首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the last-larval instar of the tobacco hornworm, Manduca sexta, a switch from excretion of uric acid to storage in the fat body occurs during transition from the feeding to the wandering stage. Neuroendocrine control of this change from excretion to storage was demonstrated by neck-ligation experiments with synchronously reared larvae. Results indicate that a neurohormone is released from the head 24–30 hr before the initiation of wandering and coincident with the first release of ecdysone that initiates metamorphosis. Direct involvement of the moulting hormone was shown by the effects of multiple injections of 20-hydroxyecdysone into the abdomen of larvae that had been ligated before the release of hormone. Urate levels in the fat body were 20- to 100-fold higher from hormone-injected larvae as from saline inject controls. Topically applied juvenile hormone or methoprene reversed the 20-hydroxyecdysone-induced storage of urate. Increased levels of uric acid in the haemolymph during pupal development result from the presence of juvenile hormone, and the abrupt decrease in uric acid concentration in the haemolymph just prior to pupal ecdysis results from a decreased titre of juvenile hormone. Applications of methoprene prevented the decrease in uric acid levels in the haemolymph.  相似文献   

2.
The concentrations of three storage proteins (SL-1,SL-2 and SL-3, hexamers of 70-80kDa subunits) and two biliverdin-binding proteins (BP-A and BP-B, dimers of 165kDa) in the haemolymph and fat body during larval and pupal development of Spodoptera litura were determined by immunodiffusion tests using polyclonal antisera. SL-1 and SL-2 (methionine-rich) first appeared in the haemolymph of one-day-old sixth (final) instar larvae, prominently increased in the haemolymph during the later feeding period and were almost totally sequestered by the fat body after gut purge. SL-3 (arylphorin) was first detected in the haemolymph during the molting period to the final larval ecdysis, increased in concentration throughout the entire feeding period of the final larval instar and was partly sequestered by the fat body several hours later than the other storage proteins. BP-A showed nearly the same pattern in the haemolymph as SL-3: BP-B increased during feeding period and decreased during molting period and attained a maximum level during the penultimate larval instar, however its concentration decreased considerably and remained low in the final larval instar. BP-A was partly and BP-B was almost totally sequestered by the fat body 8 h after sequestration of SL-1 and SL-2, rendering the fat body blue in colour. These facts suggest an additional function of biliverdin-binding proteins as amino acid storage proteins and the results show a differential uptake mechanism for these proteins by the fat body.  相似文献   

3.
The proteins of the fat body of non-diapausing, pre-diapausing, and newly-diapaused larvae of the southwestern corn borer, Diatraea grandiosella, were examined. Since a low titre of juvenile hormone (JH) is present in the haemolymph throughout the final instar of non-diapausing larvae, the hormone does not appear to stimulate the pre-metamorphic synthesis of proteins. In contrast, the high titre of JH in the haemolymph during the final instar of pre-diapausing larvae appears to stimulate the synthesis of selected proteins. For example, pre-diapausing larvae store in their fat body a low molecular weight protein which has been named the ‘diapause-associated protein’. When non-diapausing larvae were treated topically with C17-JH or a JH mimic, from 50 to 70% entered a diapause-like state as fully grown larvae. These hormone-treated larvae accumulated the diapause-associated protein and a high molecular weight protein in their fat bodies. Both of these proteins were shown to be released from the fat body of newly-diapaused larvae in vitro, and may function in the haemolymph during diapause. The high molecular weight protein, isolated from the haemolymph, was shown to contain neutral and polar lipids, including biochromes. Its storage in the fat body and release into the haemolymph may be essential for the transport of lipids during diapause. The fat body proteins of newly-diapaused larvae of the southern cornstalk borer, Diatraea crambidiodes, were also examined electrophoretically. They were found to contain a similar protein pattern to that of D. grandiosella, including the presence of a diapause-associated protein.  相似文献   

4.
Three storage proteins are synthesised by Spodoptera litura last-instar larvae as detected by an antiserum against pupal fat body proteins. The putative pupal storage proteins 1 and 2, appear in the haemolymph of the last-instar larvae 36 h after ecdysis under crowded rearing conditions: they appear 1 day later in isolated conditions. The appearance of these proteins in the haemolymph is prevented by juvenile hormone treatment and enhanced by allatectomy. Injection of 20-hydroxyecdysone into ligatured larvae does not induce appearance of these 2 proteins. Accumulation of protein 3 that reacts with Bombyx mori arylphorin antiserum is not blocked by juvenile hormone and is similar in both phases. It also accumulates to a small extent in the haemolymph during the moult to the final-larval instar and then disappears at ecdysis. One-hundred ng/ml ecdysteroid caused the sequestration of these proteins by the fat body, but a higher concentration of ecdysteroid (200 ng/ml) produced pupal cuticle in the isolated abdomens, suggesting that different ecdysteroid concentrations are necessary for these two events.  相似文献   

5.
Evidence is presented here to show that 20-hydroxyecdysone is essential for the activation of the larval fat body for differential uptake of larval haemolymph proteins (LHPs). By using radiolabelled LHPs it is shown that the fat body cells of Corcyra cephalonica selectively incorporate LHPs during late-larval and prepupal development. Fluorographic analysis of the labelled fat body proteins from prepupal stage separated on sodium dodecyl-sulphate polyacrylamide gels suggests that the LHPs are sequestered without any degradation. Although, during the last larval instar the uptake of all the three LHPs (LHP 1, LHP 2 and LHP 3) by the fat body cells is very low, 20-hydroxyecdysone treatment of early, mid or late-last instars causes a significant increase in uptake of all the three LHPs. However, the response to hormone treatment was more pronounced in late-last instar when compared to early and mid-last instar.  相似文献   

6.
7.
8.
From the first day of the last (fourth) larval instar no trace of juvenile hormone (JH) can be detected in the haemolymph by Galleria bioassay. Three specific diapause proteins, which are also found in diapausing adults, appear in the haemolymph. These proteins disappear towards the end of the pupal stage. Study of the ultrastructure of the fat body revealed the formation from lysosomes of proteinaceous bodies which are also characteristic for adult diapause. The behaviour of last instar larvae and pupae resembles that of prediapausing and diapausing adults respectively. Injection of synthetic JH delays the appearance of the diapause proteins in the haemolymph and of proteinaceous bodies in the fat body for 2 to 3 days. The absence of JH seems to trigger off these diapause phenomena.  相似文献   

9.
The presence of juvenile hormone in the haemolymph of larvae of Locusta has been detected by a modified Galleria bioassay and these results are compared with indirect methods of estimating corpus allatum activity. Juvenile hormone is present in the haemolymph during the fourth larval instar except on the last day of the instar, and is absent from the haemolymph of the fifth and final larval instar except on the last day of the instar. Changes in the volumes of the corpora allata simply reflect changes in the growth of the whole insect and are of no value in predicting endocrine activity. Changes in the size of the cells of the corpora allata can be correlated with the presence of juvenile hormone in the haemolymph in the fourth larval instar, but similar changes in cell size occur in the fifth larval instar when no juvenile hormone is present in the haemolymph. The effects of the implantation of corpora allata are unreliable as estimates of corpus allatum activity as isolated corpora allata from fifth instar larvae release juvenile hormone. Indirect methods of measuring corpus allatum activity are thus shown to be unreliable. The Rf value of Locusta juvenile hormone as determined by thin-layer chromatography differs from that of Roeller's juvenile hormone, suggesting that the two hormones might be chemically distinct.  相似文献   

10.
In vitro analysis of juvenile hormone esterase activity of haemolymph of T. molitor was performed during the end of post-embryonic development. Weak activity was found in penultimate stage larvae as in the major part (except the last day) of last-larval instar, while very high activity was monitored in the early pupae (female or male).This pupal peak was the only one detected during development in the insect, coinciding with the pupal juvenile hormone sensitive period. The first juvenile hormone sensitive period, during the lastlarval instar, does not seem to be protected by any juvenile hormone esterase activity in contrast to other species. These results suggest a central control for the drop in juvenile hormone level ceasing synthesis by the corpora allata after integration of external stimuli. This hypothesis could explain the natural occurrence of prothetelic larvae, the absence of pupal adult intermediates and the variable number of instars in Tenebrio.  相似文献   

11.
The primary regulator of ecdysone biosynthesis by insect prothoracic glands is the prothoracicotropic hormone. However, it now appears that other factors, secondary regulators, may modulate prothoracic gland activity. One such factor has been isolated from the haemolymph of Manduca larvae. This haemolymph factor stimulates in vitro ecdysone synthesis by larval and pupal prothoracic glands by approx. 5-fold. It has an apparent mol. wt of ~330 kD, is protease-sensitive and is heat labile, the latter clearly distinguishing it from the prothoracicotropic hormone. Further, its steroidogenic effects and those of prothoracicotropic hormone are additive. Treatment of larval or pupal prothoracic glands with both moieties simultaneously effects an approx. 10-fold increase in ecdysone synthesis. The haemolymph titre of the stimulatory factor is low at commitment of the last-larval instar, then increases by approx. 3-fold later in the instar during pharate-pupal development. This increase in the titre is sufficient to effect a significant increase in prothoracic gland activity that could be physiologically important. Thus, it appears that the fluctuating level of this haemolymph stimulatory factor may act in conjunction with prothoracicotropic hormone to regulate the haemolymph ecdysteroid titre by modulating the ecdysone biosynthetic activity of the prothoracic glands.  相似文献   

12.
When tobacco hornworm (manduca sexta) larvae are starved for 5 days immediately after ecdysis to the 5th instar, then fed normal diet, they undergo a supernumerary moult instead of metamorphosis. During starvation the titre of juvenile hormone in the haemolymph increased to a maximum of 3 ng juvenile hormone I equivalents/ml (determined by the black Manduca larval bioassay) on the fourth day of starvation, then began a decline which continued through the subsequent feeding period. The changes in juvenile hormone titre were not attributable to changes in haemolymph volume during starvation (only a 5% decrease) and subsequent feeding. During starvation the esterase activity of the haemolymph declined 4-fold with a 2-fold larger decrease in the DFP-insensitive, presumably juvenile hormone specific, esterase activity. Both the total and the juvenile hormone-specific esterase activity then increased as a function of larval weight during the subsequent feeding period. As growth was slow in the prolongedly starved larvae, sufficient juvenile hormone was present at the time of prothoracicotropic hormone (PTTH) and ecdysteroid release at the beginning of the fourth day of feeding to prevent metamorphosis.  相似文献   

13.
Changes in prothoracic gland morphology were correlated to developmental events and ecdysteroid titres (20-hydroxyecdysone equivalents) during the last-larval instar in Spodoptera littoralis. After ecdysis to the last-larval instar the haemolymph ecdysteroid titre remained at about 45 ng/ml, when the prothoracic glands appeared quiescent. The first signs of distinct gland activity, indicated by increased cell size and radial channel formation, were observed at about 12 h prior to the cessation of feeding (36 h after the last-larval moult), accompanied by a gradual increase in ecdysteroid titre to 110 ng/ml haemolymph, at the onset of metamorphosis. During this phase ecdysteroid titres remained at a constant level (140–210 ng/ml haemolymph) and prothoracic gland cellular activity was absent for a short period. The construction of pupation cells occurred when haemolymph ecdysteroids titres increased to 700 ng/ml. A rapid increase in ecdysteroids began on the fourth night (1600 ng/ml haemolymph) reaching a maximal level (4000 ng/ml haemolymph) at the beginning of the fourth day. In freshly moulted pupae a relatively high ecdysteroid titre (1100 ng/ml haemolymph) was still observed, although during a decrease to almost negligible levels. The increase in ecdysteroid level during the third and the fourth nights of the last-larval instar was correlated with the period when almost all the prothoracic gland cells showed signs of high activity. Neck-ligation experiments indicated the necessity of head factors for normal metamorphosis up to the second to third day of the instar. The possibility that the prothoracic glands are under prothoracicotropic hormone regulation at these times is discussed.  相似文献   

14.
Phase characters of the common cutworm, Spodoptera litura, were influenced by different rearing densities from the 4th-larval instar. Primarily the final feeding period of isolated larvae was 1 day longer than that of crowded larvae causing an increase in pupal weight. Applications of juvenile hormone I, II, or methoprene to crowded larvae caused an increased feeding period similar to that of isolated larvae when the juvenile hormones were applied within 1 day after the last-larval ecdysis. Allatectomy of isolated Spodoptera during the moult to the final-larval instar decreased the duration of the final feeding period to that of intact crowded larvae. These results suggested that one of the characters of phase variation, pupal weight, is influenced by the differences in the regulation and activity of the corpora allata during the last-larval instar. Other characteristics of phase variation such as behaviour (feigned death) and colour were not affected by alteration in juvenile hormone levels after the last larva ecdysis.  相似文献   

15.
Application of methoprene to fourth (penultimate) instar larvae of the silkworm Bombyx mori induced the appearance of the feeding dauer larvae at the fifth (last) instar and prevented pupal metamorphosis. Methoprene also increased the protein concentrations of hemolymph last instar larvae by preventing sequestration of storage proteins by the fat body. Usually, the female-specific storage protein 1 (SP1)* disappears from the male hemolymph at the time of the last larval instar. However, exposure of male larvae to methoprene at the penultimate instar enhanced the accumulation of SP1 in the hemolymph. The SP1 accumulated in males did not differ in molecular weight and immunoreactivity from the SP1 produced in female larvae. Both sexes of fourth instar larvae allatectomized on day 1 instantly accumulated SP1 in the hemolymph, and methoprene application after allatectomy suppressed the hemolymph accumulation of the SP1. In contrast, if allatectomy was carried out at a later stage of the fourth larval instar, SP1 concentration in hemolymph of fifth instar larvae did not increase, suggesting the different juvenile hormone action for regulation of SP1 synthesis in the penultimate instar larvae of silkworms.  相似文献   

16.
The haemolymph ecdysteroid titre and in vitro capacities of prothoracic glands and corpora allata to synthesize ecdysone and juvenile hormone, respectively, during the last-larval instar of diapause-destined (short-day) and non-diapause-destined (long-day) Manduca sexta were investigated. In general, the ecdysteroid titres for both populations of larvae were the same and exhibited the two peaks characteristic of the haemolymph titre during this developmental stage in Manduca. The only difference in the titre occurred between day 7 plus 12 h and day 7 plus 20 h, when the short-day larval titre did not decrease as quickly as the long-day titre. The in vitro synthesis of ecdysone by prothoracic glands of short- and long-day larvae during the pharate pupal phase of the instar were also essentially the same. Activity fluctuated at times which would support the idea that ecdysone synthesis by the glands is a major contributing factor to the changes in the haemolymph ecdysteroid titre. There was one subtle difference in prothoracic gland activity between the two populations, occurring on day 7 plus 2 h. By day 7 plus 10 h, however, rates of ecdysone synthesis by the short- and long-day glands were comparable. This elevated activity of the short-day glands occurred just prior to the period the haemolymph ecdysteroid titre remained elevated in these larvae. The capacities of corpora allata to synthesize juvenile hormone I and III in vitro were not markedly different in long- and short-day last-instar larvae. At the time of prothoracicotropic hormone release in the early pupa, activity of corpora allata from short- and long-day reared animals was low and also essentially the same. There were a few differences in the levels of synthesis at isolated times, but they were not consistent for both homologues. Overall, there are no compelling differences in the fluctuations of ecdysteroids and juvenile hormones between diapause-destined and non-diapause-destined Manduca larvae. Since these hormones do not appear to play any obviously significant role in the induction of pupal diapause in this insect, the photoperiodic induction of diapause in Manduca appears to be a predominantly brain-centred phenomenon not involving endocrine effectors.  相似文献   

17.
Starvation of 48 h old fifth instar larvae depressed storage protein titres initially for 48 h but retained the levels comparable to control thereafter, possibly due to nutrients obtained during the 48 h feeding after fourth ecdysis. After an initial decline ligated larvae accumulated maximum storage proteins in haemolymph. This is because of inhibitory juvenile hormone titre at the basal level besides the appropriate release of 20-hydroxyecdysone from the ectopic source(s). Injection of methoprene (10 Μg/larva) repressed accumulation of storage proteins while 20-hydroxyecdysone (10 Μg/larva) increased the same. P-soyatose injection to starved and ligated larvae accelerated storage protein accumulation in haemolymph, signalling nutrient indispensability for initiation of storage protein synthesis at the appropriate time of last instar development inBombyx mori.  相似文献   

18.
PROTEIN AND NUCLEIC ACID METABOLISM IN INSECT FAT BODY   总被引:1,自引:0,他引:1  
1. The appearance of larval fat body as seen under the light or electron microscope depends on the nutritional state of the larva and on the stage of larval development at which the fat body is observed. 2. Early in the last larval instar the cells usually possess a well-developed endo-plasmic reticulum rich in ribosomes, numerous mitochondria, glycogen granules, a Golgi complex and fat droplets, while later in the instar the endoplasmic reticulum is much reduced and mitochondria are few, but glycogen and fat droplets are present in greater amount together with the appearance of large numbers of proteinaceous spheres. 3. Early in the last instar the fat body synthesizes proteins and exports them into the blood, while later in the instar proteins are sequestered from the blood into the fat body. 4. The rate of protein synthesis by the fat body is high in the early to mid part of the last instar, but then falls off rapidly to a low level, at which it remains until the larva pupates. In diapausing pupae, protein synthesis remains at this low level. 5. The similarity between the electrophoretic patterns of proteins from the fat body and those from the blood provides strong evidence that the fat body is the site of synthesis of many of the blood proteins. 6. Some of the blood proteins have been shown to possess enzymic properties, while others are thought to play a role in the transportation of various types of compounds. 7. Ecdysone and juvenile hormone both stimulate the rate of protein synthesis by larval fat body. Protein synthesis in fat body from diapausing pupae is stimulated after injury to the pupae. 8. The appearance of adult fat body and the amount of protein it contains is often closely linked with the nutritional and reproductive states of the insect. 9. An important role of the fat body in the adult female insect is the synthesis of yolk proteins, which are released into the blood and then taken up by the developing oocytes. This synthesis and uptake are under the control of hormones secreted by the corpora allata and by the median neurosecretory cells of the pars intercerebralis. 10. The RNA content of fat body in final-instar larvae is not constant throughout the instar. In some larvae it is at its highest level early in the instar, falling to a low level as the instar progresses, while in other larvae (e.g. Calliphora) the level of RNA in fat body does not decrease as the instar progresses. 11. In some dipterous insects the base composition of total RNA is DNA-like in that the guanine + cytosine content is low, accounting for 40 % of the bases. A similar composition is seen in rapidly labelled RNA isolated from insects of other orders (Coleoptera and Lepidoptera), but the base content of total RNA from these latter insects resembles ribosomal RNA from vertebrate tissues in that it has a high (ca. 60 %) guanine + cytosine content. 12. The RNA/DNA ratios in blowfly larval tissues are high compared with those found in any vertebrate tissue. 13. In larval fat body, RNA synthesis is low at the time of a moult, increases during the early and mid-instar period and subsequently falls during the latter part of the instar. During the pupal period, especially during pupal diapause, the rate of RNA synthesis is very low and then increases during the subsequent development of the pharate adult. Injury to diapausing pupae results in an increased rate of RNA synthesis in most of their tissues. 14. Ecdysone and juvenile hormone both stimulate RNA and DNA synthesis in larval and adult fat body and in other tissues, although there is evidence that in some tissues these two hormones may act antagonistically to each other. The insecticide DDT also has been shown to stimulate RNA synthesis in tissues of adult insects.  相似文献   

19.
Protein metabolism in salivary glands, gut, haemolymph, and fat body during the last larval instar of the blowfly, Calliphora erythrocephala, has been investigated. In salivary glands, protein release, protein synthesis, amylase, and pepsin-like protease activity were maximal in 6 day larvae, this being at a time when the larvae had finished feeding. All these functions declined in glands from the rounded-off white puparial stage (R.O.) while acid phosphatase activity rose throughout the third instar to a maximum at the R.O. stage, Glands from 6 and 7 day larvae released protein which on disk gel electrophoresis separated into four minor bands and two major bands one of the latter possessing protease activity.In the gut, pepsin-like protease activity was maximal in 4 day larvae after which it fell rapidly thus following the feeding pattern of the larva in contrast to that in the salivary glands which did not.In vitro experiments showed that protease was released from 6 day glands through the basal membrane of the cells and not via the duct. A pepsin-like protease was also found in the haemolymph and fat body, the activity in the fat body rising rapidly during the latter part of the third instar, a rise which is attributed to the fat body sequestering protease from the haemolymph. Acid phosphatase activity in the fat body was maximal in 5 day larvae indicating that this enzyme was synthesized early in the third instar. It was shown that fat body sequestered 14C-labelled protein synthesized by and released from the salivary glands, most of the 14C activity being associated with a 600 g precipitable, acid-phosphatase rich fraction.It is proposed that in late third instar larvae the salivary glands function as glands of internal secretion, releasing protease into the haemolymph, which is then sequestered by the fat body (and perhaps other tissues) and is subsequently used in the lysis of the tissues at the time of metamorphosis.  相似文献   

20.
The patterns of protein synthetic activities were determined in the fat body and silk glands of Bombyx mori larvae during the fifth instar. Comparisons were made between control and juvenile hormone or methoprene—treated animals. In normal larvae, the relative synthetic activities of a few proteins increase up to the time of spinning. In treated larvae, the presence of high levels of juvenile hormone or methoprene never results in an arrest of the expression of differentiation at the molecular level. The syntheses of the most abundant markers of development in both organs are reduced by the hormone, but total inhibition has never been observed. The transfer of a large amount of proteins (28–29 kd) from the fat body to the haemolymph is decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号