首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified ribosomal DNA (rDNA) is routinely used to compare levels of diversity of microbial communities and to monitor population dynamics. While using PCR-DGGE to examine the bacteria in wine fermentations, we noted that several commonly used PCR primers for amplifying bacterial 16S rDNA also coamplified yeast, fungal, or plant DNA present in samples. Unfortunately, amplification of nonbacterial DNA can result in a masking of bacterial populations in DGGE profiles. To surmount this problem, we developed two new primer sets for specific amplification of bacterial 16S rDNA in wine fermentation samples without amplification of eukaryotic DNA. One primer set, termed WLAB1 and WLAB2, amplified lactic acid bacteria, while another, termed WBAC1 and WBAC2, amplified both lactic acid bacterial and acetic acid bacterial populations found in wine. Primer specificity and efficacy were examined with DNA isolated from numerous bacterial, yeast, and fungal species commonly found in wine and must samples. Importantly, both primer sets effectively distinguished bacterial species in wine containing mixtures of yeast and bacteria.  相似文献   

2.
Lactic acid bacteria populations of red wine samples from industrial fermentations, including two different vinification methods were studied. For this investigation, polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE) analysis was employed to supplement previous results that were obtained by culture-dependent methods. PCR-DGGE was aimed to study two targeted genes, 16S ribosomal DNA (rDNA) and rpoB, and the results were useful to evaluate the microbial populations in wine samples. Moreover, an improvement of a detection limit determined so far for DGGE analysis was obtained with the method described in this study, what made possible to identify lactic acid bacteria populations below 101 colony-forming unit/mL. The species Oenococcus oeni was the most frequently detected bacterium, but identifications close to species Oenococcus kitaharae and Lactococcus lactis that are not often found in wine were firstly identified in samples of this research. PCR-DGGE allowed to detect 9 out of 11 lactic acid bacteria species identified in this study (nine by PCR-16S rDNA/DGGE and four by PCR-rpoB/DGGE), while five species were detected using the modified de Man, Rogosa and Sharpe agar. Therefore, the two methods were demonstrated to be complementary. This finding suggests that analysis of the lactic acid bacteria population structure in wine should be carried out using both culture-dependent and culture-independent techniques with more than one primer pair.  相似文献   

3.
AIMS: Nine sets of PCR primers targeting Salmonella were evaluated for their specificity with pure cultures of intestinal-associated bacteria prior to their application to Salmonella detection in faecal samples. METHODS AND RESULTS: Gene targets of PCR primers included: 16S rDNA, a Salmonella pathogenicity island I virulence gene, Salmonella enterotoxin gene (stn), invA gene, Fur-regulated gene, histidine transport operon, junction between SipB and SipC virulence genes, Salmonella-specific repetitive DNA fragment, and multiplex targeting invA gene and spvC gene of the virulence plasmid. Fifty-two Salmonella strains were used to determine sensitivity; five strains from related genera and 45 intestinal bacteria were used to evaluate specificity. All primers amplified DNA from Salmonella strains, although two primer sets failed to amplify Salmonella DNA from either Salmonella bongori (hilA) or subgroups VI or VII (16S rDNA). There was no detected amplification of DNA from related bacterial genera with any of nine PCR assays. Six of the PCR assays amplified DNA for some intestinal bacteria. CONCLUSIONS: Only three primer pairs were determined to be suitable for application of PCR amplification of Salmonella in faecal samples - 16S rDNA, stn and histidine transport operon. We are currently evaluating their sensitivity of detection of Salmonella in faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated the importance of internal lab validation of PCR primers prior to application to the type of samples of interest. Information from this evaluation can be applied in other labs to facilitate choosing Salmonella PCR primers.  相似文献   

4.
Like bacteria, fungi play an important role in the soil ecosystem. As only a small fraction of the fungi present in soil can be cultured, conventional microbiological techniques yield only limited information on the composition and dynamics of fungal communities in soil. DNA-based methods do not depend on the culturability of microorganisms, and therefore they offer an attractive alternative for the study of complex fungal community structures. For this purpose, we designed various PCR primers that allow the specific amplification of fungal 18S-ribosomal-DNA (rDNA) sequences, even in the presence of nonfungal 18S rDNA. DNA was extracted from the wheat rhizosphere, and 18S rDNA gene banks were constructed in Escherichia coli by cloning PCR products generated with primer pairs EF4-EF3 (1.4 kb) and EF4-fung5 (0.5 kb). Fragments of 0.5 kb from the cloned inserts were sequenced and compared to known rDNA sequences. Sequences from all major fungal taxa were amplified by using both primer pairs. As predicted by computer analysis, primer pair EF4-EF3 appeared slightly biased to amplify Basidiomycota and Zygomycota, whereas EF4-fung5 amplified mainly Ascomycota. The 61 clones that were sequenced matched the sequences of 24 different species in the Ribosomal Database Project (RDP) database. Similarity values ranged from 0.676 to 1. Temperature gradient gel electrophoresis (TGGE) analysis of the fungal community in the wheat rhizosphere of a microcosm experiment was carried out after amplification of total DNA with both primer pairs. This resulted in reproducible, distinctive fingerprints, confirming the difference in amplification specificity. Clear banding patterns were obtained with soil and rhizosphere samples by using both primer sets in combination. By comparing the electrophoretic mobility of community fingerprint bands to that of the bands obtained with separate clones, some could be tentatively identified. While 18S-rDNA sequences do not always provide the taxonomic resolution to identify fungal species and strains, they do provide information on the diversity and dynamics of groups of related species in environmental samples with sufficient resolution to produce discrete bands which can be separated by TGGE. This combination of 18S-rDNA PCR amplification and TGGE community analysis should allow study of the diversity, composition, and dynamics of the fungal community in bulk soil and in the rhizosphere.  相似文献   

5.
16S ribosomal DNA amplification for phylogenetic study.   总被引:240,自引:9,他引:231       下载免费PDF全文
  相似文献   

6.
We have constructed a large fosmid library from a mesophilic anaerobic digester and explored its 16S rDNA diversity using a high-density filter DNA–DNA hybridization procedure. We identified a group of 16S rDNA sequences forming a new bacterial lineage named WWE3 (Waste Water of Evry 3). Only one sequence from the public databases shares a sequence identity above 80% with the WWE3 group which hence cannot be affiliated to any known or candidate prokaryotic division. Despite representing a non-negligible fraction (5% of the 16S rDNA sequences) of the bacterial population of this digester, the WWE3 bacteria could not have been retrieved using the conventional 16S rDNA amplification procedure due to their unusual 16S rDNA gene sequence. WWE3 bacteria were detected by polymerase chain reaction (PCR) in various environments (anaerobic digesters, swine lagoon slurries and freshwater biofilms) using newly designed specific PCR primer sets. Fluorescence in situ hybridization (FISH) analysis of sludge samples showed that WWE3 microorganisms are oval-shaped and located deep inside sludge flocs. Detailed phylogenetic analysis showed that WWE3 bacteria form a distinct monophyletic group deeply branching apart from all known bacterial divisions. A new bacterial candidate division status is proposed for this group.  相似文献   

7.
AIMS: The detection and isolation of lactic acid bacteria by enrichment methods from wine grapes cultivated in vineyards located in New South Wales, Australia. METHODS AND RESULTS: Enrichment cultures in de Man, Rogosa and Sharpe (MRS) broth, MRS + ethanol (5%), MRS broth supplemented with 15% (v/v) tomato juice (MRST), pH 5.5 and 3.5 and autoenrichment in grape juice homogenate were used to detect lactic acid bacteria on wine grapes. Bacteria were isolated from enrichment cultures by plating onto MRS and MRST agar and identified by 16S rDNA sequence analysis and phenotypical methods. A molecular method, PCR-denaturing gradient gel electrophoresis (DGGE) was also used to examine the bacteria that developed in enrichment cultures. Species of Lactobacillus, Enterococcus, Lactococcus and Weissella were detected in enrichments by plating and PCR-DGGE. Other bacteria (Sporolactobacillus, Asaia, Bacillus ssp.) were also found in some enrichment cultures. The principal malolactic bacterium, Oenococcus oeni, was not isolated. CONCLUSIONS: The incidence and populations of lactic acid bacteria on wine grapes were very low. Damaged grape berries showed a greater presence of these bacteria than undamaged berries. The diversity of bacterial species isolated from the grapes was greater than those previously reported and represented both lactic acid bacteria and nonlactic acid bacteria. Some of these bacteria (i.e. Lactobacillus lindneri, Lactobacillus kunkeei) could be detrimental to wine production. Oenococcus oeni was not found on grapes, but its recovery could be obscured by overgrowth from other species. SIGNIFICANCE AND IMPACT OF THE STUDY: Lactic acid bacteria are significant in wine production because they conduct the malolactic fermentation and cause stuck or sluggish alcoholic fermentation and wine spoilage. This study investigates wine grapes as a potential source of these bacteria.  相似文献   

8.
Like bacteria, fungi play an important role in the soil ecosystem. As only a small fraction of the fungi present in soil can be cultured, conventional microbiological techniques yield only limited information on the composition and dynamics of fungal communities in soil. DNA-based methods do not depend on the culturability of microorganisms, and therefore they offer an attractive alternative for the study of complex fungal community structures. For this purpose, we designed various PCR primers that allow the specific amplification of fungal 18S-ribosomal-DNA (rDNA) sequences, even in the presence of nonfungal 18S rDNA. DNA was extracted from the wheat rhizosphere, and 18S rDNA gene banks were constructed in Escherichia coli by cloning PCR products generated with primer pairs EF4-EF3 (1. 4 kb) and EF4-fung5 (0.5 kb). Fragments of 0.5 kb from the cloned inserts were sequenced and compared to known rDNA sequences. Sequences from all major fungal taxa were amplified by using both primer pairs. As predicted by computer analysis, primer pair EF4-EF3 appeared slightly biased to amplify Basidiomycota and Zygomycota, whereas EF4-fung5 amplified mainly Ascomycota. The 61 clones that were sequenced matched the sequences of 24 different species in the Ribosomal Database Project (RDP) database. Similarity values ranged from 0.676 to 1. Temperature gradient gel electrophoresis (TGGE) analysis of the fungal community in the wheat rhizosphere of a microcosm experiment was carried out after amplification of total DNA with both primer pairs. This resulted in reproducible, distinctive fingerprints, confirming the difference in amplification specificity. Clear banding patterns were obtained with soil and rhizosphere samples by using both primer sets in combination. By comparing the electrophoretic mobility of community fingerprint bands to that of the bands obtained with separate clones, some could be tentatively identified. While 18S-rDNA sequences do not always provide the taxonomic resolution to identify fungal species and strains, they do provide information on the diversity and dynamics of groups of related species in environmental samples with sufficient resolution to produce discrete bands which can be separated by TGGE. This combination of 18S-rDNA PCR amplification and TGGE community analysis should allow study of the diversity, composition, and dynamics of the fungal community in bulk soil and in the rhizosphere.  相似文献   

9.
Based on the 16S rDNA sequences, species specific primers were designed for the rapid identification by DNA amplification of nine human Bifidobacterium spp., namely B. adolescentis, B. angulatum, B. bifidum, B. breve, B. catenulatum, B. dentium, B. infantis, B. longum, B. pseudocatenulatum. B. lactis currently included in dairy products was added to the series. The primers were designed to target different positions of the 16S rDNA, allowing the simultaneous identification of these ten species of Bifidobacterium using two mixtures of primers. The identification procedure described in this paper was validated by establishing a correlation with an AluI restriction pattern of the different full length amplified 16S rDNA. This multiple primer DNA amplification technique was applied for the identification of pure colonies of Bifidobacterium spp. or directly from total bacteria recovered from human fecal samples. The technique was shown to be useful to detect dominant species and, when primers were used in separate reactions, underrepresented species could be identified as well.  相似文献   

10.
We describe a new molecular technique for the analysis of microbial species and complex microbial populations based on the separation of PCR-amplified 16S rDNA fragments by denaturing high-performance liquid chromatography (DHPLC). Using marine bacterial samples, we determined the optimum conditions for the analysis of bacterial species and the examination of complex bacterial assemblages obtained from different environments. The incorporation of a 40-bp GC clamp into the amplification primer was essential to effectively discriminate genetic differences in DHPLC-primers with a 20-, 10-, or 0-bp GC clamp length were less efficient. A 64.5 degrees C column temperature in DHPLC allowed optimal separation of species in a complex bacterial population. PCR-DHPLC analysis of bacterial assemblages demonstrated profiles with distinguishable peaks, which constituted the different populations and their degree of abundance. Fraction collection and DNA sequencing from profile peaks enabled bacterial identification. PCR-DHPLC analysis can also provide opportunities for describing bacterial communities, cloning bacteria, and monitoring bacterial populations in environments of interest.  相似文献   

11.
While wine fermentation has long been known to involve complex microbial communities, the composition and role of bacteria other than a select set of lactic acid bacteria (LAB) has often been assumed either negligible or detrimental. This study served as a pilot study for using barcoded amplicon next-generation sequencing to profile bacterial community structure in wines and grape musts, comparing the taxonomic depth achieved by sequencing two different domains of prokaryotic 16S rDNA (V4 and V5). This study was designed to serve two goals: 1) to empirically determine the most taxonomically informative 16S rDNA target region for barcoded amplicon sequencing of wine, comparing V4 and V5 domains of bacterial 16S rDNA to terminal restriction fragment length polymorphism (TRFLP) of LAB communities; and 2) to explore the bacterial communities of wine fermentation to better understand the biodiversity of wine at a depth previously unattainable using other techniques. Analysis of amplicons from the V4 and V5 provided similar views of the bacterial communities of botrytized wine fermentations, revealing a broad diversity of low-abundance taxa not traditionally associated with wine, as well as atypical LAB communities initially detected by TRFLP. The V4 domain was determined as the more suitable read for wine ecology studies, as it provided greater taxonomic depth for profiling LAB communities. In addition, targeted enrichment was used to isolate two species of Alphaproteobacteria from a finished fermentation. Significant differences in diversity between inoculated and uninoculated samples suggest that Saccharomyces inoculation exerts selective pressure on bacterial diversity in these fermentations, most notably suppressing abundance of acetic acid bacteria. These results determine the bacterial diversity of botrytized wines to be far higher than previously realized, providing further insight into the fermentation dynamics of these wines, and demonstrate the utility of next-generation sequencing for wine ecology studies.  相似文献   

12.
Primer sets were designed to target specific 16S ribosomal DNA (rDNA) sequences of photosynthetic bacteria, including the green sulfur bacteria, the green nonsulfur bacteria, and the members of the Heliobacteriaceae (a gram-positive phylum). Due to the phylogenetic diversity of purple sulfur and purple nonsulfur phototrophs, the 16S rDNA gene was not an appropriate target for phylogenetic rDNA primers. Thus, a primer set was designed that targets the pufM gene, encoding the M subunit of the photosynthetic reaction center, which is universally distributed among purple phototrophic bacteria. The pufM primer set amplified DNAs not only from purple sulfur and purple nonsulfur phototrophs but also from Chloroflexus species, which also produce a reaction center like that of the purple bacteria. Although the purple bacterial reaction center structurally resembles green plant photosystem II, the pufM primers did not amplify cyanobacterial DNA, further indicating their specificity for purple anoxyphototrophs. This combination of phylogenetic- and photosynthesis-specific primers covers all groups of known anoxygenic phototrophs and as such shows promise as a molecular tool for the rapid assessment of natural samples in ecological studies of these organisms.  相似文献   

13.
Real-time, or quantitative, PCR (QPCR) was developed for the rapid quantification of two of the most important yeast groups in alcoholic fermentation (Saccharomyces spp. and Hanseniaspora spp.). Specific primers were designed from the region spanning the internal transcribed spacer 2 (ITS2) and the 5.8S rRNA gene. To confirm the specificity of these primers, they were tested with different yeast species, acetic acid bacteria and lactic acid bacteria. The designed primers only amplified for the intended group of species and none of the PCR assays was positive for any other wine microorganisms. This technique was performed on reference yeast strains from pure cultures and validated with both artificially contaminated wines and real wine fermentation samples. To determine the effectiveness of the technique, the QPCR results were compared with those obtained by plating. The design of new primers for other important wine yeast species will enable to monitor yeast diversity during industrial wine fermentation and to detect the main spoilage yeasts in wine.  相似文献   

14.
Aims:  To identify the yeast and bacteria present in the mezcal fermentation from Agave salmiana .
Methods and Results:  The restriction and sequence analysis of the amplified region, between 18S and 28S rDNA and 16S rDNA genes, were used for the identification of yeast and bacteria, respectively. Eleven different micro-organisms were identified in the mezcal fermentation. Three of them were the following yeast: Clavispora lusitaniae , Pichia fermentans and Kluyveromyces marxianus. The bacteria found were Zymomonas mobilis subsp. mobilis and Zymomonas mobilis subsp. pomaceae, Weissella cibaria , Weissella paramesenteroides , Lactobacillus pontis , Lactobacillus kefiri , Lactobacillus plantarum and Lactobacillus farraginis .
Conclusions:  The phylogenetic analysis of 16S rDNA and ITS sequences showed that microbial diversity present in mezcal is dominated by bacteria, mainly lactic acid bacteria species and Zymomonas mobilis . Pichia fermentans and K. marxianus could be micro-organisms with high potential for the production of some volatile compounds in mezcal.
Significance and Impact of the Study:  We identified the community of bacteria and yeast present in mezcal fermentation from Agave salmiana.  相似文献   

15.
The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discriminate among rDNA from bacteria, yeast, a filamentous associate and B. nobilissimus. Nuclear rDNA internal transcribed spacer (ITS) region sequences of B. nobilissimus were compared among individuals representing six populations and were found to have less than 2% variation. These sequences also were used to design dual and nested PCR primers for B. nobilissimus-specific amplification. Mitochondrial small-subunit rDNA sequences were used in a phylogenetic analysis that placed B. nobilissimus in the hymenochaetoid clade, where it was associated with Oxyporus and Schizopora.  相似文献   

16.
A Lactobacillus group-specific PCR primer, S-G-Lab-0677-a-A-17, was developed to selectively amplify 16S ribosomal DNA (rDNA) from lactobacilli and related lactic acid bacteria, including members of the genera Leuconostoc, Pediococcus, and WEISSELLA: Amplicons generated by PCR from a variety of gastrointestinal (GI) tract samples, including those originating from feces and cecum, resulted predominantly in Lactobacillus-like sequences, of which ca. 28% were most similar to the 16S rDNA of Lactobacillus ruminis. Moreover, four sequences of Leuconostoc species were retrieved that, so far, have only been detected in environments other than the GI tract, such as fermented food products. The validity of the primer was further demonstrated by using Lactobacillus-specific PCR and denaturing gradient gel electrophoresis (DGGE) of the 16S rDNA amplicons of fecal and cecal origin from different age groups. The stability of the GI-tract bacterial community in different age groups over various time periods was studied. The Lactobacillus community in three adults over a 2-year period showed variation in composition and stability depending on the individual, while successional change of the Lactobacillus community was observed during the first 5 months of an infant's life. Furthermore, the specific PCR and DGGE approach was tested to study the retention in fecal samples of a Lactobacillus strain administered during a clinical trial. In conclusion, the combination of specific PCR and DGGE analysis of 16S rDNA amplicons allows the diversity of important groups of bacteria that are present in low numbers in specific ecosystems to be characterized, such as the lactobacilli in the human GI tract.  相似文献   

17.
The ability to effectively monitor a microbial community is necessary to design and implement remediation strategies for contaminated soil. Single-strand conformation polymorphism (SSCP), a technique which separates DNA fragments based on their sequence, was used to analyze amplified 16S rRNA gene fragments of 12 common soil bacteria. Separation was performed using capillary electrophoresis (CE), as opposed to other common gel techniques, to eliminate the need for band analysis on gel matrices. Four different universal bacterial primer sets were used for DNA amplification: 341-534, P11-P13, Er10-Er11, and Er14-Er15 corresponding to the V3, V8, V2, and V4 regions, respectively. The forward strand of each primer was labeled with 6-carboxy fluorescein fluorescent dye. Analyses were performed on the Applied Biosystems 310 genetic analyzer using GeneScan Analysis Software version 3.5. The best results were obtained using primer 341-534, in which 6 of the 12 bacteria could be distinguished. By combining primer sets 341-534 and Er10-Er11, all 12 of the bacteria could be separated, indicating various degrees of polymorphism within the selected primer regions. When performing simultaneous amplification and analysis of all 12 species some preferential amplification occurred, as not all peaks could be observed. However, SSCP profiles obtained for pure bacterial cultures show the potential of CE-SSCP for bacterial community analysis.  相似文献   

18.
Primer sets were designed to target specific 16S ribosomal DNA (rDNA) sequences of photosynthetic bacteria, including the green sulfur bacteria, the green nonsulfur bacteria, and the members of the Heliobacteriaceae (a gram-positive phylum). Due to the phylogenetic diversity of purple sulfur and purple nonsulfur phototrophs, the 16S rDNA gene was not an appropriate target for phylogenetic rDNA primers. Thus, a primer set was designed that targets the pufM gene, encoding the M subunit of the photosynthetic reaction center, which is universally distributed among purple phototrophic bacteria. The pufM primer set amplified DNAs not only from purple sulfur and purple nonsulfur phototrophs but also from Chloroflexus species, which also produce a reaction center like that of the purple bacteria. Although the purple bacterial reaction center structurally resembles green plant photosystem II, the pufM primers did not amplify cyanobacterial DNA, further indicating their specificity for purple anoxyphototrophs. This combination of phylogenetic- and photosynthesis-specific primers covers all groups of known anoxygenic phototrophs and as such shows promise as a molecular tool for the rapid assessment of natural samples in ecological studies of these organisms.  相似文献   

19.
Increasing evidence of the fungal diversity in deep-sea sediments has come from amplification of environmental DNA with fungal specific or eukaryote primer sets. In order to assess the fungal diversity in deep-sea sediments of the Central Indian Basin (CIB) at ~5,000 m depth, we amplified sediment DNA with four different primer sets. These were fungal-specific primer pair ITS1F/ITS4 (internal transcribed spacers), universal 18S rDNA primers NS1/NS2, Euk18S-42F/Euk18S-1492R and Euk18S-555F/Euk18S-1269R. One environmental library was constructed with each of the primer pairs, and 48 clones were sequenced per library. These sequences resulted in 8 fungal Operational Taxonomic Units (OTUs) with ITS and 19 OTUs with 18S rDNA primer sets respectively by taking into account the 2% sequence divergence cut-off for species delineation. These OTUs belonged to 20 distinct fungal genera of the phyla Ascomycota and Basidiomycota. Seven sequences were found to be divergent by 79–97% from the known sequences of the existing database and may be novel. A majority of the sequences clustered with known sequences of the existing taxa. The phylogenetic affiliation of a few fungal sequences with known environmental sequences from marine and hypersaline habitat suggests their autochthonous nature or adaptation to marine habitat. The amplification of sequences belonging to Exobasidiomycetes and Cystobasidiomycetes from deep-sea is being reported for the first time in this study. Amplification of fungal sequences with eukaryotic as well as fungal specific primers indicates that among eukaryotes, fungi appear to be a dominant group in the sampling site of the CIB.  相似文献   

20.
A molecular phylogenetic survey of sea-ice microbial communities (SIMCO)   总被引:15,自引:0,他引:15  
16S rDNA clone library analysis was used to identify bacterial biodiversity in a variety of sea-ice microbial communities (SIMCO). DNA was extracted from seven Antarctic sea-ice samples and one Arctic sea-ice sample and 16S rDNA PCR-amplified using universal and Archaea-specific primers. Recombinant 16S rDNA clones were obtained and dereplicated using restriction fragment length polymorphism analysis (RFLP). After RFLP analysis, 100 distinct phylotypes (a unique clone or group of clones with sequence similarity of >0.98) were defined. From the clone libraries 16S rDNA sequences of bacterial and eukaryotic origin were detected, however Archaea were not detected either with universal or Archaea-specific 16S rDNA primer sets. Bacterial phylotypes grouped within the alpha and gamma proteobacteria, the Cytophaga-Flavobacterium-Bacteroides division, the Gram-Positive bacteria and the orders Chlamydiales and Verrucomicrobiales. The majority of bacterial phylotypes were affiliated with heterotrophic taxa and many grouped closely with cultivated genera and species. Eukaryotic clones were affiliated with a variety of autotrophic and heterotrophic nanoplankton and included a large number of chloroplast 16S rDNA genes. The findings of this investigation corroborated culture data indicating bacterial biodiversity increased in SIMCO displaying high levels of primary production, however the bacterial communities within SIMCO were highly heterogeneous at the genus/species-level between different samples. A comparison of Antarctic and Arctic SIMCO revealed certain sea-ice dwelling bacterial genera are common at both poles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号