia as the sole nitrogen source. For two auxotrophs that lacked any detectable GS activity, R. meliloti DNA of the mutated region was cloned and partially characterized. Lack of cross-hybridization indicated that the cloned regions were not closely linked to each other or to glnA; they therefore contain two independent genes needed for GSII synthesis or activity. One of the cloned regions was identified as glnII. An R. meliloti glnII mutant and an R. meliloti glnA glnII double mutant were constructed. Both formed effective nodules on alfalfa. This is unlike the B. japonicum-soybean symbiosis, in which at least one of these GS enzymes must be present for nitrogen-fixing nodules to develop. However, the R. meliloti double mutant was not a strict glutamine auxotroph, since it could grow on media that contained glutamate and ammonia, an observation that suggests that a third GS may be active in this species.  相似文献   

13.
14.
Frankia alni CpI1 has two glutamine synthetases (GSs), GSI and GSII. The GSI gene (glnA) was isolated from a cosmid library of F. alni CpI1 DNA by heterologous probing with glnA from Streptomyces coelicolor. The glnA gene was shown to be located upstream of the GSII gene (glnII) by DNA-DNA hybridization. The nucleotide sequences of the 1,422-bp CpI1 glnA gene and of the 449-bp intervening region between glnA and glnII were determined, and the glnA amino acid sequence was deduced. In common with GSIs from other organisms, CpI1 GSI contains five conserved regions near the active site and a conserved tyrosine at the adenylylation site. F. alni CpI1 glnA complemented the glutamine growth requirement of the Escherichia coli glnA deletion strain YMC11 but only when expressed from an E. coli lac promoter. While the functional significance of maintaining two GSs adjacent to one another remains unclear, this arrangement in F. alni provides support for the recently proposed origin of GSI and GSII as resulting from a gene duplication early in the evolution of life.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号