首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A multi-compartment model was developed to summarize existing data and predict soil carbon sequestration beneath switchgrass (Panicum virgatum) in the southeastern USA. Soil carbon sequestration is an important part of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was undertaken for the purpose of model parameterization. A sensitivity analysis of the model indicated that predictions of soil carbon sequestration were affected most by changes in aboveground biomass production, the ratio of belowground-to-aboveground biomass production, and mean annual temperature. Simulations indicated that the annual rate of soil carbon sequestration approached steady state after a decade of switchgrass growth while predicted mineral soil carbon stocks were still increasing. A model-based experiment was performed to predict rates of soil carbon sequestration at different levels of nitrogen fertilization and initial soil carbon stocks (to a 30-cm depth). At a mean annual temperature of 13°C, the predicted rate of soil carbon sequestration varied from ?28 to 114?g?C?m?2?year?1 (after 30?years) and was greater than zero in 11 of 12 simulations that varied initial surface soil carbon stocks from 1 to 5?kg?C?m?2 and nitrogen fertilization from 0 to 18?g?N?m?2?year?1. The modeling indicated that more research is needed on the process of biomass allocation and on nitrogen loss from mature plantations, respectively, to improve our understanding of carbon and nitrogen dynamics in switchgrass agriculture.  相似文献   

2.
Belowground root biomass is infrequently measured and simply represented in models that predict landscape‐level changes to soil carbon stocks and greenhouse gas balances. Yet, crop‐specific responses to N fertilizer and harvest treatments are known to impact both plant allocation and tissue chemistry, potentially altering decomposition rates and the direction and magnitude of soil C stock changes and greenhouse gas fluxes. We examined switchgrass (Panicum virgatum L.) and corn (Zea mays L.,) yields, belowground root biomass, C, N and soil particulate organic matter‐C (POM‐C) in a 9‐year rainfed study of N fertilizer rate (0, 60, 120 and 180 kg N ha?1) and harvest management near Mead, NE, USA. Switchgrass was harvested with one pass in either August or postfrost, and for no‐till (NT) corn, either 50% or no stover was removed. Switchgrass had greater belowground root biomass C and N (6.39, 0.10 Mg ha?1) throughout the soil profile compared to NT‐corn (1.30, 0.06 Mg ha?1) and a higher belowground root biomass C:N ratio, indicating greater recalcitrant belowground root biomass C input beneath switchgrass. There was little difference between the two crops in soil POM‐C indicating substantially slower decomposition and incorporation into SOC under switchgrass, despite much greater root C. The highest N rate decreased POM‐C under both NT‐corn and switchgrass, indicating faster decomposition rates with added fertilizer. Residue removal reduced corn belowground root biomass C by 37% and N by 48% and subsequently reduced POM‐C by 22% compared to no‐residue removal. Developing productive bioenergy systems that also conserve the soil resource will require balancing fertilization that maximizes aboveground productivity but potentially reduces SOC sequestration by reducing belowground root biomass and increasing root and soil C decomposition.  相似文献   

3.
Native perennial bioenergy crops can mitigate greenhouse gases (GHG) by displacing fossil fuels with renewable energy and sequestering atmospheric carbon (C) in soil and roots. The relative contribution of root C to net GHG mitigation potential has not been compared in perennial bioenergy crops ranging in species diversity and N fertility. We measured root biomass, C, nitrogen (N), and soil organic carbon (SOC) in the upper 90 cm of soil for five native perennial bioenergy crops managed with and without N fertilizer. Bioenergy crops ranged in species composition and were annually harvested for 6 (one location) and 7 years (three locations) following the seeding year. Total root biomass was 84% greater in switchgrass (Panicum virgatum L.) and a four‐species grass polyculture compared to high‐diversity polycultures; the difference was driven by more biomass at shallow soil depth (0–30 cm). Total root C (0–90 cm) ranged from 3.7 Mg C ha?1 for a 12‐species mixture to 7.6 Mg C ha?1 for switchgrass. On average, standing root C accounted for 41% of net GHG mitigation potential. After accounting for farm and ethanol production emissions, net GHG mitigation potential from fossil fuel offsets and root C was greatest for switchgrass (?8.4 Mg CO2e ha?1 yr?1) and lowest for high‐diversity mixtures (?4.5 Mg CO2e ha?1 yr?1). Nitrogen fertilizer did not affect net GHG mitigation potential or the contribution of roots to GHG mitigation for any bioenergy crop. SOC did not change and therefore did not contribute to GHG mitigation potential. However, associations among SOC, root biomass, and root C : N ratio suggest greater long‐term C storage in diverse polycultures vs. switchgrass. Carbon pools in roots have a greater effect on net GHG mitigation than SOC in the short‐term, yet variation in root characteristics may alter patterns in long‐term C storage among bioenergy crops.  相似文献   

4.
Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these N-rich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p < 0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p < 0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.  相似文献   

5.
Net benefits of bioenergy crops, including maize and perennial grasses such as switchgrass, are a function of several factors including the soil organic carbon (SOC) sequestered by these crops. Life cycle assessments (LCA) for bioenergy crops have been conducted using models in which SOC information is usually from the top 30 to 40?cm. Information on the effects of crop management practices on SOC has been limited so LCA models have largely not included any management practice effects. In the first 9?years of a long-term C sequestration study in eastern Nebraska, USA, switchgrass and maize with best management practices had average annual increases in SOC per hectare that exceed 2?Mg?C?year?1 (7.3?Mg?CO2?year?1) for the 0 to 150 soil depth. For both switchgrass and maize, over 50?% of the increase in SOC was below the 30?cm depth. SOC sequestration by switchgrass was twofold to fourfold greater than that used in models to date which also assumed no SOC sequestration by maize. The results indicate that N fertilizer rates and harvest management regimes can affect the magnitude of SOC sequestration. The use of uniform soil C effects for bioenergy crops from sampling depths of 30 to 40?cm across agro-ecoregions for large scale LCA is questionable.  相似文献   

6.
Plant mycorrhizal associations influence the accumulation and persistence of soil organic matter and could therefore shape ecosystem biogeochemical responses to global changes that are altering forest composition. For instance, arbuscular mycorrhizal (AM) tree dominance is increasing in temperate forests, and ericoid mycorrhizal (ErM) shrubs can respond positively to canopy disturbances. Yet how shifts in the co-occurrence of trees and shrubs with different mycorrhizal associations will affect soil organic matter pools remains largely unknown. We examine the effects of ErM shrubs on soil carbon and nitrogen stocks and indicators of microbial activity at different depths across gradients of AM versus ectomycorrhizal (EcM) tree dominance in three temperate forest sites. We find that ErM shrubs strongly modulate tree mycorrhizal dominance effects. In surface soils, ErM shrubs increase particulate organic matter accumulation and weaken the positive relationship between soil organic matter stocks and indicators of microbial activity. These effects are strongest under AM trees that lack fungal symbionts that can degrade organic matter. In subsurface soil organic matter pools, by contrast, tree mycorrhizal dominance effects are stronger than those of ErM shrubs. Ectomycorrhizal tree dominance has a negative influence on particulate and mineral-associated soil organic matter pools, and these effects are stronger for nitrogen than for carbon stocks. Our findings suggest that increasing co-occurrence of ErM shrubs and AM trees will enhance particulate organic matter accumulation in surface soils by suppressing microbial activity while having little influence on mineral-associated organic matter in subsurface soils. Our study highlights the importance of considering interactions between co-occurring plant mycorrhizal types, as well as their depth-dependent effects, for projecting changes in soil carbon and nitrogen stocks in response to compositional shifts in temperate forests driven by disturbances and global change.  相似文献   

7.
Agricultural soils in North America can be a sink for rising atmospheric CO2 concentrations through the formation of soil organic matter (SOM) or humus. Humification is limited by the availability of nutrients such as nitrogen (N). Recommended management practices (RMPs) that optimize N availability foster humus formation. This review examines the management practices that contribute to maximizing N availability for optimizing sequestration of atmospheric CO2 into soil humus. Farming practices that enhance nutrient use, reduce or eliminate tillage, and increase crop intensity, together, affect N availability and, therefore, C sequestration. N additions, from especially, livestock manure and leguminous cover crops are necessary for increasing grain and biomass yields and returning crop residues to the soil thereby increasing soil organic carbon (SOC) concentration. Conservation tillage practices enhance also the availability of N and increase SOC concentration. Increase in cropping intensity and/or crop rotations produce higher quantity and quality of residues, increase availability of N, and therefore foster increase in C sequestration. The benefit of C sequestration from N additions may be negated by CO2 and N2O emissions associated with production and application of N fertilizers. More studies need to be conducted to ascertain the benefits of adding N via manuring versus N fertilizer additions. Furthermore, site specific adaptive research is needed to identify RMPs that optimize soil N use efficiency while improving crop yield and C sequestration thereby curbing greenhouse gas (GHG) emissions. Due to the wide range of climate in North America, there is a large range of C sequestration potential in agricultural soils through N management. Humid croplands may have the potential to sequester 8–298 Tg C yr?1 while dry croplands may sequester 1–35 Tg C yr?1. These estimates, however, are highly uncertain and wide-ranging. Clearly, more research is needed to quantify, more precisely, the C sequestration potential across different N management scenarios especially in Mexico and Canada.  相似文献   

8.
Biomass demand for energy will lead to utilization of marginal, low fertility soil. Application of fertilizer to such soil may increase switchgrass (Panicum virgatum L.) biomass production. In this three-way factorial field experiment, biomass yield response to potassium (K) fertilizer (0 and 68 kg?K?ha?1) on nitrogen (N)-sufficient and N-deficient switchgrass (0 and 135 kg?N?ha?1) was evaluated under two harvest systems. Harvest system included harvesting once per year after frost (December) and twice per year in summer (July) at boot stage and subsequent regrowth after frost. Under the one-cut system, there was no response to N or K only (13.4 Mg?ha?1) compared to no fertilizer (12.4 Mg?ha?1). Switchgrass receiving both N and K (14.6 Mg?ha?1) produced 18 % greater dry matter (DM) yield compared to no fertilizer check. Under the two-cut harvest system, N only (16.0 Mg?ha?1) or K only (14.1 Mg?ha?1) fertilizer produced similar DM to no fertilizer (15.1 Mg?ha?1). Switchgrass receiving both N and K in the two-cut system (19.2 Mg?ha?1) produced the greatest (P?<?0.05) DM yield, which was 32 % greater than switchgrass receiving both N and K in the one-cut system. Nutrient removal (biomass?×?nutrient concentration) was greatest in plots receiving both N and K, and the two-cut system had greater nutrient removal than the one-cut system. Based on these results, harvesting only once during winter months reduces nutrient removal in harvested biomass and requires less inorganic fertilizer for sustained yields from year to year compared to two-cut system.  相似文献   

9.
The adoption of mechanical harvesting of green cane gives rise to concerns as to whether systems developed under burnt cane harvesting are applicable to a green cane harvesting system. In particular, tillage, which is an integral part of the burnt cane system, may no longer be necessary, and the nitrogen fertilizer rates required may need to be replaced due to the large amounts of organic matter being returned to the soil after green cane harvesting. Mechanical harvesting is relatively new in Brazil and little is known about its effect on other sugarcane production strategies. This work aimed to evaluate sugarcane performance under not only different harvesting and cultivation systems, but also different nitrogen fertilizer rates over a 3-year period. The experimental design was a split plot with harvesting systems (burnt vs. green) as main plots, cultivation (interrow vs. no cultivation) as sub plots, and nitrogen rates as sub-sub plots. The harvesting systems produced similar sugarcane yields throughout the experimental period, which demonstrates that the harvest systems do not influence sugarcane yield. Mechanical tillage practices in interrow after harvesting had no impact on stalk yield or sugar quality, indicating no necessity for this operation in the following crop. Ratoon nitrogen fertilization promoted an increase of stalk and sugar yield, with highest yields obtained at the rate of 130 kg ha?1 N. However, there was no interaction between harvesting system and nitrogen rate.  相似文献   

10.
Green harvest sugarcane management has increased soil organic C and N stocks over time. However, emerging sugarcane straw removal to meet increasing bioenergy demands has raised concerns about soil C and N depletions. Thus, we conducted a field study in southeast Brazil over nearly three years (1100 days) for assessing soil C and N responses to increasing sugarcane straw removal rates. In order to detect the C input as a function of the different amounts of straw over three years, a field simulation was performed, where the original soil layer (0–0.30 m) was replaced by another from an adjacent area with low total C and δ13C. The treatments tested were as follows: (i) 0 Mg ha?1 year?1 (i.e., 100% removal), (ii) 3.5 Mg ha?1 year?1 (i.e., 75% removal), (iii) 7.0 Mg ha?1 year?1 (i.e., 50% removal), (iv) 14.0 Mg ha?1 year?1 (i.e., no removal), and (v) 21.0 Mg ha?1 year?1 (i.e., no removal + extra 50% of the straw left on the field). The results showed that sugarcane straw removal affected the soil C and total N pools. In the first 45 days of straw decomposition, a small but important straw-derived C portion enters into the soil as dissolved organic carbon (DOC). The lower the straw removal rate, the higher was straw-derived DOC content found into the soil, down to 0.50 m depth. After 3 years of management, keeping sugarcane straw on soil surface significantly increased C and N stocks within surface soil layer (0–0.025 m). Our findings suggest that under no straw removal management (i.e., 14 Mg ha?1), approximately 364 kg ha?1 of C and 23 kg ha?1 of N are annually stored into this low-C soil. The contribution of the straw-derived C (C-C4) to the total soil C increases over time, which accounted for about 60% under no straw removal rate. The greatest contribution of the C storage preferentially occurs into the fraction of organic matter (<?0.53 μm) associated with soil clay minerals. We concluded that indiscriminate sugarcane straw removal to produce cellulosic ethanol or bioelectricity depletes soil C stocks and reduces N cycling in sugarcane fields, impairing environmental gains associated with bioenergy production. Therefore, this information, linked with other agronomic and environmental issues, should be taken into account towards a more sustainable straw removal management for bioenergy production in Brazil.  相似文献   

11.
The integration of multipurpose legumes into low-input tropical agricultural systems is needed because they are a nitrogen (N) input through symbiotic fixation. The drought-tolerant cover legume canavalia (Canavalia brasiliensis) has been introduced for use either as forage or as a green manure into the crop-livestock system of the Nicaraguan hillsides. To evaluate its impact on the subsequent maize crop, an in-depth study on N dynamics in the soil-plant system was conducted. Microplots were installed in a 6-year old field experiment with maize-canavalia rotation. Direct and indirect 15N-labelling techniques were used to determine N uptake by maize from canavalia residues and canavalia-fed cows?? manure compared to mineral fertilizer. Litter bags were used to determine the N release from canavalia residues. The incorporation of N from the amendment into different soil N pools (total N, mineral N, microbial biomass) was followed during the maize cropping season. Maize took up an average of 13.3 g?N?m?2, within which 1.0 g?N?m?2 was from canavalia residues and 2.6 g?N?m?2 was from mineral fertilizer, corresponding to an amendment N recovery of 12% and 32%, respectively. Recoveries in maize would probably be higher at a site with lower soil available N content. Most of the amendment N remained in the soil. Mineral N and microbial N were composed mainly of N derived from the soil. Combined total 15N recovery in maize and soil at harvest was highest for the canavalia residue treatment with 98% recovery, followed by the mineral fertilizer treatment with 83% recovery. Despite similar initial enrichment of soil microbial and mineral N pools, the indirect labelling technique failed to assess the N fertilizer value of mineral and organic amendments due to a high N mineralization from the soil organic matter.  相似文献   

12.
In dry climates with long, hot summers and freezing winters, such as that of the southern Great Plains of North America, switchgrass (Panicum virgatum L.) has proven potential as a cellulosic bioenergy feedstock. This trial looked at dry matter (DM) and N yield dynamics of switchgrass overseeded with cool-season legumes and rye (Secale cereale L.), compared to switchgrass fertilized with 0, 56 and 112 kg N ha-1 yr-1 at an infertile and a fertile location. Optimal N fertilizer rate on switchgrass was 56 kg N ha-1 at the infertile location. Legume yield was greater in the first season after planting, compared to subsequent years where annual legumes were allowed to reseed and alfalfa (Medicago sativa L.) was allowed to grow. This suggests that the reseeding model for annual legumes will not work in switchgrass swards grown for biomass unless soil seed banks are built up for more than one year, and that overseeding with alfalfa may have to be repeated in subsequent years to build up plant populations. Overseeding rye and legumes generally did not suppress or enhance switchgrass biomass production compared to unfertilized switchgrass. However, cumulative spring and fall biomass yields were generally greater due to winter and spring legume production, which could be beneficial for grazing or soil conservation systems, but not necessarily for once-yearly late autumn harvest biofuel production systems.  相似文献   

13.
Carbon sequestration in soils that have previously been depleted of organic matter due to agriculture is an important component of global strategies to mitigate rising atmospheric CO2 concentrations. Extensive areas of low productivity farmland have been abandoned from agriculture in eastern North America and elsewhere over the past century, and are naturally regenerating to temperate forests. We investigated the soil carbon sequestration potential of such lands by sampling adjacent mature forest and agricultural field sites, and replicated chronosequences of forest succession on Podzol, Brunisol, and Luvisol soil types that are considered ‘marginal’ for agriculture and have been abandoned extensively across southeastern Ontario, Canada. Total soil organic carbon and nitrogen stocks to 10 cm depth were approximately 32% and 18% lower, respectively, in agricultural fields compared to mature forests. Furthermore, carbon stocks across our 100-year chronosequences increased most within the 0–5 cm soil depth interval, tended to increase within the 5–10 cm interval, and were unaltered within the 10–20 cm interval. Soil type had little effect on the potential magnitude or rates of soil carbon sequestration (~10 g C m?2 y?1 in the top 10 cm), perhaps because all sites shared a common vegetation successional pattern. Finally, our investigations of the ‘labile’ free-light carbon and nitrogen fractions in the Brunisol soil type indicated no increases across the chronosequence, implying that soil carbon accumulation was primarily in more recalcitrant pools. Our results indicate that each of these low productivity soil types can be moderate carbon sinks for a century following agricultural abandonment, and strongly suggest that time since abandonment is more important than soil type in determining the potential magnitude of carbon sequestration within this climatic region.  相似文献   

14.
Nitrogen fertilizer and harvest management will alter soils under bioenergy crop production and the long‐term effects of harvest timing and residue removal remain relatively unknown. Compared to no‐tilled corn (NT‐C, Zea mays L.), switchgrass (Panicum virgatum L.) is predicted to improve soil properties [i.e. soil organic C (SOC), soil microbial biomass (SMB‐C), and soil aggregation] due to its perennial nature and deep‐rooted growth form, but few explicit field comparisons exist. We assessed soil properties over 9 years for a rainfed study of N fertilizer rate (0, 60, 120, and 180 kg N ha?1) and harvest management on switchgrass (harvested in August and postfrost) and NT‐C (with and without 50% stover removal) in eastern NE. We measured SOC, aggregate stability, SMB‐C, bulk density (BD), pH, P and K in the top 0–30 cm. Both NT‐C and switchgrass increased SMB‐C, SOC content, and aggregate stability over the 9 years, reflecting improvement from previous conventional management. However, the soils under switchgrass had double the percent aggregate stability, 1.3 times more microbial biomass, and a 5–8% decrease in bulk density in the 0–5 and 5–10 cm depths compared to NT‐C. After 9 years, cumulative decrease in available P was significantly greater beneath NT‐C (?24.0 kg P ha?1) compared to switchgrass (?5.4 kg P ha?1). When all measured soil parameters were included in the Soil Management Assessment Framework (SMAF), switchgrass improved soil quality index over time (ΔSQI) in all depths. NT‐C without residue removal did not affect ΔSQI, but 50% residue removal decreased ΔSQI (0–30 cm) due to reduced aggregate stability and SMB‐C. Even with best‐management practices such as NT, corn stover removal will have to be carefully managed to prevent soil degradation. Long‐term N and harvest management studies that include biological, chemical, and physical soil measurements are necessary to accurately assess bioenergy impacts on soils.  相似文献   

15.
The control of soil moisture, vegetation type, and prior land use on soil health parameters of perennial grass cropping systems on marginal lands is not well known. A fallow wetness-prone marginal site in New York (USA) was converted to perennial grass bioenergy feedstock production. Quadruplicate treatments were fallow control, reed canarygrass (Phalaris arundinaceae L. Bellevue) with nitrogen (N) fertilizer (75 kg N ha?1), switchgrass (Panicum virgatum L. Shawnee), and switchgrass with N fertilizer (75 kg N ha?1). Based on periodic soil water measurements, permanent sampling locations were assigned to various wetness groups. Surface (0–15 cm) soil organic carbon (SOC), active carbon, wet aggregate stability, pH, total nitrogen (TN), root biomass, and harvested aboveground biomass were measured annually (2011–2014). Multi-year decreases in SOC, wet aggregate stability, and pH followed plowing in 2011. For all years, wettest soils had the greatest SOC and active carbon, while driest soils had the greatest wet aggregate stability and lowest pH. In 2014, wettest soils had significantly (p?<?0.0001) greater SOC and TN than drier soils, and fallow soils had 14 to 20% greater SOC than soils of reed canarygrass + N, switchgrass, and switchgrass + N. Crop type and N fertilization did not result in significant differences in SOC, active carbon, or wet aggregate stability. Cumulative 3-year aboveground biomass yields of driest switchgrass + N soils (18.8 Mg ha?1) were 121% greater than the three wettest switchgrass (no N) treatments. Overall, soil moisture status must be accounted for when assessing soil dynamics during feedstock establishment.  相似文献   

16.
The agronomic performances of giant miscanthus (Miscanthus x giganteus) and switchgrass (Panicum virgatum L.) grown as bioenergy grasses are still unclear in North Carolina, due to a relatively short period of introduction. The objectives of the study were to compare the biomass yield and annual N removal of perennial bioenergy grasses and the commonly grown coastal bermudagrass [Cynodon dactylon (L.) Pers.], and to determine the optimum N rates and harvest practices for switchgrass and miscanthus. A 4-year field trial of the grasses under five annual harvest frequencies (May/Oct, June/Oct, July/Oct, Aug/Oct, and October only) and five annual N rates (0, 67,134, 202, and 268 kg N ha?1) was established at a research farm in Eastern North Carolina in 2011. Across harvest treatments and N rates, greatest biomass was achieved in the second growth year for both miscanthus (19.0 Mg ha?1) and switchgrass (15.9 Mg ha?1). Grasses demonstrated no N response until the second or the third year after crop establishment. Miscanthus reached a yield plateau with a N rate of 134 kg ha?1 since achieving plant maturity in 2013, whereas switchgrass demonstrated an increasing fertilizer N response from 134 kg N ha?1 in the third growth year (2014) to 268 kg N ha?1 in the fourth growth year (2015). The two-cut harvest system is not recommended for bioenergy biomass production in this region because it does not improve biomass yield and increased N removal leads to additional costs.  相似文献   

17.
Organic fertilizers can improve soil health while providing nutrients for perennial grass growth for bioenergy feedstock, particularly under marginal soil conditions. The impact of organic fertilizer application on perennial grass composition needs clarification. Our objective was to evaluate feedstock composition, and N, P, and K dynamics of switchgrass (Panicum virgatum L.), tall fescue [Lolium arundinaceum (Schreb.)], and reed canarygrass (Phalaris arundinacea L.) provided with either inorganic or organic fertilizer sources. Grasses were established on a sandy soil and a clay soil at the Cornell University Willsboro Research Farm in Willsboro, NY. The experiment was a split-split plot randomization of a randomized block design with six replicates. Sites were whole plots, grass species were subplots, and fertility treatments were sub-subplots. Six treatments were (1) 168 kg ha?1 of N fertilizer for cool-season grasses; 84 kg ha?1 for switchgrass, (2) 56 kg ha?1 of 0-46-0 P fertilizer plus N (#1), (3) 112 kg ha?1 of 0-0-60 K fertilizer plus N (#1), (4) 89.6 Mg dairy manure ha?1, (5) 44.8 Mg dairy manure compost ha?1, and (6) a control without fertilizer. Organic fertilizers produced a net positive P and K balance, while other treatments had negative balances. Organic fertilizer treatments resulted in lower lignin and gross energy values, and higher total ash and Cl, compared to inorganic fertilizer treatments. Switchgrass biomass had higher fiber and gross energy, lower total ash, and much lower Cl content under organic fertilizer applications than cool-season grasses, making switchgrass a more desirable feedstock regardless of conversion process.  相似文献   

18.
Switchgrass (Panicum virgatum L.) is an attractive bioenergy crop option for eroded portions of claypan landscapes where grain crop production is marginally profitable. Topsoil thickness above the claypan, or depth to claypan (DTC), can vary widely within fields, and little information exists on its impacts on N management of switchgrass. Therefore, a study was conducted at the University of Missouri South Farm near Columbia, Missouri, to determine whether topsoil thickness influenced fertilizer N requirements of switchgrass. Switchgrass was planted in 2009 on main plots with a range of DTC classified as exposed (<8 cm), shallow (8–15 cm), moderate (16–30 cm), and deep (>30 cm) and was harvested annually at postdormancy during 2011 to 2015. Three split-plot treatments were 0, 67, or 101 kg N ha?1 applied annually in May, and a fourth was three intercropped native legumes as the N source. Across years, the legume treatment apparently supplied no N because it produced the same or less switchgrass yield than the nonfertilized treatment. Topsoil proved valuable as switchgrass yield, nutrient removal, and profit usually increased as DTC increased. Fertilization with 101 kg N ha?1 on exposed, shallow, or moderate DTC and 67 kg N ha?1 on deep DTC was required to obtain the highest biomass yield, but it also increased nutrient removal. Strikingly, profit across years was negative for the legume treatment and highest with no fertilizer on all DTC classes. Therefore, improvements are needed before intercropped legumes are profitable, and N fertilization may be needed only periodically to maximize switchgrass profit on claypan soils.  相似文献   

19.
Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50–80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.  相似文献   

20.
Long-lived soil organic matter (SOM) pools are critical for the global carbon (C) cycle, but challenges in isolating such pools have inhibited understanding of their dynamics. We physically isolated particulate (>53 μm), silt-, and clay-sized organic matter from soils collected over two decades from a perennial C3 grassland established on long-term agricultural soil with a predominantly C4 isotopic signature. Silt- and clay-sized fractions were then subjected to a sequential chemical fractionation (acid hydrolysis followed by peroxide oxidation) to isolate long-lived C pools. We quantified 14C and the natural 13C isotopic label in the resulting fractions to identify and evaluate pools responsible for long-lived SOM. After removal of particulate organic matter (~14% of bulk soil C) sequential chemical treatment removed 80% of mineral-associated C. In all mineral-associated fractions, at least 55% of C4-derived C was retained 32 years after the switch to C3 inputs. However, C3–C increased substantially beginning ~25 years after the switch. Radiocarbon-based turnover times ranged from roughly 1200–3000 years for chemically resistant mineral-associated pools, although some pools turned over faster under C3 grassland than in a reference agricultural field, indicating that new material had entered some pools as early as 14 years after the vegetation switch. These findings provide further evidence that SOM chemistry does not always reflect SOM longevity and resistance to microbial decomposition. Even measureable SOM fractions that have extremely long mean turnover times (>1500 years) can have a substantial component that is dynamic over much shorter timescales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号