首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To evaluate the strength of evidence for hypotheses explaining the relationship between climate and species richness in forest plots. We focused on the effect of energy availability which has been hypothesized to influence species richness: (1) via the effect of productivity on the total number of individuals (the more individuals hypothesis, MIH); (2) through the effect of temperature on metabolic rate (metabolic theory of biodiversity, MTB); or (3) by imposing climatic limits on species distributions. Location Global. Methods We utilized a unique ‘Gentry‐style’ 370 forest plots data set comprising tree counts and individual stem measurements, covering tropical and temperate forests across all six forested continents. We analysed variation in plot species richness and species richness controlled for the number of individuals by using rarefaction. Ordinary least squares (OLS) regression and spatial regressions were used to explore the relative performance of different sets of environmental variables. Results Species richness patterns do not differ whether we use raw number of species or number of species controlled for number of individuals, indicating that number of individuals is not the proximate driver of species richness. Productivity‐related variables (actual evapotranspiration, net primary productivity, normalized difference vegetation index) perform relatively poorly as correlates of tree species richness. The best predictors of species richness consistently include the minimum temperature and precipitation values together with the annual means of these variables. Main conclusion Across the world's forests there is no evidence to support the MIH, and a very limited evidence for a prominent role of productivity as a driver of species richness patterns. The role of temperature is much more important, although this effect is more complex than originally assumed by the MTB. Variation in forest plot diversity appears to be mostly affected by variation in the minimum climatic values. This is consistent with the ‘climatic tolerance hypothesis’ that climatic extremes have acted as a strong constraint on species distribution and diversity.  相似文献   

2.
Aim Many competing hypotheses seek to identify the mechanisms behind species richness gradients. Yet, the determinants of species turnover over broad scales are uncertain. We test whether environmental dissimilarity predicts biotic turnover spatially and temporally across an array of environmental variables and spatial scales using recently observed climate changes as a pseudo‐experimental opportunity. Location Canada. Methods We used an extensive database of observation records of 282 Canadian butterfly species collected between 1900 and 2010 to characterize spatial and temporal turnover based on Jaccard indices. We compare relationships between spatial turnover and differences in an array of relevant environmental conditions, including aspects of temperature, precipitation, elevation, primary productivity and land cover. Measurements were taken within 100‐, 200‐ and 400‐km grid cells, respectively. We tested the relative importance of each variable in predicting spatial turnover using bootstrap analysis. Finally, we tested for effects of temperature and precipitation change on temporal turnover, including distinctly accounting for turnover under individual species’ potential dispersal limitations. Results Temperature differences between areas correlate with spatial turnover in butterfly assemblages, independently of distance, sampling differences or the spatial resolution of the analysis. Increasing temperatures are positively related to biotic turnover within quadrats through time. Limitations on species dispersal may cause observed biotic turnover to be lower than expected given the magnitude of temperature changes through time. Main conclusions Temperature differences can account for spatial trends in biotic dissimilarity and turnover through time in areas where climate is changing. Butterfly communities are changing quickly in some areas, probably reflecting the dispersal capacities of individual species. However, turnover is lower through time than expected in many areas, suggesting that further work is needed to understand the factors that limit dispersal across broad regions. Our results illustrate the large‐scale effects of climate change on biodiversity in areas with strong environmental gradients.  相似文献   

3.
We outline the potentially important role of dispersal in linking diversity patterns at different spatial and temporal scales, and the resulting potential to link hypotheses explaining macroscale patterns of diversity. We do this by proposing a possible mechanism linking climate to diversity patterns: we argue that climate, via effects of continuity of habitat availability in space and time, mediates a dispersal–ecological specialization trade‐off at the metacommunity level that leads to latitudinal trends in dispersal ability, ecological specialization, range sizes, speciation and species richness, ultimately driving the latitudinal diversity gradient. This trade‐off constitutes a possible mechanism for the strong macroscale correlation between climate and species richness that is consistent with recent ideas about niche conservatism and gradient lengths, as well as other leading hypotheses. We present an overview of predictions derived from our ideas. Of these, some have already been tested and supported and others are still open to debate or need testing. Together they provide a unique set of predictions that allows falsification.  相似文献   

4.
Biogeographical studies frequently reveal positive correlations between species richness and estimates of environmental water and/or energy. A popular interpretation of this relationship relates the supply of water and energy to productivity, and then, in turn, to richness. Productivity–diversity theories are now legion, yet none has proved sufficiently intuitive to gain broad acceptance. Like productivity, heterogeneity is known to influence diversity at fine spatial scales, yet the possibility that richness might relate to water–energy dynamics at coarse spatial scales via a heterogeneity‐generating mechanism has received little attention. In this paper we outline such a conceptual model for plants that is internally consistent and testable. We believe it may help to explain the capacity of environments receiving different inputs of water and energy to support variable numbers of species at a range of spatial scales, the pervasive correlation between productivity and richness, some exceptions to the productivity–diversity relationship, the form of productivity–diversity curves and the link between richness and environmental ‘harshness’. The model may also provide an answer to one of the most venerable puzzles in the field of diversity studies: why high inputs of water and energy correspond to more species rather than simply more individuals.  相似文献   

5.
Aim Climate‐based models often explain most of the variation in species richness along broad‐scale geographical gradients. We aim to: (1) test predictions of woody plant species richness on a regional spatial extent deduced from macro‐scale models based on water–energy dynamics; (2) test if the length of the climate gradients will determine whether the relationship with woody species richness is monotonic or unimodal; and (3) evaluate the explanatory power of a previously proposed ‘water–energy’ model and regional models at two grain sizes. Location The Iberian Peninsula. Methods We estimated woody plant species richness on grid maps with c. 2500 and 22,500 km2 cell size, using geocoded data for the individual species. Generalized additive models were used to explore the relationships between richness and climatic, topographical and substrate variables. Ordinary least squares regression was used to compare regional and more general water–energy models in relation to grain size. Variation partitioning by partial regression was applied to find how much of the variation in richness was related to spatial variables, explanatory variables and the overlap between these two. Results Water–energy dynamics generate important underlying gradients that determine the woody species richness even over a short spatial extent. The relationships between richness and the energy variables were linear to curvilinear, whereas those with precipitation were nonlinear and non‐monotonic. Only a small fraction of the spatially structured variation in woody species richness cannot be accounted for by the fitted variables related to climate, substrate and topography. The regional models accounted for higher variation in species richness than the water–energy models, although the water–energy model including topography performed well at the larger grain size. Elevation range was the most important predictor at all scales, probably because it corrects for ‘climatic error’ due to the unrealistic assumption that mean climate values are evenly distributed in the large grid cells. Minimum monthly potential evapotranspiration was the best climatic predictor at the larger grain size, but actual evapotranspiration was best at the smaller grain size. Energy variables were more important than precipitation individually. Precipitation was not a significant variable at the larger grain size when examined on its own, but was highly significant when an interaction term between itself and substrate was included in the model. Main conclusions The significance of range in elevation is probably because it corresponds to several aspects that may influence species diversity, such as climatic variability within grid cells, enhanced surface area, and location for refugia. The relative explanatory power of energy and water variables was high, and was influenced by the length of the climate gradient, substrate and grain size of the analysis. Energy appeared to have more influence than precipitation, but water availability is also determined by energy, substrate and topographic relief.  相似文献   

6.
Aim Documentation of the ongoing effect of rain forest refuges at the last glacial maximum (LGM) on patterns of tropical freshwater fish diversity. Location Tropical South and Central America, and West Africa. Methods LGM rain forest regions and species richness by drainage were compiled from published data. GIS mapping was applied to compile drainage area and contemporary primary productivity. We used multiple regression analyses, applied separately for Tropical South America, Central America and West Africa, to assess differences in species richness between drainages that were connected and disconnected to rain forest refuge zones during the LGM. Spatial autocorrelation of the residuals was tested using Moran's I statistic. We added an intercontinental comparison to our analyses to see if a historical signal would persist even when a regional historical effect (climate at the LGM) had already been accounted for. Results Both area and history (contact with LGM rain forest refuge) explained the greatest proportions of variance in the geographical pattern of riverine species richness. In the three examined regions, we found highest richness in drainages that were connected to the rain forest refuges. No significant residual spatial autocorrelation was detected after considering area, primary productivity and LGM rain forest refuges. These results show that past climatic events still affect West African and Latin American regional and continental freshwater fish richness. At the continental scale, we found South American rivers more species‐rich than expected on the basis of their area, productivity and connectedness to rain forest refuge. Conversely, Central American rivers were less species‐diverse than expected by the grouped model. African rivers were intermediate. Therefore, a historical signal persists even when a regional historical effect (climate at the LGM) had already been accounted for. Main conclusions It has been hypothesized that past climatic events have limited impact on species richness because species have tracked environmental changes through range shifts. However, when considering organisms with physically constrained dispersal (such as freshwater fish), past events leave a perceptible imprint on present species diversity. Furthermore, we considered regions that have comparable contemporary climatic and environmental characteristics, explaining the absence of a productivity effect. From the LGM to the present day (a time scale of 18,000 years), extinction processes should have played a predominant role in shaping the current diversity pattern. By contrast, the continental effects could reflect historical contingencies explained by differences in speciation and extinction rates between continents at higher time scales (millions of years).  相似文献   

7.
Broad‐scale variation in taxonomic richness is strongly correlated with climate. Many mechanisms have been hypothesized to explain these patterns; however, testable predictions that would distinguish among them have rarely been derived. Here, we examine several prominent hypotheses for climate–richness relationships, deriving and testing predictions based on their hypothesized mechanisms. The ‘energy–richness hypothesis’ (also called the ‘more individuals hypothesis’) postulates that more productive areas have more individuals and therefore more species. More productive areas do often have more species, but extant data are not consistent with the expected causal relationship from energy to numbers of individuals to numbers of species. We reject the energy–richness hypothesis in its standard form and consider some proposed modifications. The ‘physiological tolerance hypothesis’ postulates that richness varies according to the tolerances of individual species for different sets of climatic conditions. This hypothesis predicts that more combinations of physiological parameters can survive under warm and wet than cold or dry conditions. Data are qualitatively consistent with this prediction, but are inconsistent with the prediction that species should fill climatically suitable areas. Finally, the ‘speciation rate hypothesis’ postulates that speciation rates should vary with climate, due either to faster evolutionary rates or stronger biotic interactions increasing the opportunity for evolutionary diversification in some regions. The biotic interactions mechanism also has the potential to amplify shallower, underlying gradients in richness. Tests of speciation rate hypotheses are few (to date), and their results are mixed.  相似文献   

8.
Aim The aim of this study was to test a variant of the evolutionary time hypothesis for the bird latitudinal diversity gradient derived from the effects of niche conservatism in the face of global climate change over evolutionary time. Location The Western Hemisphere. Methods We used digitized range maps of breeding birds to estimate the species richness at two grain sizes, 756 and 12,100 km2. We then used molecular phylogenies resolved to family to quantify the root distance (RD) of each species as a measure of its level of evolutionary development. Birds were classified as ‘basal’ or ‘derived’ based on the RD of their family, and richness patterns were contrasted for the most basal and most derived 30% of species. We also generated temperature estimates for the Palaeogene across the Western Hemisphere to examine how spatial covariation between past and present climates might make it difficult to distinguish between ecological and evolutionary hypotheses for the current richness gradient. Results The warm, wet tropics support many species from basal bird clades, whereas the northern temperate zone and cool or dry tropics are dominated by species from more recent, evolutionarily derived clades. Furthermore, crucial to evaluating how niche conservatism among birds may drive the hemispherical richness gradient, the spatial structure of the richness gradient for basal groups is statistically indistinguishable from the overall gradient, whereas the richness gradient for derived groups is much shallower than the overall gradient. Finally, modern temperatures and the pattern of climate cooling since the Eocene are indistinguishable as predictors of bird species richness. Main conclusions Differences in the richness gradients of basal vs. derived clades suggest that the hemispherical gradient has been strongly influenced by the differential extirpation of species in older, warm‐adapted clades from parts of the world that have become cooler in the present. We propose that niche conservatism and global‐scale climate change over evolutionary time provide a parsimonious explanation for the contemporary bird latitudinal diversity gradient in the New World, although dispersal limitation of some highly derived clades probably plays a secondary role.  相似文献   

9.
Energy and habitat heterogeneity are important correlates of spatial variation in species richness, though few investigations have sought to determine simultaneously their relative influences. Here we use the South African avifauna to examine the extent to which species richness is related to these variables and how these relationships depend on spatial grain. Taking spatial autocorrelation and area effects into account, we find that primary productivity, precipitation, absolute minimum temperature, and, at coarser resolutions, habitat heterogeneity account for most of the variation in species richness. Species richness and productivity are positively related, whereas the relationship between potential evapotranspiration (PET) and richness is unimodal. This is largely because of the constraining effects of low rainfall on productivity in high-PET areas. The increase in the importance of vegetation heterogeneity as an explanatory variable is caused largely by an increase in the range of vegetation heterogeneity included at coarse resolutions and is probably also a result of the positive effects of environmental heterogeneity on species richness. Our findings indicate that species richness is correlated with, and hence likely a function of, several variables, that spatial resolution and extent must be taken into account during investigations of these relationships, and that surrogate measures for productivity should be interpreted cautiously.  相似文献   

10.
Several hypotheses have been proposed to explain the mechanisms that generate temporal and spatial species richness patterns. We tested four common hypotheses (water, energy, climatic heterogeneity and net primary productivity) to evaluate which factors best explain patterns of Zygoptera species richness. Of these, we predicted that climatic heterogeneity would be the most important predictor for Zygoptera richness patterns. We sampled communities of adult Zygoptera in 100 small Amazonian streams. Based on generalized linear mixed models (GLMM), we found that net primary productivity and climatic heterogeneity comprised the best model of Zygoptera species richness in Amazonian streams, with an pseudo r2 of 39.5%. Results indicate that species richness increases by one species per 1 kg of biomass per square meter in NPP, or with an increase of 2 °C in air temperature variability. Our work corroborates a recent study with other taxa in Brazilian Bioms. This suggests that temporal variation in climate and net primary productivity are important predictors of the macroecological patterns of richness for aquatic organisms in tropical regions.  相似文献   

11.
Ecological, historical, and evolutionary hypotheses are important to explain geographical diversity gradients in many clades, but few studies have combined them into a single analysis allowing a comparison of their relative importance. This study aimed to evaluate the relative importance of ecological, historical, and evolutionary hypotheses in explaining the current global distribution of non‐marine turtles, a group whose distribution patterns are still poorly explored. We used data from distribution range maps of 336 species of non‐marine turtles, environmental layers, and phylogeny to obtain richness estimates of these animals in 2° × 2° cells and predictors related to ecological, evolutionary and historical hypotheses driving richness patterns. Then we used a path analysis to evaluate direct and indirect effects of the predictors on turtle richness. Ancestral area reconstruction was also performed in order to evaluate the influence of time‐for‐speciation in the current diversity of the group. We found that environmental variables had the highest direct effects on non‐marine turtle richness, whereas diversification rates and area available in the last 55 million yr minimally influenced turtle distributions. We found evidence for the time‐for‐speciation effect, since regions colonized early were generally richer than recently colonized regions. In addition, regions with a high number of colonization events had a higher number of turtle species. Our results suggested that ecological processes may influence non‐marine turtle richness independent of diversification rates, but they are probably related to dispersal abilities. However, colonization time was also an important component that must be taken into account. Finally, our study provided additional support for the importance of ecological (climate and productivity) and historical (time‐for‐speciation and dispersal) processes in shaping current biodiversity patterns.  相似文献   

12.
Models that describe the mechanisms responsible for insular patterns of species richness include the equilibrium theory of island biogeography and the nonequilibrium vicariance model. The relative importance of dispersal or vicariance in structuring insular distribution patterns can be inferred from these models. Predictions of the alternative models were tested for boreal mammals in the American Southwest. Age of mountaintop islands of boreal habitat was determined by constructing a geographic cladogram based on characteristics of intervening valley barriers. Other independent variables included area and isolation of mountaintop islands. Island age was the most important predictor of species richness. In contrast with previous studies of species richness patterns in this system, these results supported the nonequilibrium vicariance model, which indicates that vicariance has been the primary determinant of species distribution patterns in this system.  相似文献   

13.
One of the major determinants of species richness is the amount of energy available, often measured as primary productivity. Heterogeneity of environmental variables has also been found to influence species richness. Predicting species distributions across landscapes and identifying areas that have high species richness, or vulnerable groups of species, is useful for land management. Remotely sensed data may help identify such areas, with the Normalized Difference Vegetation Index (NDVI) providing an estimate of primary productivity. We examined the relationship between maximum productivity (NDVI), heterogeneity of productivity, and species richness of birds and butterflies at multiple spatial scales. We also explored relationships between productivity, functional guilds and residency groups of birds, and vagility classes of butterflies. Positive linear relationships between maximum NDVI and number of functional guilds of birds were found at two spatial scales. We also found positive linear relationships between maximum NDVI and species richness of neotropical migrant birds at two scales. Heterogeneity of NDVI, by contrast, was negatively associated with number of functional guilds of birds and species richness of resident birds. Maximum NDVI was associated with species richness of all butterflies and of the most vagile butterflies. No association was found between heterogeneity of NDVI and species richness of butterflies. In the Great Basin, where high greenness and availability of water correspond to areas of high species richness and maximum NDVI, our results suggest that NDVI can provide a reliable basis for stratifying surveys of biodiversity, by highlighting areas of potentially high biodiversity across large areas. Measures of heterogeneity of NDVI appear to be less useful in explaining species richness.  相似文献   

14.
Aim To investigate explanations for the maintenance of a positive spatial species richness–human population density correlation at broad scales, despite the negative impact of humans on species richness. These are (hypotheses 1–4): (1) human activities that create a habitat mosaic and (2) a more favourable climate, and (3) adequate conservation measures (e.g. sufficient natural habitat), maintain the positive species richness–human density correlation; or (4) the full range of human densities decrease the slope of the correlation without changing its form. Location South Africa. Methods Avian species richness data from atlas distribution maps and human population density data derived from 2001 census results were converted to a quarter‐degree resolution. We investigated the number of land transformation types (anthropogenic habitat heterogeneity), irrigated area (increasing productivity), and other covarying factors (e.g. primary productivity) as predictors of species richness. We compared species richness–human density relationships among regions with different amounts of natural habitat, and investigated whether the full range of human densities decrease species richness in relation to primary productivity. Results Hypotheses 1, 2 and 3 were supported. Human densities and activities that increase habitat heterogeneity and productivity are important beneficial factors to common species, but not to rare species. The species richness–human density relationship persists only at low land transformation levels, and no significant relationship exists at higher levels. For common species, the relationship becomes non‐significant at lower land transformation levels than for rare species. Main conclusions The persistence of the species richness–human density relationship depends mostly on the amount of remaining natural habitat. In addition, certain human activities benefit especially common species. Common species seem to be more flexible than rare species in response to human activity and habitat loss.  相似文献   

15.
Aim Intraspecific variation in patch occupancy often is related to physical features of a landscape, such as the amount and distribution of habitat. However, communities occupying patchy environments typically exhibit non‐random distributions in which local assemblages of species‐poor patches are nested subsets of assemblages occupying more species‐rich patches. Nestedness of local communities implies interspecific differences in sensitivity to patchiness. Several hypotheses have been proposed to explain interspecific variation in responses to patchiness within a community, including differences in (1) colonization ability, (2) extinction proneness, (3) tolerance to disturbance, (4) sociality and (5) level of adaptation to prevailing environmental conditions. We used data on North American mammals to compare the performance of these ‘ecological’ hypotheses and the ‘physical landscape’ hypothesis. We then compared the best of these models against models that scaled landscape structure to ecologically relevant attributes of individual species. Location North America. Methods We analysed data on prevalence (i.e. proportion of patches occupied in a network of patches) and occupancy for 137 species of non‐volant mammals and twenty networks consisting of four to seventy‐five patches. Insular and terrestrial networks exhibited significantly different mean levels of prevalence and occupancy and thus were analysed separately. Indicator variables at ordinal and family levels were included in models to correct for effects caused by phylogeny. Akaike's information criterion was used in conjunction with ordinary least squares and logistic regression to compare hypotheses. Results A patch network's physical structure, indexed using patch area and isolation, received the greatest support among models predicting the prevalence of species on insular networks. Niche breadth (diet and habitat) received the greatest support for predicting prevalence of species occupying terrestrial networks. For both insular and terrestrial systems, physical features (patch area and isolation) received greater support than any of the ecological hypotheses for predicting species occupancy of individual patches. For terrestrial systems, scaling patch area by its suitability to a focal species and by individual area requirements of the species, and scaling patch isolation by species‐specific dispersal ability and niche breadth, resulted in models of patch occupancy that were superior to models relying solely on physical landscape features. For all selected models, unexplained levels of variation were high. Main conclusions Stochasticity dominated the systems we studied, indicating that random events are probably quite important in shaping local communities. With respect to deterministic factors, our results suggest that forces affecting species prevalence and occupancy may differ between insular and terrestrial systems. Physical features of insular systems appeared to swamp ecological differences among species in determining prevalence and occupancy, whereas species with broad niches were disproportionately represented in terrestrial networks. We hypothesize that differential extinction over long time periods in highly variable networks has driven nestedness of mammalian communities on islands, whereas differential colonization over shorter time‐scales in more homogeneous networks probably governed the local structure of terrestrial communities. Our results also demonstrate that integration of a species' ecological traits with physical features of a patch network is superior to reliance on either factor separately when attempting to predict the species' probability of patch occupancy in terrestrial systems.  相似文献   

16.
Örjan  Östman  Jamie M  Kneitel  Jonathan M  Chase 《Oikos》2006,114(2):360-366
Isolated habitats generally have fewer species at local spatial scales than more connected habitats. However, over larger spatial scales, the response of species richness to variation in the degree of isolation is variable. Here, we hypothesized that the effects of habitat isolation on patterns of regional level species richness may depend at least in part on the level of disturbances those habitats receive. We tested this hypothesis in a microcosm experiment using an aquatic community consisting of container dwelling protists and rotifers by manipulating disturbance and dispersal to experimental regions factorially. In disturbed regions, regional species richness was lower in regions with isolated patches compared to regions where patches were experimentally connected by dispersal. A likely mechanism for this result is that dispersal from adjacent undisturbed local patches allowed disturbance-intolerant species a temporary refugia, thereby allowing regional coexistence of disturbance-tolerant and intolerant species. In contrast, without disturbances (and thus no temporal heterogeneity) it is likely that dispersal homogenized communities, leading to overall lower richness with higher dispersal. Our results emphasize the importance of simultaneously considering multiple limiting factors, disturbance and dispersal in this case, as well as the spatial scale of the response, in order to fully understand factors that control biodiversity.  相似文献   

17.
18.
AimAnticipating and mitigating the impacts of climate change on species diversity in montane ecosystems requires a mechanistic understanding of drivers of current patterns of diversity. We documented the shape of elevational gradients in avian species richness in North America and tested a suite of a priori predictions for each of five mechanistic hypotheses to explain those patterns.LocationUnited StatesMethodsWe used predicted occupancy maps generated from species distribution models for each of 646 breeding birds to document elevational patterns in avian species richness across the six largest U.S. mountain ranges. We used spatially explicit biotic and abiotic data to test five mechanistic hypotheses proposed to explain geographic variation in species richness.ResultsElevational gradients in avian species richness followed a consistent pattern of low elevation plateau‐mid‐elevation peak (as per McCain, 2009). We found support for three of the five hypotheses to explain the underlying cause of this pattern: the habitat heterogeneity, temperature, and primary productivity hypotheses.Main ConclusionsSpecies richness typically decreases with elevation, but the primary cause and precise shape of the relationship remain topics of debate. We used a novel approach to study the richness‐elevation relationship and our results are unique in that they show a consistent relationship between species richness and elevation among 6 mountain ranges, and universal support for three hypotheses proposed to explain the underlying cause of the observed relationship. Taken together, these results suggest that elevational variation in food availability may be the ecological process that best explains elevational gradients in avian species richness in North America. Although much attention has focused on the role of abiotic factors, particularly temperature, in limiting species’ ranges, our results offer compelling evidence that other processes also influence (and may better explain) elevational gradients in species richness.  相似文献   

19.
The growth of metacommunity ecology as a subdiscipline has increased interest in how processes at different spatial scales structure communities. However, there is still a significant knowledge gap with respect to relating the action of niche- and dispersal-assembly mechanisms to observed species distributions across gradients. Surveys of the larval dragonfly community (Odonata: Anisoptera) in 57 lakes and ponds in southeast Michigan were used to evaluate hypotheses about the processes regulating community structure in this system. We considered the roles of both niche- and dispersal-assembly processes in determining patterns of species richness and composition across a habitat gradient involving changes in the extent of habitat permanence, canopy cover, area, and top predator type. We compared observed richness patterns and species distributions in this system to patterns predicted by four general community models: species sorting related to adaptive trade-offs, a developmental constraints hypothesis, dispersal assembly, and a neutral community assemblage. Our results supported neither the developmental constraints nor the neutral-assemblage models. Observed patterns of richness and species distributions were consistent with patterns expected when adaptive tradeoffs and dispersal-assembly mechanisms affect community structure. Adaptive trade-offs appeared to be important in limiting the distributions of species which segregate across the habitat gradient. However, dispersal was important in shaping the distributions of species that utilize habitats with a broad range of hydroperiods and alternative top predator types. Our results also suggest that the relative importance of these mechanisms may change across this habitat gradient and that a metacommunity perspective which incorporates both niche- and dispersal-assembly processes is necessary to understand how communities are organized. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Species richness has been shown to be affected by primary productivity at various spatial scales. However, the mechanisms behind this effect are still poorly understood. Under the assumption that primary productivity is directly related to energy availability for an animal assemblage, the hypotheses are that (i) primary productivity will affect the number of ways different food resources can be combined into species specific niches and (ii) it will also determine the number of specialist species that can be supported. These hypotheses were tested on the herbivorous mammalian fauna of Australia. Productivity only had a weak effect on the number of food resource combinations in this case. Specialization was most common at low and high productivity. In addition there were significant differences in where different types of specialization was the most common. This study seeks an energetic mechanism to explain an energetic relationship and though no clear effect was found for resource use it identified a possible link between productivity and species richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号