首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Statistical measures of fidelity, i.e. the concentration of species occurrences in vegetation units, are reviewed and compared. The focus is on measures suitable for categorical data which are based on observed species frequencies within a vegetation unit compared with the frequencies expected under random distribution. Particular attention is paid to Bruelheide's u value. It is shown that its original form, based on binomial distribution, is an asymmetric measure of fidelity of a species to a vegetation unit which tends to assign comparatively high fidelity values to rare species. Here, a hypergeometric form of u is introduced which is a symmetric measure of the joint fidelity of species to a vegetation unit and vice versa. It is also shown that another form of the binomial u value may be defined which measures the asymmetric fidelity of a vegetation unit to a species. These u values are compared with phi coefficient, chi‐square, G statistic and Fisher's exact test. Contrary to the other measures, phi coefficient is independent of the number of relevés in the data set, and like the hypergeometric form of u and the chi‐square it is little affected by the relative size of the vegetation unit. It is therefore particularly useful when comparing species fidelity values among differently sized data sets and vegetation units. However, unlike the other measures it does not measure any statistical significance and may produce unreliable results for small vegetation units and small data sets. The above measures, all based on the comparison of observed/expected frequencies, are compared with the categorical form of the Dufrêne‐Legendre Indicator Value Index, an index strongly underweighting the fidelity of rare species. These fidelity measures are applied to a data set of 15 989 relevés of Czech herbaceous vegetation. In a small subset of this data set which simulates a phytosociological table, we demonstrate that traditional table analysis fails to determine diagnostic species of general validity in different habitats and large areas. On the other hand, we show that fidelity calculations used in conjunction with large data sets can replace expert knowledge in the determination of generally valid diagnostic species. Averaging positive fidelity values for all species within a vegetation unit is a useful approach to measure quality of delimination of the vegetation unit. We propose a new way of ordering species in synoptic species‐by‐relevé tables, using fidelity calculations.  相似文献   

2.
Abstract. Delimitation of vegetation units in phytosociology is traditionally based on expert knowledge. Applications of expert‐based classifications are often inconsistent because criteria for assigning relevés to vegetation units are seldom given explicitly. Still, there is, e.g. in nature conservation, an increasing need for a consistent application of vegetation classification using computer expert systems for unit identification. We propose a procedure for formalized reproduction of an expert‐based vegetation classification, which is applicable to large phytosociological data sets. This procedure combines Bruelheide's Cocktail method with a similarity‐based assignment of relevés to constancy columns of a vegetation table. As a test of this method we attempt to reproduce the expert‐based phytosociological classification of subalpine tall‐forb vegetation of the Czech Republic which has been made by combination of expert judgement and stepwise numerical classification of 718 relevés by TWINSPAN. Applying the Cocktail method to a geographically stratified data set of 21794 relevés of all Czech vegetation types, we defined groups of species with the statistical tendency of joint occurrences in vegetation. Combinations of 12 of these species groups by logical operators AND, OR and AND NOT yielded formal definitions of 14 of 16 associations which had been accepted in the expert‐based classification. Application of these formal definitions to the original data set of 718 relevés resulted in an assignment of 376 relevés to the associations. This assignment agreed well with the original expert‐based classification. Relevés that remained un‐assigned because they had not met the requirements of any of the formal definitions, were subsequently assigned to the associations by calculating similarity to relevé groups that had already been assigned to the associations. A new index, based on frequency and fidelity, was proposed for calculating similarity. The agreement with the expert‐based classification achieved by the formal definitions was still improved after applying the similarity‐based assignment. Results indicate that the expert‐based classification can be successfully formalized and converted into a computer expert system.  相似文献   

3.
Abstract. In European phytosociology, national classifications of corresponding vegetation types show considerable differences even between neighbouring countries. Therefore, the European Vegetation Survey project urgently needs numerical classification methods for large data sets that are able to produce compatible classifications using data sets from different countries. We tested the ability of two methods, TWINSPAN and COCKTAIL, to produce similar classifications of wet meadows (Calthion, incl. Filipendulenion) for Germany (7909 relevés) and the Czech Republic (1287 relevés) in this respect. In TWINSPAN, the indicator ordination option was used for classification of two national data sets, and the extracted assignment criteria (indicator species) were applied crosswise from one to the other national data set. Although the data sets presumably contained similar community types, TWINSPAN revealed almost no correspondence between the groups derived from the proper classification of the national data set and the groups defined by the assignment criteria taken from the other national data set. The reason is probably the difference in structure between the national data sets, which is a typical, but hardly avoidable, feature of any pair of phytosociological data sets. As a result, the first axis of the correspondence analysis, and consequently the first TWINSPAN division, are associated with different environmental gradients; the difference in the first division is transferred and multiplied further down the hierarchy. COCKTAIL is a method which produces relevé groups on the basis of statistically formed species groups. The user determines the starting points for the formation of species groups, and groups already found in one data set can be tested for existence in the other data set. The correspondence between the national classifications produced by COCKTAIL was fairly good. For some relevé groups, the lack of correspondence to groups in the other national data set could be explained by the absence of the corresponding vegetation types in one of the countries, rather than by methodological problems.  相似文献   

4.
We applied the Cocktail method to a large data set of 4 117 relevés of all Slovak vegetation types with the aim to create formalised definitions of all Slovakian mire plant associations. We defined 21 groups of species with the statistical tendency of joint occurrences in vegetation. These groups differed substantially in their position along the pH/calcium gradient. We further defined 24 plant associations according to presence and/or absence of certain groups and/or strong dominance of some species. Only six traditional plant associations were not possible to be reproduced this way. We applied our formalised definitions to the regional data set of mires from the surrounding of the Vysoké Tatry Mts. Combined with frequency-positive fidelity index this method has led to the classification of the majority of vegetation plots into ten associations. When the vegetation types obtained from Cocktail-based classification and from cluster analysis were compared with respect to measured pH and conductivity in the study region, 82% of pairs differed significantly either in pH or in water conductivity in the former classification and 69% in the latter one.  相似文献   

5.
Abstract. Large phytosociological data sets of three types of grassland and three types of forest vegetation from the Czech Republic were analysed with a focus on plot size used in phytosociological sampling and on the species‐area relationship. The data sets included 12975 relevés, sampled by different authors in different parts of the country between 1922 and 1999. It was shown that in the grassland data sets, the relevés sampled before the 1960s tended to have a larger plot size than the relevés made later on. No temporal variation in plot sizes used was detected in forest relevés. Species‐area curves fitted to the data showed unnatural shapes, with levelling‐off or even decrease in plot sizes higher than average. This distortion is explained by the subjective, preferential method of field sampling used in phytosociology. When making relevés in species‐poor vegetation, researchers probably tend to use larger plots in order to include more species. The reason for this may be that a higher number of species gives a higher probability of including presumed diagnostic species, so that the relevé can be more easily classified in the Braun‐Blanquet classification system. This attitude of phytosociologists has at least two consequences: (1) in phytosociological data bases species‐poor vegetation types are underrepresented or relevés are artificially biased towards higher species richness; (2) the suitability of phytosociological data for species richness estimation is severely limited.  相似文献   

6.
Abstract. In European phytosociology, variable plot sizes are traditionally used for sampling different vegetation types. This practice may generate problems in current vegetation or habitat survey projects based on large data sets, which include relevés made by many authors at different times. In order to determine the extent of variation in plot sizes used in European phytosociology, we collected a data set of 41 174 relevés with an indication of plot size, published in six major European journals focusing on phytosociology from 1970 to 2000. As an additional data set, we took 27 365 relevés from the Czech National Phytosociological Database. From each data set, we calculated basic statistical figures for plot sizes used to sample vegetation of various phytosociological classes. The results show that in Europe the traditionally used size of vegetation plots is roughly proportional to vegetation height; however, there is a large variation in plot size, both within and among vegetation classes. The effect of variable plot sizes on vegetation analysis and classification is not sufficiently known, but use of standardized plot sizes would be desirable in future projects of vegetation or habitat survey. Based on our analysis, we suggest four plot sizes as possible standards. They are 4 m2 for sampling aquatic vegetation and low‐grown herbaceous vegetation, 16 m2 for most grassland, heathland and other herbaceous or low‐scrub vegetation types, 50 m2 for scrub, and 200 m2 for woodlands. It has been pointed out that in some situations, sampling in either small or large plots may result in assignment of relevés to different phytosociological classes or habitat types. Therefore defining vegetation and habitat types as scale‐dependent concepts is needed.  相似文献   

7.
Question: How can we determine differential taxa in a vegetation data set? Methods: The new algorithm presented here uses an intuitive fidelity threshold based on relative constancy differences. It is tested on a simulated and a real data set. The results of the proposed algorithm are discussed in comparison with other methods used for the determination of differential taxa. Results: The new algorithm defines each taxon in each group of relevés as: (1) positively differentiating, (2) positively‐negatively differentiating, (3) negatively differentiating, or (4) non‐differentiating. Each taxon in a data set may be: (1) positively, positively‐negatively or negatively differentiating for each group in the data set, (2) differentiating for some groups and non‐differentiating for the remaining groups, or (3) non‐differentiating for all groups in the data set. Conclusions: The new algorithm finds the relevé groups that are positively differentiated against other groups that are negatively differentiated. It reveals differentiating structures in the data set and thus makes quantification of the relations among and between different syntaxonomic ranks conceivable. As it distinguishes between different types of differential taxa, it might improve standards of typification in vegetation classification.  相似文献   

8.
Aim: Concentration of species occurrences in groups of classified sites can be quantified with statistical measures of fidelity, which can be used for the determination of diagnostic species. However, for most available measures fidelity depends on the number of sites within individual groups. As the classified data sets typically contain site groups of unequal size, such measures do not enable a comparison of numerical fidelity values of species between different site groups. We therefore propose a new method of measuring fidelity with presence/absence data after equalization of the size of the site groups. We compare the properties of this new method with other measures of statistical fidelity, in particular with the Dufrêne‐Legendre Indicator Value (IndVal) index. Methods: The size of site groups in the data set is equalized, while relative frequencies of species occurrence within and outside of these groups are kept constant. Then fidelity is calculated using the phi coefficient of association. Results: Fidelity values after equalization are independent of site group size, but their numerical values vary independently of the statistical significance of fidelity. By changing the size of the target site group relative to the size of the entire data set, the fidelity measure can be made more sensitive to either common or rare species. We show that there are two modifications of the IndVal index for presence/absence data, one of which is also independent of the size of site groups. Conclusion: The phi coefficient applied to site groups of equalized size has advantages over other statistical measures of fidelity based on presence/absence data. Its properties are close to an intuitive understanding of fidelity and diagnostic species in vegetation science. Statistical significance can be checked by calculation of another fidelity measure that is a function of statistical significance, or by direct calculation of the probability of observed species concentrations by Fisher's exact test. An advantage of the new method over IndVal is its ability to distinguish between positive and negative fidelity. One can also weight the relative importance of common and rare species by changing the equalized size of the site groups.  相似文献   

9.
Pure and mixed beech forest vegetation of the southern Rodopi range (northeast Greece) was studied using 614 relevés and multivariate analyses (TWINSPAN and DCA). Classification of the relevés resulted in 12 vegetation units, 8 of which were ranked as associations or communities and the rest as subcommunities and variants. DCA diagrams of relevés and taxa indicated that floristic differentiation was attributed mainly to factors such as altitude (affecting temperature and humidity), soil nutrient content and substrate type (affecting physical and chemical soil properties). Differential taxa of vegetation units were chosen based on their phi coefficient values, which were calculated from three different percentage synoptic tables that corresponded to three ranks (ecological groups, associations and communities, and subcommunities and variants) of floristic differentiation. The calculation of phi coefficient on the basis of relative constancy of taxa helps to overcome the problem of the dependence of fidelity values on the number of relevés per vegetation unit and to facilitate the better investigation of the floristic differentiation even of rare vegetation units represented by a small number of relevés. Furthermore, the calculation of fidelity values for different hierarchical levels enables a more detailed and thorough investigation of the floristic differentiation of the vegetation units.  相似文献   

10.
Question: What was the change in diversity of urban synantropic vegetation in a medium‐sized Central European city during the period of increasing urbanization (1960s‐1990s)? Location: The city of Plzeň, an industrial centre of the western part of the Czech Republic. Methods: Sampling of various types of synanthropic vegetation, conducted in the 1960s, was repeated by using the same methods in the 1990s. This yielded 959 relevés, of which 623 were made in the 1960s and 336 in the 1990s. The relevés were assigned to the following phytosociological classes: Chenopodietea, Artemisietea vulgaris, Galio‐Urticetea, Agropyretea repentis and Plantaginetea majoris. Total number of vascular plant species, evenness index J, number of alien species (classified into archaeophytes and neophytes), and mean Ellenberg indicator values for light, temperature, continentality, moisture, soil reaction, and nutrients were obtained for each relevé. Results: From 1960s to 1990s, there was a significant decrease of species richness and diversity in synanthropic vegetation. The proportion of archaeophytes decreased in most vegetation types, indicating the contribution of this group of species, often confined to specific rural‐like habitats, to the observed impoverishment of ruderal vegetation. The proportion of neophytes did not change between the two periods. Comparison between 1960s and 1990s indicated a decrease in light, temperature, moisture, soil reaction and nutrient indicator values in some vegetation types. In both periods, Artemisieta, Galio‐Urticetea and Chenopodietea formed a distinct group harbouring more species than Agropyretea and Plantaginetea. Neophytes, i.e. recently introduced species, were most represented in the early successional annual vegetation of Chenopodietea, rather than in perennial vegetation of the other classes. Conclusions: Synanthropic vegetation of Plzeň exhibited a general trend of decrease in species diversity.  相似文献   

11.
Question: Which are the gradients of floristic differentiation in Greek beech (Fagus sylvatica) forests? Which is the role of geographical and ecological factors in this differentiation? Location: Beech forests of the plant geographical regions Northeast, North Central and East Central Greece. Methods: A total of 1404 published and unpublished phytoso‐ciological relevés were used in the analyses. TWINSPAN and DCA were applied to classify and ordinate the relevés. Altitude, Indicator Values of relevés and their X and Y coordinates were used in a posteriori interpretation of the ordination axes. Kendall's correlation coefficients were calculated between DCA relevé scores and explanatory variables. Multiple linear regression was used to partition the variation explained by the first two DCA axes, between the geographical and the ecological variables. Results: Classification resulted in 14 vegetation units defined by species composition. Two types of gradients, ecological and geographical, were revealed by the DCA of all releves. The partition of the variation accounted for by the first and second DCA axis was attributed mainly to ecological and geographical variables, respectively. Conclusions: Beech forests of northeast and Central Greece show phytogeographical differences, while ecologically similar vegetation units occur in both regions. A west‐east gradient is revealed in Greek beech forest vegetation. The extent of the study area, its position along regional gradients and the comprehensiveness of the data set that is analysed determine the types of the gradients which can be revealed in a vegetation study.  相似文献   

12.
This study provides a view of vegetation types dominated by Sesleria species in the Western Carpathians (Sesleria caerulea, S. heufleriana, S. tatrae, and S. uliginosa). We also took into account characteristics/traits such as plant life forms, autochthonous status, endemism, and ploidy level occurring within each relevé in our data set. Altitude and Ellenberg indicator values derived for each relevé were considered as well. Eight vegetation types/formations/habitats were recognized in a data set of 942 phytosociological relevés: (1) synanthropic vegetation, (2) rock fissures and screes, (3) alpine grasslands and heaths, (4) mesic grasslands and pastures, (5) springs and fens, (6) forests, (7) xerophilous shrubland, and (8) high-mountain scrubs (krummholz). Results corroborated and clearly emphasized that Sesleria caerulea has the widest ecological amplitude of all studied species because the species occurred among all studied vegetation types. Sesleria tatrae was present only in several vegetation types occurring from montane to alpine vegetation belts in the highest mountains. Sesleria heufleriana and S. uliginosa were recorded only in low-altitude areas. The difference between them lies mainly in the dampness of each locality. Sesleria heufleriana was frequently found in xerophilous communities, whereas S. uliginosa preferred humid habitats of springs and fens.  相似文献   

13.
In Italy, woods dominated by Quercus petraea are well documented within local and regional phytosociological studies but a critical revision of their principal ecological-floristic components based on a comprehensive Italian data set was missing. We gathered 209 published and unpublished Italian phytosociological relevés, where Q. petraea was dominant, that were investigated by means of multivariate analysis. The ecological requirements of the resulting groups were indirectly calculated by means of Ellenberg indicator value, and a chorological analysis was performed. The fidelity coefficient (phi) for the diagnostic species of each group was calculated. According to our analysis, five different types of Q. petraea woods were found to be present in Italy. Each group was characterized by means of its floristic, ecological and chorological components. These resulting five groups were further compared with similar Q. petraea-dominated woods recorded in other European locations, as to the floristic and chorological components. We collected 57 synoptic tables of Q. petraea communities coming from all over Europe. This data set, together with the Italian relevés, was submitted to exploratory multivariate analysis using also the chorological information. According to these analyses, the Italian woods dominated by Q. petraea can be subdivided in two main clusters: the communities belonging to It-1 group (Alps) fell within the central European communities, distinguished by the predominance of large distribution and European chorotypes. All the other Italian groups of relevés resulted to be positioned in the cluster which includes central southern, central eastern and eastern European Q. petraea communities. From the syntaxonomical point of view, the results of this analysis allow to attribute the Italian Q. petraea woods to seven alliances of three different orders. The ecological similarities between Erythronio-Quercion petraeae and Erythronio-Carpinion betuli are highlighted and the distribution of Erythronio-Quercion petraeae is limited to northern Apennines, in particular, to slopes facing the Po Valley.  相似文献   

14.
Abstract. This study explored the validity of three responses of vegetation to increased soil erosion: reduction of vegetation cover, number of species and reduced substitution of species. 201 relevés, including edaphic and geomorphological data, were surveyed in the intensely eroded Eocene marls of the Prepyrenees (NE Spain). Changes in plant species’ presence in relevés from different degradation stages were compared. The level of vegetation degradation was defined as the total phanerogam cover which, in the studied area, was correlated to the degree of soil erosion. The considered trends were validated. Reduction of phanerogam cover and species number were gradual from low to high‐eroded areas. Vegetation degradation explained 48% of the species number variance. In the later stages of degradation a significant substitution of species was not observed, only a lower frequency of occurrence of several species that appeared in the whole set of relevés. Through the process of degradation, 47% of species displayed significantly reduced frequencies as degradation increased, none showed a significant increase in frequency. It is concluded that there are no characteristic species in these plant communities that survive in the severely eroded marls. Among the few species that had increased in frequency, most only colonised favourable micro‐environments.  相似文献   

15.
Presented survey summarizes the results of the studies published predominantly after 2000, dealing with the plant communities around and above the timberline in (montane) subalpine to alpine (subnival) belt of the Western Carpathians. All of these communities underwent a critical syntaxonomical and nomenclatorical revision, hence the demonstrated overview of high-mountain vegetation of Western Carpathians (mostly from Slovakia, less from Poland border areas) represent the current state of knowledge. The high-altitude vegetation database, which is the part of Slovak National Vegetation Database, SNVD (), incorporated 8,160 published relevés on 15 May 2007 (of the total of 30,469 published relevés in the SNVD). Concerning the unpublished relevés, the individual authors have provided more than 18,400 of them to be stored in SNVD; 2,301 of all unpublished relevés could be assigned to high-altitude vegetation. Mountain and alpine vegetation is in SNVD presented by 15 classes; the most frequent class is Mulgedio-Aconitetea. With its quantity and also the quality of relevés, the high-altitude database, as well as the whole SNVD, represents the unique database within Slovakia, which provides information not only about the locality, floristic composition and variability of individual vegetation types, but also about several environmental variables such as inclination, aspect, geology or soil type, characteristic for individual relevés. Together with other Central European databases, SNVD takes up the leading position in Europe.  相似文献   

16.
Abstract

We numerically analysed 154 relevés of Potentillo chrysocraspedae–Festucetum airoidis in order to review the compositional variability of these grasslands, the main eco-floristic gradients and the representativeness of the lectotype. Apart from 30 small-sized clusters composed of singular or transitional relevés (outliers), three distinctive groups of 77, 19 and 12 communities were finally retained and denominated as typical (TP), closed (CL) and open (OP) facies, as they were significantly different in terms of total species cover. The three facies are well separated but do not form distinctive clusters in the non-metric multidimensional scaling (NMDS) ordination space. Juncus trifidus and Agrostis rupestris are the best differential species of OP and TP, respectively, whereas the best discriminator of CL is the higher cover of F. airoides. There are no significant differences between the three facies regarding altitude. The floristic structure of CL indicates poorer but moister soils compared with the other facies. CL may represent either a post-disturbance, recovery phase following sheep overgrazing and intensive trampling, or a late seral stage. OP gathers communities that are little disturbed and mainly occur on ridges and upper, sunny slopes. Although well distinguished floristically, TP is weakly defined in terms of homotoneity and complexity of the core species assemblage. The most representative relevé of TP is poorer in character species than the relevé lectotype (5 versus 12), the latter being classified as an outlier in terms of normal specific assemblage. Such patterns may reflect the spatio-temporal heterogeneity in alpine grasslands due to uncontrolled, intensive grazing and stochastic natural disturbances.  相似文献   

17.
Zvjezdana Stančić 《Biologia》2008,63(6):1089-1103
In this paper, 450 relevés of grassland vegetation of the Molinio-Arrhenatheretea class in northwest Croatia have been classified using the agglomerative Ward’s Method in the PC-ORD program. In the process of classification, the following seven groups were obtained: 1. Bromus erectus-Arrhenatherum elatius, 2. Arrhenatherum elatius, 3. Crepis biennis-Arrhenatherum elatius, 4. Luzula campestris-Holcus lanatus, 5. Deschampsia cespitosa-Betonica officinalis, 6. Equisetum palustre, 7. Oenanthe silaifolia-Alopecurus pratensis. The results of the classification for the most part correspond to the traditional syntaxonomic system. The plant communities with the largest number of relevés in the data set are the association Arrhenatheretum elatioris “typicum” (group 2) and the association Holcetum lanati (group 4). They represent the most anthropogenically influenced grasslands of the study area. In the analysis of the ecological factors by PCA in the CANOCO program it is established that separation of the relevés is influenced most greatly by moisture, followed by humus, temperature, light and soil reaction. From the standpoint of nature conservation, the wet meadows of the Molinietalia order are the most valuable, because of the notable diversity of species and communities, as well as a considerable number of threatened plant species.  相似文献   

18.
The mapping and monitoring of Swiss mires has so far relied on a classification system based on expert judgement, which was not supported by a quantitative vegetation analysis and which did not include all wetland vegetation types described in the country. Based on a spatially representative sample of 17,608 relevés from 112 Swiss mires, we address the following questions: (1) How abundant are wetland vegetation types (phytosociological alliances) in Swiss mires? (2) How are they distributed across the country––is there a regional pattern? (3) How clearly are they separated from each other? (4) How clear and reliable is their ecological interpretation? Using published wetland vegetation relevés and lists of diagnostic species for phytosociological units (associations and alliances) established by experts, we developed a numerical method for assigning relevés to units through the calculation of similarity indices. We applied this method to our sample of 17,608 relevés and estimated the total area covered by each vegetation type in Switzerland. We found that vegetation types not included in previous mapping were either rare in Switzerland (partly due to mire drainage) or poorly distinguished from other vegetation units. In an ordination, the Swiss mire vegetation formed a triangular gradient system with the Sphagnion medii, the Caricion davallianae and the Phragmition australis as extreme types. Phytosociological alliances were clearly separated in a subset of 2,265 relevés, which had a strong similarity to one particular association, but poorly separated across all relevés, of which many could not be unequivocally assigned to one association. However, ecological gradients were reflected equally well by the vegetation types in either case. Overall, phytosociological alliances distinguished until now proved suitable schemes to describe and interpret vegetation gradients. Nevertheless, we see the urgent need to establish a data base of Swiss wetland relevés for a more reliable definition of some vegetation units.  相似文献   

19.
An overview of the coastal vegetation of Site of Community Importance “Zone Umide della Capitanata” (Puglia Region) is here presented. Original relevés were performed in different locations of the site. On the basis of the in-field observations (142 original relevés) and of literature data, 44 plant communities have been defined, belonging to the following classes: Lemnetea minoris, Ruppietea maritimae, Potametea pectinati, Phragmito-Magnocaricetea, Cakiletea maritimae, Ammophiletea, Helichryso-Crucianelletea maritimae, Juncetea maritimi, Sarcocornietea fruticosae, Saginetea maritimae, Thero-Suaedetea, Tuberarietea guattatae, Nerio-Tamaricetea. For each vegetation unit, the distribution area at local and regional level and the relation to habitat types of the 92/43 EEC Directive are provided.  相似文献   

20.
Question: Is it possible to translate vegetation maps into reliable thematic maps of site conditions? Method: This paper presents a new method, called Iteratio, by which a coherent spatial overview of specific environmental conditions can be obtained from a comprehensive vegetation survey of a specific area. Iteratio is a database application which calculates environmental indicator values for vegetation samples (relevés) on the basis of known indicator values of a limited number of plant species. The outcome is then linked to a digitalized vegetation map (map of plant communities) which results in a spatial overview of site conditions. Iteratio requires the indicator values of a minimum of 10–20% of the species occurring. The species are given a relative weight according to their amplitudes: species with a narrow range are weighted stronger, species with a broad range are weighted weaker. Conclusion: The method presented here enables a coherent assessment of site conditions on the basis of a vegetation survey and the indicator values of a limited number of plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号