首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Genes for (methyl)phenol degradation in Pseudomonas putida strain H (phl genes) are located on the plasmid pPGH1. Adjacent to the phl catabolic operon we identified a cryptic transposon, Tn5501, of the Tn3 family (class II transposons). The genes encoding the resolvase and the transposase are transcribed in the same direction, as is common for the Tn501 subfamily. The enzymes encoded by Tn5501, however, show only the overall homology characteristic for resolvases/integrases and transposases of Tn3-type transposons. Therefore it is likely that Tn5501 is not a member of one of the previously defined subfamilies. Inactivation of the conditional lethal sacB gene was used to detect transposition of Tn5501. While screening for transposition events we found another transposon integrated into sacB in one of the sucrose-resistant survivors. This element, Tn5502, is a composite transposon consisting of Tn5501 and an additional DNA fragment. It is flanked by inverted repeats identical to those of Tn5501 and the additional fragment is separated from the Tn5501 portion by an internal repeat (identical to the left terminal repeat). Transposition of phenol degradation genes could not be detected. Analysis of sequence data revealed that the phl genes are not located on a Tn5501-like transposon.  相似文献   

2.
陈璇  毛铃雅  王钦  王红宁  雷昌伟 《微生物学报》2023,63(11):4133-4143
转座子是介导细菌耐药性传播的重要可移动遗传元件。Tn7转座子与细菌耐药密切相关,其携带转座模块和Ⅱ类整合子系统。Tn7编码转座相关蛋白TnsABCDE进行“剪切-粘贴”机制转座,转座核心TnsABC也可与三链DNA或Cas-RNA复合物结合实现转座。近年来新发现了多种介导多重耐药的Tn7转座子,其在介导细菌抗生素、消毒剂和重金属抗性基因的获得、传播扩散等方面发挥了重要作用。本文综述了细菌中Tn7转座子的遗传结构、转座机制、流行以及新发现的介导多重耐药的Tn7转座子,以期为细菌中Tn7转座子的深入研究提供参考。  相似文献   

3.
Tn163 is a transposable element identified in Rhizobium leguminosarum bv. viciae by its high insertion rate into positive selection vectors. The 4.6 kb element was found in only one further R. leguminosarum bv. viciae strain out of 70 strains investigated. Both unrelated R. leguminosarum bv. viciae strains contained one copy of the transposable element, which was localized in plasmids native to these strains. DNA sequence analysis revealed three large open reading frames (ORFs) and 38 bp terminal inverted repeats. ORF1 encodes a putative protein of 990 amino acids displaying strong homologies to transposases of class 11 transposons. ORF2, transcribed in the opposite direction, codes for a protein of 213 amino acids which is highly homologous to DNA invertases and resolvases of class II transposons. Homology of ORF1 and ORF2 and the genetic structure of the element indicate that Tn163 can be classified as a class II transposon. It is the first example of a native transposon in the genus Rhizobium. ORF3, which was found not to be involved in the transposition process, encodes a putative protein (256 amino acids) of unknown function. During transposition Tn163 produced direct repeats of 5 bp, which is typical for transposons of the Tn3 family. However, one out of the ten insertion sites sequenced showed a 6 by duplication of the target DNA; all duplicated sequences were A/T rich. Insertion of Tn163 into the sacB gene revealed two hot spots. Chromosomes of different R. leguminosarum bv. viciae strains were found to be highly refractory to the insertion of Tn163.  相似文献   

4.
  Tn4371 is a 55 kb transposon which encodes enzymes for the degradation of biphenyl and 4-chlorobiphenyl compounds into benzoate and 4-chlorobenzo-ate derivatives. We constructed a cosmid library of Tn4371 DNA. The bph genes involved in biphenyl/4-chlorobiphenyl degradation were found to be clustered in the middle of the transposon. Sequencing revealed an organisation of the bph genes similar to that previously found in Pseudomonas sp. KKS102, i.e. the bphEGF genes are located upstream of bphA1A2A3 and bphA4 is separated from bphA1A2A3 by bphBCD. Consensus sequences for σ54-associated RNA polymerase were found upstream of bphA1 and bphEGF. Plasmid RP4::Tn4371 was transferred into a mutant of Alcaligenes eutrophus H16 lacking σ54. In contrast to wild-type H16 exconjugants, the σ54 mutant exconjugants could not grow on biphenyl, indicating the dependence of Tn4371bph gene expression on σ54. The Tn4371-encoded bph pathway was activated when biphenyl and various biphenyl-like compounds were present in the growth medium. Preliminary observations indicate the presence of a region outside the catabolic genes downstream of bphA4 which is involved in mediating at least the basal expression of BphC. Received: 13 May 1996 / Accepted: 16 September 1996  相似文献   

5.
A new staphylococcal composite transposon, designated Tn5405,carrying the genesaphA-3andaadE,which encode resistance to aminoglycosides, was partially characterized. The transposon is 12 kb long and is flanked by inverted repeated sequences displaying the characteristic features of an insertion sequence, named IS1182.This insertion sequence is 1864 bp long and has 23/33-bp imperfect inverted repeats at its ends. One of the IS1182copies delimiting Tn5405contains a copy of IS1181flanked by 8-bp direct repeats. Tn5405was found in the chromosome of MRSA clinical isolate BM3121, within a Tn552-related transposon, Tn5404.Tn5404was previously characterized following its transposition onto a β-lactamase plasmid harbored by BM3121. Two forms of the recombinant β-lactamase-encoding plasmid generated by the inversion of Tn5405within Tn5404were detected. IS1182was not detected in the DNA of 4 of the 17 tested MRSA isolates containingaphA-3and resistant to streptomycin. Thus,aphA-3andaadEgenes are not disseminated only by Tn5405or related transposons delimited by IS1182.  相似文献   

6.
Summary A derivative of the IncP1 plasmid RP4, carrying the thermoinducible prophage Mucts62, was obtained in Escherichia coli K 12 J53 (RP4). It was impossible to maintain the hybrid plasmid RP4: Mucts62 in Rhizobium meliloti GR4. Thus, it was used as a vehicle for introducing the ampicillinresistant transposon Tn1 introducing the ampicillinresistant transposon Tn1 into the R. meliloti genome.Transposition of Tn1 did not generate auxotrophic strains, suggesting that the insertion of Tn1 into the R. meliloti genome was relatively specific. Two chromosomal hot spots for Tn1 insertion were identified by cotransductional analysis, after general transduction by phage DF2. Plasmid-curing experiments, carried out by heat treatment, revealed that symbiotic plasmid(s) also contain at least one site for Tn1 insertion.  相似文献   

7.
Summary The prokaryotic mercury-resistance transposon Tn501 contains a sequence, 80 nucleotides from one end, which is identical with an inverted terminal repeat (IR) of Tn21. This Tn21 IR sequence is used when Tn21 complements a TnpA- derivative of Tn501, but not when Tn501 is used for the complementation. Complementation by Tn1721 shows a preference for the normal Tn501 IRs. The element (Tn820) transposed when Tn21 is used to complement a Hg- TnpR- TnpA- Res- deletion mutant of Tn501 contains the Tn21 IR sequence at one terminus and a Tn501 IR at the other. Transposition of Tn820 can be complemented by Tn501 and Tn1721, but at a much lower frequency than transposition of the parental element (Tn819) which has two Tn501 IRs. The relationship between the transposition functions of Tn501, Tn21 and Tn1721, and available nucleotide sequence data suggest that Tn501 evolved by the transposition of a Tn21-like element into another transposable element (similar to that found within Tn1721) followed by deletion of the Tn21-like transposition functions.Abbreviations used (IR) Inverted repeat - (Cb) carbenicillin - (Cm) chloramphenicol - (Sm) streptomycin - (Su) sulphonamide - (Tc) tetracycline - (Tp) trimethoprim  相似文献   

8.
The 6645-bp mercury resistance transposon of the chemolithotrophic bacterium Thiobacillus ferrooxidanswas cloned and sequenced. This transposon, named Tn5037, belongs to the Tn21branch of the Tn21subgroup, many members of which have been isolated from clinical sources. Having the minimum set of the genes (merRTPA), the mercury resistance operon of Tn5037is organized similarly to most of the Gram-negative bacteria meroperons and is closest to that of ThiobacillusT3.2. The operator-promoter region of the meroperon of Tn5037also has the common (Tn21/Tn501-like) structure. However, its inverted, presumably MerR protein binding repeats in the operator/promoter element are two base pairs shorter than in Tn21/Tn501. In the merA region, this transposon shares 77.4, 79.1, 83.2 and 87.8% identical bases with Tn21, Tn501, T. ferrooxidansE-15, and ThiobacillusT3.2, respectively. No inducibility of the Tn5037 meroperon was detected in the in vivo experiments. The transposition system (terminal repeats plus gene tnpA) of Tn5037was inactive in Escherichia coliK12, in contrast to its resolution system (ressite plus gene tnpR). However, transposition of Tn5037in this host was provided by the tnpAgene of Tn5036, a member of the Tn21subgroup. Sequence analysis of the Tn5037 ressite suggested its recombinant nature.  相似文献   

9.
The region downstream of the Thiobacillus ferrooxidans ATCC 33020 atp operon was examined, and the genes encoding N-acetylglucosamine-1-uridyltransferase (glmU) and glucosamine synthetase (glmS) were found. This atpEFHAGDC-glmUS gene order is identical to that of Escherichia coli. The T. ferrooxidans glmS gene was shown to complement E. coli glmS mutants for growth on minimal medium lacking glucosamine. A Tn7-like transposon, Tn5468, was found inserted into the region immediately downstream of the glmS gene in a manner similar to the site-specific insertion of transposon Tn7 within the termination region of the E. coli glmS gene. Tn5468 was sequenced, and Tn7-like terminal repeat sequences as well as several open reading frames which are related to the Tn7 transposition genes tnsA, tnsB, tnsC, and tnsD were found. Tn5468 is the closest relative of Tn7 to have been characterized to date. Southern blot hybridization indicated that a similar or identical transposon was present in three T. ferrooxidans strains isolated from different parts of the world but not in two Thiobacillus thiooxidans strains or a Leptospirillum ferrooxidans strain. Since T. ferrooxidans is an obligately acidophilic autotroph and E. coli is a heterotroph, ancestors of the Tn7-like transposons must have been active in a variety of physiologically different bacteria so that their descendants are now found in bacteria that occupy very different ecological niches.  相似文献   

10.
Tn7-encoded proteins   总被引:1,自引:0,他引:1  
Summary Proteins encoded by Tn7 have been studied in Escherichia coli maxicells harbouring either various deleted ColE1:: Tn7 plasmids or Tn7 fragments cloned in pBR322. Six Tn7-encoded proteins were detected and named p18, p32, p40, p54, p85-a and p85-b according to their apparent molecular weight. Protein p18 is dihydrofolate reductase type I and p32 is probably the protein conferring resistance to streptomycin/spectinomycin. Both genes map on the lefthand part of Tn7. The genes for the four other proteins are located on the right-hand part of Tn7. We propose that they fully cover a 6.9 kb DNA fragment without any overlapping. Starting from the right-hand end towards the middle of the transposon, these four genes are in the following order: p85-a, p54, p40 and p85-b. Transposition of Tn7 onto E. coli plasmids requires the proteins p85-a, p85-b, p54 and p40. However, transposition onto the chromosome does not require the p85-b and p40 products.  相似文献   

11.
The conjugative transposon Tn916moves intercellularly via an excision/insertion mechanism that involves products ofint-Tnandxis-Tn.Tn5-insertion mutations in these genes were found to be complemented in anEnterococcus faecalishost by specific coresident transposons harboring the corresponding wild-type allele. A determinant designatedtraA,partially overlapping and divergently transcribed fromxis-Tn,is thought to encode a key positively acting regulatory protein needed for expression of conjugation functions. This locus was also shown to express atrans-acting product.  相似文献   

12.
Summary The purpose of this work was to localize the DNA regions necessary for the transposition of Tn7. Several deletions of Tn7 were constructed by the excision of DNA fragments between restriction sites. The ability of these deleted Tn7s to transpose onto the recipient plasmid RP4 was examined. All the deleted Tn7s isolated in this work had lost their transposing capability. The possibility of complementing them was studied using plasmids containing all or part of Tn7. Two deleted Tn7s could not be complemented by an entire Tn7 indicating that a DNA sequence greater than the 42 bp terminal sequence is needed for recognition of the transposon by a transposition function. Four other deleted Tn7s could be complemented by Tn7. One of these was studied intensively in complementation experiments using different parts of Tn7 to obtain transposition. The results obtained allow us to propose that all genes needed for transposition of Tn7 onto plasmids are contained in a DNA segment of between 6.0 and 7.4 kb. Furthermore, one essential function must be contained in a DNA fragment longer than 2.5 kb on the right-hand end of Tn7. The classification of Tn7 with regard to the other transposable elements is discussed.  相似文献   

13.
14.
Transposition of a DNA fragment flanked by two inverted Tn1 sequences   总被引:1,自引:0,他引:1  
The 32 Md fragment (derived from plasmid RP4::Tn1) carrying the Kmr gene and flanked by two inverted Tn1 elements is capable of recA-independent translocation to other plasmids. We designated this new transposon Tn1755. In various crosses, frequencies of Tn1755 transposition to plasmids Co1B-R3, R15 and F′ColVBtrp varied from 2.5 to 90% of the frequencies of Tn1 transposition. Tn1755 can integrate into various sites of the recipient plasmids. We failed to observe transposition of another RP4::Tn1 fragment flanked by two opposingly oriented Tn1 transposons and harboring the Tcr gene. Presumably, to form a new transposable structure, other features must also be of importance.  相似文献   

15.
Summary Two derivatives of the prokaryotic transposon Tn5 were constructed in vitro. In Tn5-233, the central area of Tn5, which carries resistance to kanamycin/neomycin, bleomycin and streptomycin, is replaced by a fragment carrying resistance to the aminocyclitol antibiotics gentamycin/kanamycin and streptomycin/spectinomycin. In Tn5-235, the Escherichia coli -galactosidase gene is inserted within the streptomycin resistance gene of Tn5, and constitutively expressed from a Tn5 promoter. Both constructs transpose with about the same frequency as Tn5 in Escherichia coli and Rhizobium meliloti. When a Tn5-derivative is introduced into an R. meliloti strain which already contains a different Tn5-derivative, in situ transposon replacement is obtained at high frequency, presumably by a pair of crossovers between the IS50 sequences at the ends of the incoming and resident transposons. In this way we converted a previously isolated recA::Tn5 mutant into the corresponding recA::Tn5-233 strain, which can now be used as a genetic background in the study of complementation of other Tn5-induced mutations. We also replaced the drug markers of several Tn5-induced exo mutants, which we were then able to map relative to each other by transduction with phage M12. In a strain carrying Tn5-235 located near Tn5-233, we were able to isolate deletions of the intervening markers, presumably resulting from general recombination between the two transposons, by screening for loss of the Lac+ phenotype. Unlike Tn5 itself, resident Tn5-233 does not appear to suppress transposition of another incoming Tn5-derivative.Abbreviations bp base pairs - Nm neomycin - Km kanamycin - Sm streptomycin - Sp spectinomycin - Gm gentamycin - Tc tetracycline - Tp trimethoprim - Ot oxytetracycline - Rf rifampicin - Xgal 5-bromo-4-chloro-3-indolyl--d-galactoside  相似文献   

16.
Tn163 is a transposable element identified in Rhizobium leguminosarum bv. viciae by its high insertion rate into positive selection vectors. The 4.6 kb element was found in only one further R. leguminosarum bv. viciae strain out of 70 strains investigated. Both unrelated R. leguminosarum bv. viciae strains contained one copy of the transposable element, which was localized in plasmids native to these strains. DNA sequence analysis revealed three large open reading frames (ORFs) and 38 bp terminal inverted repeats. ORF1 encodes a putative protein of 990 amino acids displaying strong homologies to transposases of class 11 transposons. ORF2, transcribed in the opposite direction, codes for a protein of 213 amino acids which is highly homologous to DNA invertases and resolvases of class II transposons. Homology of ORF1 and ORF2 and the genetic structure of the element indicate that Tn163 can be classified as a class II transposon. It is the first example of a native transposon in the genus Rhizobium. ORF3, which was found not to be involved in the transposition process, encodes a putative protein (256 amino acids) of unknown function. During transposition Tn163 produced direct repeats of 5 bp, which is typical for transposons of the Tn3 family. However, one out of the ten insertion sites sequenced showed a 6 by duplication of the target DNA; all duplicated sequences were A/T rich. Insertion of Tn163 into the sacB gene revealed two hot spots. Chromosomes of different R. leguminosarum bv. viciae strains were found to be highly refractory to the insertion of Tn163.  相似文献   

17.
Summary The related transposons Tn501 and Tn1721 have a 3.8 kb region in common that contains two genes (tnpA and tnpR) and a resolution site (res) required for transposition. Resolvase, the product of tnpR, catalyses site-specific recombination at res, a 186 base pair (bp) sequence located adjacent to tnpR at one end of the homology region. We describe here identification of the crossover site within res. It involved the construction of a plasmid containing copies of res (Tn501) and res (Tn1721) in direct orientation and tnpR-mediated intramolecular recombination between the two homologous (but non-identical) sites. The resulting hybrid contained Tn501 and Tn1721 fused at the crossover point. DNA sequence analysis of the recombinant indicates that recombination occurs in an 11 bp region of exact homology between Tn501 and Tn1721. The recombination site lies 161–172 bp upstream of tnpR at the transition from homology to non-homology between Tn501 and Tn1721 suggesting that site-specific recombination may have played a role in the evolution of these elements.  相似文献   

18.
Summary The Escherichia coli enterotoxin STII gene is carried by Tn4521. The terminal repeats of Tn4521 are composed of IS2 sequences; however, neither repeat is a complete IS2. In order to determine how this seemingly defective transposon could transpose, mutations were generated within Tn4521 to determine the regions essential for transposition. The left terminal repeat region was found to be non-essential, but the right terminal repeat area was demonstrated to be crucial for transposition. Within the right terminal repeat area is an open reading frame (ORF), capable of encoding a 159 amino acid protein, which was shown by frameshift mutation analysis to be required for transposition. This protein may be the transposase of Tn4521. A pair of 11 bp repeat sequences flanking the ORF was also found to be important. The right 11 bp repeat is part of the left IS2 terminal sequence, and the left 11 bp repeat is located about 300 bp upstream from the right IS2 terminal sequence located within the right terminal repeat region. The results of this study suggest that Tn4521 is a functional transposon and that the sequence including this pair of 11 bp sequences plus the intervening sequence is a transposable element which may be responsible for Tn4521 transposition.  相似文献   

19.
Summary Intermolecular transposition of Tn2660 into pCR1 was measured at 30°C in recA and recA + hosts as between 2.6 and 5.5x10–3, a similar value to that previously found for Tn3. No cointegrate structures were found under conditions where 104 transposition events occurred. Immunity to intermolecular transposition of Tn2660, similar to that found for Tn3 was demonstrated by showing that the above transposition frequency was reduced by a factor of between 10–3 and 10–4 when a mutant Tn2660 (resulting in the synthesis of a temperaturesensitive -lactamase) was present in the recipient plasmid. Intramolecular transposition of Tn3 was found to occur under the same conditions as previously demonstrated for Tn2660 giving rise to similar end products, in which the newly introduced Tn3 is oriented inversely to the resident Tn3 and the DNA sequence between the two transposons has been inverted. Thus, in all respects functional identity of the transposition activities of Tn3 and Tn2660 is shown, thereby identifying characteristics of intramolecular transposition that are not readily accommodated by current models of transposition.  相似文献   

20.
Summary We describe a 4.5 kilobase transposon. Tn4001, which mediates resistance to gentamicin, tobramycin and kanamycin in Staphylococcus aureus. Originally detected in plasmid pSK1, Tn4001 was shown to undergo rec-independent transposition to the chromosome from this plasmid and from an inserted derivative of the plasmid pII147. Heteroduplexes between plasmids with and without Tn4001 demonstrated a characteristic stem and loop structure with inverted repeats of approx. 1.3 kilobases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号