首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
Abstract. This paper reports on vegetation development on permanent experimental plots during five years of succession. Nine (1 m2) plots were filled with three typical substrates from man-made habitats of urban and industrial areas in the region of Berlin. The three substrates (a commercial ‘topsoil’, a ruderal ‘landfill’ soil and a sandy soil), differ in organic matter and nutrient contents. Relevés of species composition and percent cover of each species present were made monthly during the growing season from the start of vegetation development. This paper describes the different successional pathways on topsoil and ruderal soil and the colonization process on sandy soil. On topsoil, ruderal annuals are dominant in the first year and are replaced by short-lived perennials from the second year. Those species were replaced by long-lived perennial herbs (Ballota nigra or Urtica dioica) from the third year of succession onwards. On the ruderal land-fill soil the early successional stages are less sharp and the perennial Solidago canadensis is able to dominate within one year after the succession was initiated. On sandy soil there is still an ongoing colonization process, where pioneer tree species like Betula pendula and Populus nigra play a main role. The importance of ‘initial floristic composition’, the role of substrate for community structure and the peculiarities of successional sequences on anthropogenic soils in the context of primary and secondary successions are discussed.  相似文献   

3.
The forests in Cat Tien National Park, appear as a mosaic of different communities, distinct from each other with respect to their floristic and structural parameters. The objectives of this study are (1) to characterize the different formations occurring in the lowland part and (2) to identify the main successional trends in the area. Understanding forest succession is important for silviculture and restoration of forests and land rehabilitation, as adequate information on the ecological role of local species in the functioning of the forests is not available in Vietnam. Five plots (1 ha each) were established in the lowland part of Cat Tien National Park, where all the trees ≥ 10 cm d.b.h. (diameter at breast height) were located, measured and identified. A systematic sampling was made to assess the regeneration. Three plots (A, C and D) can be considered as secondary forests on the basis of their structural parameters. Plots A and C are dominated by Lagerstrmia calyculata and plot D by Dipterocarpus alatus. The other two plots can be regarded as mature forests. Plot B corresponds to a semideciduous formation dominated by Lagerstrmia calyculata and Fabaceae species, and plot E to an evergreen one dominated by dipterocarp species. The floristic composition of plots A and C will change in the future because dominant canopy species are rare or absent in regeneration. A correspondence analysis performed on the number of trees per species shows two kinds of successional trends: one from A to B on shallow and drier soils, and another from C to E on deeper and wetter soils.  相似文献   

4.
Aim The exotic annual cheatgrass (Bromus tectorum) is fast replacing sagebrush (Artemisia tridentata) communities throughout the Great Basin Desert and nearby regions in the Western United States, impacting native plant communities and altering fire regimes, which contributes to the long‐term persistence of this weedy species. The effect of this conversion on native faunal communities remains largely unexamined. We assess the impact of conversion from native perennial to exotic annual plant communities on desert rodent communities. Location Wyoming big sagebrush shrublands and nearby sites previously converted to cheatgrass‐dominated annual grasslands in the Great Basin Desert, Utah, USA. Methods At two sites in Tooele County, Utah, USA, we investigated with Sherman live trapping whether intact sagebrush vegetation and nearby converted Bromus tectorum‐dominated vegetation differed in rodent abundance, diversity and community composition. Results Rodent abundance and species richness were considerably greater in sagebrush plots than in cheatgrass‐dominated plots. Nine species were captured in sagebrush plots; five of these were also trapped in cheatgrass plots, all at lower abundances than in the sagebrush. In contrast, cheatgrass‐dominated plots had no species that were not found in sagebrush. In addition, the site that had been converted to cheatgrass longer had lower abundances of rodents than the site more recently converted to cheatgrass‐dominated plots. Despite large differences in abundances and species richness, Simpson’s D diversity and Shannon‐Wiener diversity and Brillouin evenness indices did not differ between sagebrush and cheatgrass‐dominated plots. Main conclusions This survey of rodent communities in native sagebrush and in converted cheatgrass‐dominated vegetation suggests that the abundances and community composition of rodents may be shifting, potentially at the larger spatial scale of the entire Great Basin, where cheatgrass continues to invade and dominate more landscape at a rapid rate.  相似文献   

5.
Changes in rotifer soil communities along a primary succession chronosequence was studied on brown coal post mining areas near Sokolov, NW part of the Czech Republic. The chronosequence of unreclaimed plots was 2, 11, 14, 20, 43 years old. The rotifers were extracted from soil samples using a modification of the Baermann funnel method with combined light and temperature gradients. In total, 34 taxa of soil rotifers were identified throughout the study. The most common species were Encentrum arvicola, Adineta vaga, A. steineri, Habrotrocha rosa, H. elegans, H. filum, Macrotrachela quadricornifera and M. nana. Rotifer abundance varied from 4 ± 2 · 103 to 516 ± 488 · 103 individuals m–2. Species number per sample increased with age of the plot (r = 0.45, P = 0.003). The most important environmental variables which significantly affected rotifer community were wood cover, sodium concentration and age of the plot. Pioneer plant species occupied 2 and 11 year old plots, 14–20 year old plots were covered by Salix caprea shrubs and a forest formed by Betula pendula and Populus tremuloides developed on the 43 year old plot. Some species were ubiquitous and present throughout the chronosequence (Macrotrachela quadricornifera). Among the pioneer species were Encentrum incisum, Habrotrocha rosa and Macrotrachela papillosa, 14–20 years old plots were preferred by Adineta vaga, E. arvicola, H. filum and M. nana, while the oldest plot was dominated by Adineta steineri and Encentrum mucronatum. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Exotic plants have been found to use allelochemicals, positive plant–soil feedbacks, and high concentrations of soil nutrients to exercise a competitive advantage over native plants. Under laboratory conditions, activated carbon (AC) has shown the potential to reduce these advantages by sequestering organic compounds. It is not known, however, if AC can effectively sequester organics or reduce exotic plant growth under field conditions. On soils dominated by exotic plants, we found that AC additions (1% AC by mass in the top 10 cm of soil) reduced concentrations of extractable organic C and N and induced consistent changes in plant community composition. The cover of two dominant exotics, Bromus tectorum and Centaurea diffusa, decreased on AC plots compared to that on control plots (14–8% and 4–0.1%, respectively), and the cover of native perennial grasses increased on AC plots compared to that on control plots (1.4–3% cover). Despite promising responses to AC by these species, some exotic species responded positively to AC and some native species responded negatively to AC. Consequently, AC addition did not result in native plant communities similar to uninvaded sites, but AC did demonstrate potential as a soil‐based exotic plant control tool, especially for B. tectorum and C. diffusa.  相似文献   

7.
Many rare plant species occur in Dutch wet dune slacks, particularly in the Junco baltici‐Schoenetum nigricantis. For nature management it is important to understand the processes controlling the presence of these basiphilous early successional communities, which is why we investigated vegetation and soil development during succession in coastal dune slacks. We compared 12 chronosequential stages of 0, 2, 4, 9, 10, 13, 25, 30, 43, 60, 70 and 85 yr in five different dune slack systems. In four of these locations turf had earlier been removed in order to restore the basiphilous pioneer stage. The main variation in the vegetation is related to the acidification/soil enrichment gradient and the salinity/maritime gradient. During succession, organic matter accumulates and acidification takes place. Maritime influence can buffer the soil and postpone the succession of basiphilous pioneer communities for many years. A significant correlation with age was found for 18 variables. Multiple regressions predicted changes in the vegetation (dependent variables: biomass, cover of Salix repens, Calamagrostis epigejos and Schoenus nigricans) as a function of acidification, organic matter accumulation, increase in available P and presence of Na in the soil. We conclude that natural ageing of the vegetation and the associated process of accumulation of biomass drive succession in this hydrosere. The underlying soil processes are acidification and organic matter accumulation. During succession dominance shifts from S. nigricans to S. repens or C. epigejos. Maintenance of the pioneer character of the habitat is only possible by local intervention or by natural or man‐induced dune forming. The effect of sod‐stripping depends on the environmental conditions and, in case of acidification, success is limited. Succession can be postponed by mowing.  相似文献   

8.
Abstract. This paper reports on vegetation dynamics on terrestrial, temperate grassland sites at the upper range of the productivity scale, i.e. on abandoned sewage fields (fields once used for waste water disposal) at Berlin‐Blankenfelde, Germany. I studied regeneration and the influence of different management practices (removal of top soil and mowing in late summer). Changes in species composition and cover were followed on permanent plots of 2m × 2m size through five years of vegetation development. At the outset of the experiment the abandoned fields were dominated by dense Urtica dioica /Elymus repens stands. Species richness was 7 species/ 4m2, and it remained low on unmanaged plots during the time of observation (7.6 species/plot in year 5). Removal of 20 cm of top soil caused a severe decline of Urtica and a large increase in species richness (21 species in year 1 after disturbance). Mowing was slightly higher compared with unmown plots on both initially excavated and unexcavated plots. Total cover was always near 100 % (except immediately after top soil removal). Colonization of bare soil was very rapid and in late summer of the first year after disturbance cover already increased towards 100%. On all plots the vegetation was mostly dominated by perennial herbs and grasses. Winter season gaps are occupied by Galium aparine, a large‐seeded annual scrambling climber. Monocarpic perennials behaved as winter annuals in most cases. Woody species were inhibited by dense above‐ground biomass and litter cover. The paper questions whether succession on abandoned sewage fields may proceed towards a woodland stage and advises how vegetation of such hyper‐eutrophicated sites can be managed towards higher diversity.  相似文献   

9.
The genus Phytophthora represents a group of plant pathogens with broad global distribution. The majority of them cause the collar and root-rot of diverse plant species. Little is known about Phytophthora communities in forest ecosystems, especially in the Neotropical forests where natural enemies could maintain the huge plant diversity via negative density dependence. We characterized the diversity of soil-borne Phytophthora communities in the North French Guiana rainforest and investigated how they are structured by host identity and environmental factors. In this little-explored habitat, 250 soil cores were sampled from 10 plots hosting 10 different plant families across three forest environments (Terra Firme, Seasonally Flooded and White Sand). Phytophthora diversity was studied using a baiting approach and metabarcoding (High-Throughput Sequencing) on environmental DNA extracted from both soil samples and baiting-leaves. These three approaches revealed very similar communities, characterized by an unexpected low diversity of Phytophthora species, with the dominance of two cryptic species close to Phytophthora heveae. As expected, the Phytophthora community composition of the French Guiana rainforest was significantly impacted by the host plant family and environment. However, these plant pathogen communities are very small and are dominated by generalist species, questioning their potential roles as drivers of plant diversity in these Amazonian forests.  相似文献   

10.
Abstract. Natural dynamics in the boreal forest is influenced by disturbances. Fire recurrence affects community development and landscape diversity. Forest development was studied in the northeastern boreal forest of Quebec. The objective was to describe succession following fire and to assess the factors related to the changes in forest composition and structure. The study area is located in northeastern Quebec, 50 km north of Baie‐Comeau. We used the forest inventory data gathered by the Ministère des Ressources naturelles du Québec (MRNQ). In circular plots of 400 m2, the diameter at breast height (DBH) of all stems of tree species greater than 10 cm was recorded and in 40 m2 subplots, stems smaller than 10 cm were measured. A total of 380 plots were sampled in an area of 6000 km2. The fire history reconstruction was done based on historical maps, old aerial photographs and field sampling. A time‐since‐fire class, a deposit type, slope, slope aspect and altitude were attributed to each plot. Each plot was also described according to species richness and size structure characteristics. Traces of recent disturbance were also recorded in each plot. Changes in forest composition were described using ordination analyses (NMDS and CCA) and correlated with the explanatory variables. Two successional pathways were observed in the area and characterized by the early dominance of intolerant hardwood species or Picea mariana. With time elapsed since the last fire, composition converged towards either Picea mariana, Abies balsamea or a mixture of both species and the size structure of the coniferous dominated stands got more irregular. The environmental conditions varied between stands and explained part of the variability in composition. Their effect tended to decrease with increasing time elapsed since fire, as canopy composition was getting more similar. Gaps may be important to control forest dynamics in old successional communities.  相似文献   

11.
Continuing enrichment of atmospheric CO2 may change plant community composition, in part by altering the availability of other limiting resources including soil water, nutrients, or light. The combined effects of CO2 enrichment and altered resource availability on species flowering remain poorly understood. We quantified flowering culm and ramet production and biomass allocation to flowering culms/ramets for 10 years in C4‐dominated grassland communities on contrasting soils along a CO2 concentration gradient spanning pre‐industrial to expected mid‐21st century levels (250–500 μl/L). CO2 enrichment explained up to 77% of the variation in flowering culm count across soils for three of the five species, and was correlated with flowering culm count on at least one soil for four of five species. In contrast, allocation to flowering culms was only weakly correlated with CO2 enrichment for two species. Flowering culm counts were strongly correlated with species aboveground biomass (AGB; R2 = .34–.74), a measure of species abundance. CO2 enrichment also increased soil moisture and decreased light levels within the canopy but did not affect soil inorganic nitrogen availability. Structural equation models fit across the soils suggested species‐specific controls on flowering in two general forms: (1) CO2 effects on flowering culm count mediated by canopy light level and relative species AGB (species AGB/total AGB) or by soil moisture effects on flowering culm count; (2) effects of canopy light level or soil inorganic nitrogen on flowering and/or relative species AGB, but with no significant CO2 effect. Understanding the heterogeneity in species responses to CO2 enrichment in plant communities across soils in edaphically variable landscapes is critical to predict CO2 effects on flowering and other plant fitness components, and species potential to adapt to future environmental changes.  相似文献   

12.
We studied the soil seed bank composition in four old fields of different ages, after abandonment from agriculture. Complete seed bank composition was assessed by direct seed separation from soil samples and identification to species. Most species found in the seed bank were not important in the present seral communities. Seed of the species that dominated the early succession were generally not found. Additionally, there were very few propagules rather than on the germination of in situ propagules. We suggest that pampean grasses evolved under that the course of post-agricultural succession will depend strongly on the pattern of arrival of exogenous propagules rather than the germination of in situ propagules. We suggest that pampean grasses evolved under disturbances of low intensity and/or a disturbance regime dominated by small gaps, in which open areas could be rapidly colonized from the edges and/or by remnant vegetative propagules. The changes produced by the introduction of agriculture triggered the invasion by exotic species adapted to the new disturbance regime.  相似文献   

13.
We examined variation in species composition in a low-diversity, anthropogenic grassland in response to 11 years of nitrogen (N) manipulation and disturbance. The species-poor grassland (2–3 species/0.5 m2) represents a wide spread vegetation type (>10 million ha in North America) dominated by the introduced perennial grasses Bromus inermis and Agropyron cristatum. Four levels of N and three of soil disturbance were applied in all combinations to plots (5 × 15 m, N = 120) in a completely randomized design each year. Seeds or transplants of 47 species were added to ensure that dispersal was not a barrier to changes in species composition. After 11 years of treatment, all but the most disturbed plots continued to be dominated by B. inermis. The cover of the second-most abundant species, A. cristatum, decreased with disturbance but did not vary significantly with N. Despite the lack of changes in the identity of the dominant species, our environmental manipulations strongly influenced ecosystem characteristics. Added N increased soil available N, and decreased the cover of bare ground and light availability. Soil disturbance decreased aboveground biomass, and increased the cover of bare ground and light availability. Sawdust application, designed to decrease N availability, significantly reduced community biomass, and increased light availability and the cover of bare ground, but did not alter nutrient availability or species composition. The results highlight the difficulty of restoring diversity in species-poor, anthropogenic communities dominated by introduced species, and thus the importance of conserving remnants of diverse natural grasslands.  相似文献   

14.
Facing an increased threat of rapid climate change in cold‐climate regions, it is important to understand the sensitivity of plant communities both in terms of degree and direction of community change. We studied responses to 3–5 years of moderate experimental warming by open‐top chambers in two widespread but contrasting tundra communities in Iceland. In a species‐poor and nutrient‐deficient moss heath, dominated by Racomitrium lanuginosum, mean daily air temperatures at surface were 1–2°C higher in the warmed plots than the controls whereas soil temperatures tended to be lower in the warmed plots throughout the season. In a species‐rich dwarf shrub heath on relatively rich soils at a cooler site, dominated by Betula nana and R. lanuginosum, temperature changes were in the same direction although more moderate. In the moss heath, there were no detectable community changes while significant changes were detected in the dwarf shrub heath: the abundance of deciduous and evergreen dwarf shrubs significantly increased (>50%), bryophytes decreased (18%) and canopy height increased (100%). Contrary to some other studies of tundra communities, we detected no changes in species richness or other diversity measures in either community and the abundance of lichens did not change. It is concluded that the sensitivity of Icelandic tundra communities to climate warming varies greatly depending on initial conditions in terms of species diversity, dominant species, soil and climatic conditions as well as land‐use history.  相似文献   

15.
Questions: Primary succession, measured by changes in species composition, is slow, usually forcing a chronose‐quence approach. A unique data set is used to explore spatial and temporal changes in vegetation structure after a 1980 volcanic eruption. On the basis of data from a transect of 20 permanent plots with an altitudinal range of 250 m sampled through 2005, two questions are asked: Do changes along the transect recapitulate succession? Do plots converge to similar composition over time? Location: A ridge between 1218 and 1468 m on Mount St. Helens, Washington, USA. Methods: Repeat sampling of plots for species cover along a 1‐km transect. Floristic changes were characterized by techniques including DCA, clustering and similarity. Results: Species richness and cover increased with time at rates that decreased with increasing elevation. The establishment of Lupinus lepidus accelerated the rate of succession and may control its trajectory. Diversity (H) at first increased with richness, then declined as dominance hierarchies developed. Primary succession was characterized by overlapping phases of species assembly (richness), vegetation maturation (diversity peaks, cover expands) and inhibition (diversity declines). Each plot passed through several community classes, but by 2005, only four classes persisted. Succession trajectories (measured by DCA) became shorter with elevation. Similarity between groups of plots defined by their classification in 2005 did not increase with time. Similarity within plot groups converged slightly at the lower elevations. Despite similarities between temporal and spatial trends in composition, trajectories of higher plots do not recapitulate those of lower plots, apparently because Lupinus was not an early colonist. Any vegetation convergence has been limited to plots that are in close proximity.  相似文献   

16.
Abstract. To assess whether winter mowing in wetlands fulfils the aim of preventing succession towards drier communities, 34 permanent quadrats (15 m2) were surveyed annually from 1984–1985 to 2000 within large mown and unmown (control) areas (several ha) in a calcareous lake shore fen (W Switzerland). Three trends were noticed: decrease of aquatic species, spread of Cladium mariscus and establishment of woody species (especially Alnus glutinosa and Frangula alnus). None of these trends was prevented by mowing, but mowing did prevent the accumulation of C. mariscus litter and kept woody saplings small. Succession was generally slow and often occurred in the form of sudden, discrete changes. Plant species richness increased with mowing and remained constant without mowing. Soil disturbance by the mowing machine contributed more to the effects of management on species composition than the periodic removal of biomass. It is concluded that mowing every three years in winter is insufficient to preserve semi‐aquatic communities against succession but sufficient to maintain the plant species richness of a low productive, regularly flooded fen.  相似文献   

17.
There is considerable interest in the potential use of soils to sequester carbon for climate change mitigation. As such, there is a need to evaluate the potential for carbon accumulation in tropical regions. We compared the effects of three annual additions of nitrogen and/or phosphorus on soil carbon and nitrogen contents and pools (bulk soil, macro‐, meso‐, and microaggregates) of two regenerating secondary tropical dry forest differing in nutrient status and succession stage (10‐year‐old early‐succession stage and approximately 60‐year‐old late‐succession stage). The selected forest sites were located on a shallow calcareous soil in the Yucatán Peninsula (Mexico). The primary production is limited by nitrogen and phosphorus in early‐succession stage and by phosphorus in late‐succession stage. In each forest site, four independent plots (12 × 12 m2) were established, the treatments being: controls and plots fertilized during three consecutive years with nitrogen, phosphorus, or nitrogen plus phosphorus. In both forests, soil carbon and nitrogen contents were consistently high, with soil carbon:nitrogen ratios generally greater than 10. Results indicate that usually there are no significant increases of soil carbon stock associated to late succession but can be increased to 3.7 Mg·ha?1·yr?1 with adoption of fertilizer practices. The potential soil carbon sequestration in early‐succession forest was estimated to be 2.7 Mg·ha?1·yr?1, and there is no indication that fertilization improves carbon sequestration. In short, results suggest that the soil potential for carbon sequestration in these ecosystems is high and depends on the specific nutrient status of the site.  相似文献   

18.
The aim of this study was to understand how drought‐induced tree mortality and subsequent secondary succession would affect soil bacterial taxonomic composition as well as soil organic matter (SOM) quantity and quality in a mixed Mediterranean forest where the Scots pine (Pinus sylvestris) population, affected by climatic drought‐induced die‐off, is being replaced by Holm‐oaks (HO; Quercus ilex). We apply a high throughput DNA pyrosequencing technique and 13C solid‐state Nuclear Magnetic Resonance (CP‐MAS 13C NMR) to soils within areas of influence (defined as an surface with 2‐m radius around the trunk) of different trees: healthy and affected (defoliated) pines, pines that died a decade ago and healthy HOs. Soil respiration was also measured in the same spots during a spring campaign using a static close‐chamber method (soda lime). A decade after death, and before aerial colonization by the more competitive HOs have even taken place, we could not find changes in soil C pools (quantity and/or quality) associated with tree mortality and secondary succession. Unlike C pools, bacterial diversity and community structure were strongly determined by tree mortality. Convergence between the most abundant taxa of soil bacterial communities under dead pines and colonizer trees (HOs) further suggests that physical gap colonization was occurring below‐ground before above‐ground colonization was taken place. Significantly higher soil respiration rates under dead trees, together with higher bacterial diversity and anomalously high representation of bacteria commonly associated with copiotrophic environments (r‐strategic bacteria) further gives indications of how drought‐induced tree mortality and secondary succession were influencing the structure of microbial communities and the metabolic activity of soils.  相似文献   

19.
Abstract. The first 10 yr of old-field successional dynamics on the Argentine Inland Pampa were studied on a series of adjacent plots established consecutively between 1978 and 1989. We examined differences in species abundance patterns among plots in order to detect the spatial and temporal variability of succession. Perennial grasses steadily increased in cover and replaced the dominant annual species after 5 yr. Pioneer dicots persisted in older seral stages with 20 — 23 species/plot. Overall, exotic species (mostly the grasses Lolium multiflorum and Cynodon dactylon) contributed much to the plant cover in these communities. Native grasses comprised 45 % of total cover at years 7 — 10 of succession, but occurred with less than 7 species/plot. Substantial variation was found in the successional pathway, which reflected the particular sequence from annual forbs to short-lived and perennial grasses in the various plots. The course of succession was apparently influenced by a 2-yr period of unusually high rainfall. Deyeuxia viridiflavescens, a native perennial grass virtually absent before the wet period, spread over the study area and dominated seral communities for 3 yr, irrespective of plot age. Climatic conditions thus affected the successional turnover of life forms by increasing the rate of colonization by perennial grasses. We further point out the constraints imposed on secondary succession by the life histories of ‘available’ species.  相似文献   

20.
Question: Does increasing Festuca canopy cover reduce plant species richness and, therefore, alter plant community composition and the relationship of litter to species richness in old‐field grassland? Location: Southeastern Oklahoma, USA. Methods: Canopy cover by species, species richness, and litter mass were collected within an old‐field grassland site on 16, 40 m × 40 m plots. Our study was conducted during the first three years of a long‐term study that investigated the effects of low‐level nitrogen enrichment and small mammal herbivory manipulations. Results: Succession was altered by an increase in abundance of Festuca over the 3‐yr study period. Species richness did not decline with litter accumulation. Instead, Festuca increased most on species‐poor plots, and Festuca abundance remained low on species‐rich plots. Conclusions: Festuca may act as an invasive transformer‐species in warm‐season dominated old‐field grasslands, a phenomenon associated more with invasions of cool‐season grasses at higher latitudes in North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号