首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A novel family of DNA polymerases replicates organelle genomes in a wide distribution of taxa encompassing plants and protozoans. Making error-prone mutator versions of gamma DNA polymerases revolutionised our understanding of animal mitochondrial genomes but similar advances have not been made for the organelle DNA polymerases present in plant mitochondria and chloroplasts. We tested the fidelities of error prone tobacco organelle DNA polymerases using a novel positive selection method involving replication of the phage lambda cI repressor gene. Unlike gamma DNA polymerases, ablation of 3′–5′ exonuclease function resulted in a modest 5–8-fold error rate increase. Combining exonuclease deficiency with a polymerisation domain substitution raised the organelle DNA polymerase error rate by 140-fold relative to the wild type enzyme. This high error rate compares favourably with error-rates of mutator versions of animal gamma DNA polymerases. The error prone organelle DNA polymerase introduced mutations at multiple locations ranging from two to seven sites in half of the mutant cI genes studied. Single base substitutions predominated including frequent A:A (template: dNMP) mispairings. High error rate and semi-dominance to the wild type enzyme in vitro make the error prone organelle DNA polymerase suitable for elevating mutation rates in chloroplasts and mitochondria.  相似文献   

2.
A Method for Isolation of Chloroplast DNA and Mitochondrial DNA from Sunflower   总被引:11,自引:1,他引:10  
We present a method for isolation of chloroplast and mitochondrial DNA from sunflower seedlings. The protocol includes: organelle isolation, deoxyribonuclease treatment, lysis, deproteinisation and a final DNA purification with sodium dodecyl sulphate and potassium acetate. The organelle DNA yield is 5–10 micrograms per gram of tissue and the DNA is fully restrictable. The technique is inexpensive and appropriate for the isolation of multiple samples of organelle DNA from a small amount of tissue.  相似文献   

3.
HU is a most abundant DNA-binding protein in bacteria. This protein is conserved either in its heterodimeric form or in one of its homodimeric forms in all bacteria, in plant chloroplasts, and in some viruses. HU protein non-specifically binds and bends DNA as a hetero- or homodimer and can participate in DNA supercoiling and DNA condensation. It also takes part in some DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows some specificity to cruciform DNA and to repair intermediates, e.g., nick, gap, bulge, 3′-overhang, etc. To understand the features of HU binding to DNA and repair intermediates, a fast and easy HU proteins purification procedure is required. Here we report overproduction and purification of the HU homodimers. The method of HU purification allows obtaining a pure recombinant non-tagged protein cloned in Escherichia coli. We applied this method for purification of Acholeplasma laidlawii HU and demonstrated that this protein possesses a DNA - binding activity and is free of contaminating nuclease activity. Besides that we have shown that expression of A. laidlawii ihf_hu gene in a slow-growing hupAB E. coli strain restores the wild-type growth indicating that aclHU can perform the basic functions of E. coli HU in vivo.  相似文献   

4.
Organelle DNA in plastids and mitochondria is present in multiple copies and undergoes degradation developmentally. For example, organelle DNA that is detectable cytologically using DNA-fluorescent dye disappears during pollen development. Nevertheless, nucleases involved in this degradation process remain unknown. Our recent study identified the organelle nuclease, DPD1, which has Mg2+-dependent exonuclease activity in vitro. The discovery of DPD1 emerged from Arabidopsis mutant screening and concomitant isolation of dpd1 mutants that retain organelle DNA in mature pollen. DPD1 is conserved only in angiosperms: not in other photosynthetic organisms. Despite these findings, the physiological significance of organelle DNA degradation during pollen development remains unclear because dpd1 exhibits no apparent defects in pollen viability or in the maternal inheritance of organelle DNA. We discuss a possible role of organelle DNA degradation mediated by DPD1, based on a DPD1 expression profile studied using in silico analyses.Key words: mitochondria, nuclease, organelle DNAs, plastids, pollen  相似文献   

5.
Tobias Kieser 《Plasmid》1984,12(1):19-36
Based on the results of a systematic study of factors affecting plasmid yield and purity, a procedure suitable for the rapid screening for and isolation of covalently closed circular DNA from Streptomyces lividans and Escherichia coli was developed. The method consists of lysis of lysozyme-treated bacteria combined with alkaline denaturation of DNA at high temperature. Renaturation of CCC DNA and precipitation of single-stranded DNA together with protein is achieved by the addition of a minimal amount of phenol/chloroform. The screening procedure uses only a single tube and the samples can be analyzed by agarose gel electrophoresis about 30 min after lysis. Removal of phenol and further purification of the plasmid preparation is achieved by consecutive precipitations with isopropanol and spermine, followed by extraction with ethanol, producing samples suitable for restriction endonuclease digestion, ligation, and transformation of S. lividans protoplasts or competent E. coli cells in about 2 h. All steps of the procedure are explained in detail with information about the effects of changing parameters. This should help the experimenter to obtain reproducible results and may be useful if the method has to be adapted to new strains or plasmids.  相似文献   

6.
In plant cells, mitochondria and plastids contain their own genomes derived from the ancestral bacteria endosymbiont. Despite their limited genetic capacity, these multicopy organelle genomes account for a substantial fraction of total cellular DNA, raising the question of whether organelle DNA quantity is controlled spatially or temporally. In this study, we genetically dissected the organelle DNA decrease in pollen, a phenomenon that appears to be common in most angiosperm species. By staining mature pollen grains with fluorescent DNA dye, we screened Arabidopsis thaliana for mutants in which extrachromosomal DNAs had accumulated. Such a recessive mutant, termed defective in pollen organelle DNA degradation1 (dpd1), showing elevated levels of DNAs in both plastids and mitochondria, was isolated and characterized. DPD1 encodes a protein belonging to the exonuclease family, whose homologs appear to be found in angiosperms. Indeed, DPD1 has Mg2+-dependent exonuclease activity when expressed as a fusion protein and when assayed in vitro and is highly active in developing pollen. Consistent with the dpd phenotype, DPD1 is dual-targeted to plastids and mitochondria. Therefore, we provide evidence of active organelle DNA degradation in the angiosperm male gametophyte, primarily independent of maternal inheritance; the biological function of organellar DNA degradation in pollen is currently unclear.  相似文献   

7.
We report here a simple and rapid method for the purification of chloroplast DNA (ctDNA) from wheat (Triticum aestivum). It utilizes an aqueous procedure, which does not involve at any stage running of gradients. Due to use of DEPC which inactivates DNases activated by EDTA, the DNase action on crude chloroplast preparation containing ctDNA is avoided.  相似文献   

8.
A procedure is described for the isolation and purification of the DNA of plasmids that are indigenous to the agriculturally important nitrogen-fixing bacterium Rhizobium meliloti. The procedure involves the lysis of bacteria with an ionic detergent or a mixture of ionic and nonionic detergents, the extraction of total DNA from precipitated membrane-DNA complexes, the enrichment of supercoiled plasmid DNA by the selective alkaline denaturation of chromosomal DNA, and a further purification of plasmid DNA using cesium chloridepropidium diiodide gradients. This procedure yields pure plasmid DNA in amounts of 30 to 50 μg per liter of a culture of cell density of approximately one A550 unit. The DNA thus obtained has been found to be of sufficient purity to serve as substrate for the most commonly used restriction endonucleases.  相似文献   

9.
A two-step chromatographic purification procedure from clarified Escherichia coli ultrasonic homogenate was evaluated. The capture step included immobilized metal affinity chromatography with Cu2+ as metal ion. Two elution methods were performed: 1 M NH4Cl and 0.01 M imidazole. Respectively, we obtained a different purification fold (16.5 to 3.15) and a similar result for the recovery of activity (90–99%). The best elution method was chosen for the procedure. The second step, hydrophobic interaction chromatography, gave a 3.8-fold purification with 77.7% of activity. The total procedure gave a 66-fold purification in relation to the initial crude extract with 70% for the recovery of activity and was performed without any conditioning step and at the same pH value.  相似文献   

10.
An improved procedure is presented for the binding to filter paper and subsequent purification of DNA from plasmid-containing bacterial colonies. The procedure includes treatments with NaOH, enzymatic digestion, and organic solvent extraction of the filter-bound DNA. This method allows isolation of DNA in a reusable form from thousands of colonies in several hours. Double-labeling experiments with [3H]thymidine and [14C]proline indicated that (i) during purification the DNA:protein ratio is increased several hundredfold; (ii) little or no DNA is lost during the procedure; (iii) the resultant purified DNA is tenaciously bound to the paper. Thus, the final filter-bound DNA allows multiple sequential hybridizations of different probes to one filter.  相似文献   

11.
Efficient, nonselective methods to obtain DNA from the environment are needed for rapid and thorough analysis of introduced microorganisms in environmental samples and for analysis of microbial community diversity in soil. A small-scale procedure to rapidly extract and purify DNA from soils was developed for in-the-field use. Amounts of DNA released from bacterial vegetative cells, bacterial endospores, and fungal conidia were compared by using hot-detergent treatment, freeze-thaw cycles, and bead mill homogenization. Combining a hot-detergent treatment with bead mill homogenization gave the highest DNA yields from all three microbial cell types and provided DNA from the broadest range of microbial groups in a natural soil community. Only the bead mill homogenization step was effective for DNA extraction from Bacillus globigii (B. subtilis subsp. niger) endospores or Fusarium moniliforme conidia. The hot-detergent–bead mill procedure was simplified and miniaturized. By using this procedure and small-scale, field-adapted purification and quantification procedures, DNA was prepared from four different soils seeded with Pseudomonas putida cells or B. globigii spores. In a New Mexico soil, seeded bacterial targets were detected with the same sensitivity as when assaying pure bacterial DNA (2 to 20 target gene copies in a PCR mixture). The detection limit of P. putida cells and B. globigii spores in different soils was affected by the amount of background DNA in the soil samples, the physical condition of the DNA, and the amount of DNA template used in the PCR.  相似文献   

12.
A simple and rapid procedure for the purification of plasmids from Escherichia coli K12 has been developed. Bacterial cells are subjected to the boiling procedure [D. S. Holmes, and M. Quigley Anal. Biochem.114, 193–197 (1981)] followed by removal of contaminating RNA by chromatography on Sepharose 2B and of genomic DNA by acid-phenol extraction. Plasmids are recovered with good yield. They can be restricted and ligated and will transform host cells. A simple modification of the procedure allows it to be used for the isolation of coliphage M13 RF DNA.  相似文献   

13.
A facile method for the determination of bacteriophage T4-induced polynucleotide ligase joining activity is described. The assay is based on the ability of polynucleotide ligase to join the cohesive termini of bacteriophage λ DNA covalently. The observance of this activity is greatly facilitated if λ DNA is previously cleaved with the restriction endonuclease EcoRI and the reaction products subsequently analyzed by electrophoresis in ethidium bromide-agarose gel. A purification scheme is presented which offers a reduction in the number of steps required to purify polynucleotide ligase compared to a previously published procedure and yields an enzyme preparation which is suitable for use in in vitro construction of recombinant DNA molecules.  相似文献   

14.
Citrus genetic resources are rich but underutilized in breeding because their complex reproductive biology and the scarceness of inheritance studies on agronomic traits. Here, we investigated the genomic distribution of segregation distortion regions, the inheritance of organelle DNA and colinearity between scion citrus linkage maps by using a reciprocal cross design. The parents were Fortune, a hybrid mandarin from C. clementina, and Chandler, a hybrid pummelo from C. grandis that largely differ in fruit size, taste and colour. The inheritance of organelle DNA was studied in 201 hybrids by using four organelle DNA markers, and the linkage maps were based on 174 of those hybrids. Around ten percent of the seedlings derived from the pummelo as female parent showed the same organelle markers as those of the mandarin, indicating a possible exception to their expected maternal inheritance in citrus. Most segregation distortion affects just the allele frequencies, generally representing differences in pollen fertilization success, as a likely consequence of the presence of gametal factors affecting the functionality of gametes and pollen-pistil interactions. The large extension of colinearity found when comparing the C. grandis and C. clementina linkage maps to those previously reported for rootstock species (C. aurantium and P. trifoliata), will be helpful to infer the position of orthologous genes and QTLs in citrus species and for a more useful genetic characterization of citrus germplasm collections.  相似文献   

15.
Piscirickettsia salmonis is an obligate intracellular bacterial pathogen of salmonid fish and the etiological agent of the aggressive disease salmonid rickettsial syndrome. Today, this disease, also known as piscirickettsiosis, is the cause of high mortality in net pen-reared salmonids in southern Chile. Although the bacteria can be grown in tissue culture cells, genetic analysis of the organism has been hindered because of the difficulty in obtaining P. salmonis DNA free from contaminating host cell DNA. In this report, we describe a novel procedure to purify in vitro-grown bacteria with iodixanol as the substrate to run differential centrifugation gradients which, combined with DNase I digestion, yield enough pure bacteria to do DNA analysis. The efficiency of the purification procedure relies on two main issues: semiquantitative synchrony of the P. salmonis-infected Chinook salmon embryo (CHSE-214) tissue culture cells and low osmolarity of iodixanol to better resolve bacteria from the membranous structures of the host cell. This method resulted in the isolation of intact piscirickettsia organisms and removed salmon and mitochondrial DNA effectively, with only 1.0% contamination with the latter.  相似文献   

16.
Volvocalean green algae have among the most diverse mitochondrial and plastid DNAs (mtDNAs and ptDNAs) from the eukaryotic domain. However, nearly all of the organelle genome data from this group are restricted to unicellular species, like Chlamydomonas reinhardtii, and presently only one multicellular species, the ∼4,000-celled Volvox carteri, has had its organelle DNAs sequenced. The V. carteri organelle genomes are repeat rich, and the ptDNA is the largest plastome ever sequenced. Here, we present the complete mtDNA and ptDNA of the colonial volvocalean Gonium pectorale, which is comprised of ∼16 cells and occupies a phylogenetic position closer to that of V. carteri than C. reinhardtii within the volvocine line. The mtDNA and ptDNA of G. pectorale are circular-mapping AT-rich molecules with respective lengths and coding densities of 16 and 222.6 kilobases and 73 and 44%. They share some features with the organelle DNAs of V. carteri, including palindromic repeats within the plastid compartment, but show more similarities with those of C. reinhardtii, such as a compact mtDNA architecture and relatively low organelle DNA intron contents. Overall, the G. pectorale organelle genomes raise several interesting questions about the origin of linear mitochondrial chromosomes within the Volvocales and the relationship between multicellularity and organelle genome expansion.  相似文献   

17.
18.
A simple mechanical procedure that has been developed for the large-scale preparation of intact mitochondria from yeast, is also applicable to the extraction of organelles from other organisms having cell walls. A procedure for the isolation of large quantities of pure mitochondrial DNA from these mitochondria is described. In Schizosaccharomyces pombe, further purification of the mitochondria by urografin isopycnic centrifugation leads to 50% recovery of whole cell respiration activity in a vesicular fraction of respiratory chain enzymes, with NADH oxidase activity usually greater than 10 μmol of electrons/min/mg of protein. The method has the advantage of rapidity and low cost and it is extremely healthy for the operator.  相似文献   

19.

Background

Entomological surveys of Simulium vectors are an important component in the criteria used to determine if Onchocerca volvulus transmission has been interrupted and if focal elimination of the parasite has been achieved. However, because infection in the vector population is quite rare in areas where control has succeeded, large numbers of flies need to be examined to certify transmission interruption. Currently, this is accomplished through PCR pool screening of large numbers of flies. The efficiency of this process is limited by the size of the pools that may be screened, which is in turn determined by the constraints imposed by the biochemistry of the assay. The current method of DNA purification from pools of vector black flies relies upon silica adsorption. This method can be applied to screen pools containing a maximum of 50 individuals (from the Latin American vectors) or 100 individuals (from the African vectors).

Methodology/Principal Findings

We have evaluated an alternative method of DNA purification for pool screening of black flies which relies upon oligonucleotide capture of Onchocerca volvulus genomic DNA from homogenates prepared from pools of Latin American and African vectors. The oligonucleotide capture assay was shown to reliably detect one O. volvulus infective larva in pools containing 200 African or Latin American flies, representing a two-four fold improvement over the conventional assay. The capture assay requires an equivalent amount of technical time to conduct as the conventional assay, resulting in a two-four fold reduction in labor costs per insect assayed and reduces reagent costs to $3.81 per pool of 200 flies, or less than $0.02 per insect assayed.

Conclusions/Significance

The oligonucleotide capture assay represents a substantial improvement in the procedure used to detect parasite prevalence in the vector population, a major metric employed in the process of certifying the elimination of onchocerciasis.  相似文献   

20.
The protozoan pathogens Giardia lamblia and Cryptosporidium parvum are major causes of waterborne enteric disease throughout the world. Improved detection methods that are very sensitive and rapid are urgently needed. This is especially the case for analysis of environmental water samples in which the densities of Giardia and Cryptosporidium are very low. Primers and TaqMan probes based on the β-giardin gene of G. lamblia and the COWP gene of C. parvum were developed and used to detect DNA concentrations over a range of 7 orders of magnitude. It was possible to detect DNA to the equivalent of a single cyst of G. lamblia and one oocyst of C. parvum. A multiplex real-time PCR (qPCR) assay for simultaneous detection of G. lamblia and C. parvum resulted in comparable levels of detection. Comparison of DNA extraction methodologies to maximize DNA yield from cysts and oocysts determined that a combination of freeze-thaw, sonication, and purification using the DNeasy kit (Qiagen) provided a highly efficient method. Sampling of four environmental water bodies revealed variation in qPCR inhibitors in 2-liter concentrates. A methodology for dealing with qPCR inhibitors that involved the use of Chelex 100 and PVP 360 was developed. It was possible to detect and quantify G. lamblia in sewage using qPCR when applying the procedure for extraction of DNA from 1-liter sewage samples. Numbers obtained from the qPCR assay were comparable to those obtained with immunofluorescence microscopy. The qPCR analysis revealed both assemblage A and assemblage B genotypes of G. lamblia in the sewage. No Cryptosporidium was detected in these samples by either method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号