首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of our paper is to suggest a novel, hypothetical and yet untested use of the pollution-induced community tolerance concept (PICT). Historically, PICT has been applied to determine whether toxicants are deleterious in microfaunal aquatic and terrestrial communities. We hypothesize that it may be possible to apply PICT to megafaunal organisms (e.g., vertebrates). In doing so, researchers could (1) identify which toxicant, in a complex mixture of toxicants, is harmful since only those contaminants that exert selection pressure are biologically relevant and will result in changes in community structure and (2) determine the transfer of toxicants across trophic levels found within that community. We suggest that community tolerance could be measured in megafaunal communities by measuring biomarkers of exposure and effect in either a number of individuals that make up different populations of animals comprising a community, or in the community as a whole. In this article we discuss the theoretical suitability of our megafaunal PICT approach to the assessment of contaminated sites and some of the potential pitfalls associated with its use. Our intention is that this paper will generate debate and commentary surrounding PIGT and its potential uses in the future. Whether this potential approach is feasible remains to be determined.  相似文献   

2.
Developing new biological indicators for monitoring toxic substances is a major environmental challenge. Intensive agricultural areas are generally pesticide-dependent and generate water pollution due to transfer of pesticide residues through spray-drift, run-off and leaching. The ecological effects of these pollutants in aquatic ecosystems are broad-ranging owing to the variety of substances present (herbicides, fungicides, insecticides, etc.). Biofilms (or periphyton) are considered to be early warning systems for contamination detection and their ability to reveal effects of pollutants led researchers to propose a variety of methods to detect and assess the impact of pesticides. The present article sought to provide new insights into the ecological significance of biofilm microbial communities and to discuss their bioindication potential for water quality and land use by reporting on 4 years of research performed on the French Ardières-Morcille experimental watershed (AMEW). Various biological indicators have been applied during several surveys on AMEW, allowing the characterisation of (i) the structure and diversity of biofilm communities [community level finger printing (CLFP) such as PCR–DGGE and pigment classes], (ii) functions associated with biofilm [community level physiological profiles (CLPP) such as extracellular enzymes, pesticides biodegradation or carbon sources biodegradation] and (iii) biofilm tolerance assessment (pollution-induced community tolerance, PICT) of the main contaminant in the AMEW (copper and diuron). Approaches based on CLFPs and PICT were consistent with each other and indicated the upstream–downstream impact due to the increasing land use by vineyards and the adaptation of algal and bacterial communities to the pollution gradient. CLPPs gave a contrasted bioindication because some parameters (most of the tested extracellular enzymes activities) did not detect a pollution gradient. Such CLPPs, CLFPs and PICT methods applied to biofilm could constitute the basis for a relevant in situ assessment both for chemical effects and aquatic ecosystem resilience.  相似文献   

3.
The use of soil microorganisms in ecological risk assessment is hampered by an unclear dose-response relationship for most contaminants. Establishing dose-response curves for soil microbial communities requires that one have a clear estimate of exposure at the site of toxic action and a response free of confounding environmental factors. It is not clear what methods can estimate toxicant dose at the site of toxic action or determine microbial response to a toxicant. Pollution-induced community tolerance (PICT) is one possible estimate of microbial toxicant exposure. The PICT hypothesis is that the tolerance of a microbial community is proportional to the in situ dose. This method automatically corrects for differences due to differences in soil physical-chemical variables between samples. Various components of the soil nitrogen cycle can act as microbial bioindicators of toxicant impacts. Estimating denitrifica-tion activity presents a number of advantages over other components of the nitrogen cycle. Denitrifying bacteria come from a diversity of habitats, can be autotrophic or heterotrophic, and denitrification is a well-defined enzymatic system, which allows the use of molecular tools. Determining denitrification may be a good estimate of effects of toxicants on microbial communities. However, given the state of our ignorance regarding soil microbial community structure and function, redundant estimates of exposure and effect are necessary to adequately characterize the response of microbial communities to toxicants.  相似文献   

4.
Ecosystem resistance to a single stressor relies on tolerant species that can compensate for sensitive competitors and maintain ecosystem processes, such as primary production. We hypothesize that resistance to additional stressors depends increasingly on species tolerances being positively correlated (i.e. positive species co-tolerance). Initial exposure to a stressor combined with positive species co-tolerance should reduce the impacts of other stressors, which we term stress-induced community tolerance. In contrast, negative species co-tolerance is expected to result in additional stressors having pronounced additive or synergistic impacts on biologically impoverished functional groups, which we term stress-induced community sensitivity. Therefore, the sign and strength of the correlation between species sensitivities to multiple stressors must be considered when predicting the impacts of global change on ecosystem functioning as mediated by changes in biodiversity.  相似文献   

5.
The neonicotinoid imidacloprid and the herbicide diuron are long‐lived pesticides commonly detected in European rivers. Both have lethal as well as sublethal effects on aquatic invertebrates dwelling in streambeds. Here, we performed lethality tests of imidacloprid and diuron on seven species of widespread, free‐living nematodes and the model organism Caenorhabditis elegans. Our results indicated that nematodes were relatively tolerant to both pesticides, and only two species (Diploscapter coronatus and Plectus opisthocirculus) showed mortality at high nominal concentrations of imidacloprid (119 mg/L) and diuron (33 mg/L). The changes observed in nematode community structure after imidacloprid and diuron exposure may have been related to trade‐offs between sensitivity to toxicants and changes in competitive abilities of the species. While the former can be tested using single‐species tests, we recommend that the latter be tested in further experiments using multispecies communities. Our results suggest that the presence of these pesticides could favor nematodes over other meiofaunal groups found in freshwater sediments.  相似文献   

6.
The tolerance for arsenate and copper in the carbon dioxide fixation activity of phytoplankton communities coming from lakes around the smelter at Rönnskär at the Swedish east-coast were measured during three years (1989–1991). The smelter have for several decades discharged arsenic and heavy metals into the air, and their concentrations in the lakes were clearly correlated with the distance from the smelter. The tolerance of communities from the three most polluted lakes were higher than communities from reference lakes with background concentrations of arsenic and copper. In accordance with the PICT concept it is indicated that those communities have been affected by these substances. These communities also had lower diversity than the others, but no clear correlation could be done with phytoplankton species number, or between phytoplankton biomass and pollution levels.  相似文献   

7.
The polymorphism of arsenate tolerance in a Holcus lanatus L. population from an uncontaminated soil was investigated and a high percentage of tolerant individuals (65%) was found in the population studied. Influx of arsenate was highly correlated to arsenate tolerance within the population, with the most tolerant individuals having the lowest rates of arsenate influx. Isotherms for the high affinity arsenate uptake systems were determined in six tolerant and six non-tolerant genotypes. Tolerant plants had the lowest rates of arsenate influx. This was achieved by adaptation of the Vmax of arsenate influx with the Vmax of the high affinity uptake system saturating at lower substrate concentrations in the tolerant plants. The polymorphism is discussed with relation to adaptation to the extreme environments to which the plants are subjected on mine-spoil soils.  相似文献   

8.
The concept of pollution-induced community tolerance (PICT) consists of the phenomenon that communities in an ecosystem exhibit increased tolerance as a result of exposure to contaminants. Although a range of ‘classic’ ecological principles explains the processes that increase tolerance of a community, the value of PICT for ecological risk assessment was recognized only recently (Blanck et al. 1988). The following issues are recognized: First, regarding the question on the role of suspect compounds causing ecological effects, the PICT approach covers the issue of causality better than ‘classical’ ecological community response parameters like species densities or species diversity indices. This relates to the fact that the level of PICT is assumed to be relatively constant (compared to density and diversity), whereas the suspect compound causing the observed effect can be deduced with relative clear inference from artificial exposure experiments. Second, PICT directly addresses a level of biological organization (the community), the level of concern for many ecological risk assessment methods. Other methods for risk assessment, like toxicity testing or bioassays, focus on individual or population-level effects, and need extrapolation of the results to the field. Such extrapolation step may pose problems regarding validity of the outcome of risk assessment. The occurrence of PICT is, however, not (yet) a community endpoint that is sufficiently underpinned to trigger risk mitigation activities. This paper especially focuses on the possibility to improve risk assessment approaches by incorporation of PICT assessments, especially focusing on the issue of causality and on the ecological meaning of PICT. Despite the advantages over ‘classical’ parameters, literature analysis suggests that the PICT approach may be strengthened by determining to which degree the PICT approach relates to ecological changes, like shifts in community structure, functioning, and stability. The aim of this paper is to summarize some literature, putting the emphasis on terrestrial studies, to get insights whether PICT is a sensitive and powerful tool to quantify ecological effects in field conditions, to link them to toxicant stress, and thus to determine whether PICT may be taken into consideration in risk assessment.  相似文献   

9.
Insects of the family Chironomidae, also known as chironomids, are distributed worldwide in a variety of water habitats. These insects display a wide range of tolerance toward metals and organic pollutions. Bacterial species known for their ability to degrade toxicants were identified from chironomid egg masses, leading to the hypothesis that bacteria may contribute to the survival of chironomids in polluted environments. To gain a better understanding of the bacterial communities that inhabit chironomids, the endogenous bacteria of egg masses and larvae were studied by 454-pyrosequencing. The microbial community of the egg masses was distinct from that of the larval stage, most likely due to the presence of one dominant bacterial Firmicutes taxon, which consisted of 28% of the total sequence reads from the larvae. This taxon may be an insect symbiont. The bacterial communities of both the egg masses and the larvae were found to include operational taxonomic units, which were closely related to species known as toxicant degraders. Furthermore, various bacterial species with the ability to detoxify metals were isolated from egg masses and larvae. Koch-like postulates were applied to demonstrate that chironomid endogenous bacterial species protect the insect from toxic heavy metals. We conclude that chironomids, which are considered pollution tolerant, are inhabited by stable endogenous bacterial communities that have a role in protecting their hosts from toxicants. This phenomenon, in which bacteria enable the continued existence of their host in hostile environments, may not be restricted only to chironomids.  相似文献   

10.
Certain fossil communities may be recognized in collections from Early—mid-Middle Ordovician age rock units in the Inyo Mountains, California, and the Bare and Ranger Mountains in adjacent Nevada. These dominantly brachiopod—tribolite communities lived in several different, shallow shelf-sea environments. The communities appear to have maintained their diversity and evenness within relatively narrow limits for as long as the major aspects of the environments in which they lived, remained little changed (periods of about 1–2 m.y.). Some taxa occur in several communities (and are called wide-niched), and some occur in only a single community (and are called narrow-niched). Certain taxa that occur in large numbers in a single community appear to have been far more tolerant of particular environmental conditions than were associated taxa in the same community that are represented by few individuals. Counts of such abundant taxa that are restricted to a single community (and are thus considered narrow-niched) compared with counts of the individuals of those taxa found in several communities (and thus are considered wide-niched) indicate that the taxa highly tolerant of particular environmental conditions may be represented by more individuals than are the wide-niched taxa.  相似文献   

11.
Until recently, parameters from microorganisms were generally not included in risk assessment at a comparable level to animals and plants. However, the major part of global biomass, biodiversity, and ecosystem processes is present in the microbial world and microbiological techniques applicable to risk assessment are becoming available. Two microbial indicators are described based on the usage of multiwell plates with different substrates and a redox indicator for monitoring mineralisation. With both techniques autochthonous microbial communities are analysed. Producing functional fingerprints of the microbial community gives insights into the composition of different functions. This is equivalent to observations of ecological abundance and species composition. When lack of reference sites or reference data renders risk assessment difficult, measurement of the pollution-induced community tolerance (PICT) can provide useful information.  相似文献   

12.
The effect of three phenyl urea herbicides (diuron, linuron, and chlorotoluron) on soil microbial communities was studied by using soil samples with a 10-year history of treatment. Denaturing gradient gel electrophoresis (DGGE) was used for the analysis of 16S rRNA genes (16S rDNA). The degree of similarity between the 16S rDNA profiles of the communities was quantified by numerically analysing the DGGE band patterns. Similarity dendrograms showed that the microbial community structures of the herbicide-treated and nontreated soils were significantly different. Moreover, the bacterial diversity seemed to decrease in soils treated with urea herbicides, and sequence determination of several DGGE fragments showed that the most affected species in the soils treated with diuron and linuron belonged to an uncultivated bacterial group. As well as the 16S rDNA fingerprints, the substrate utilization patterns of the microbial communities were compared. Principal-component analysis performed on BIOLOG data showed that the functional abilities of the soil microbial communities were altered by the application of the herbicides. In addition, enrichment cultures of the different soils in medium with the urea herbicides as the sole carbon and nitrogen source showed that there was no difference between treated and nontreated soil in the rate of transformation of diuron and chlorotoluron but that there was a strong difference in the case of linuron. In the enrichment cultures with linuron-treated soil, linuron disappeared completely after 1 week whereas no significant transformation was observed in cultures inoculated with nontreated soil even after 4 weeks. In conclusion, this study showed that both the structure and metabolic potential of soil microbial communities were clearly affected by a long-term application of urea herbicides.  相似文献   

13.
Dissimilatory arsenate-respiring bacteria (DARB) reduce arsenate to arsenite and may play a significant role in arsenic mobilization in aquifers and anoxic sediments. Many studies have been conducted with pure cultures of DARB to understand their involvement in arsenic contamination. However, few studies have examined uncultured DARB in the environment. In order to investigate uncultured DARB in anoxic sediments, genes encoding arsenate respiratory reductases ( arr ) were targeted as a genetic marker. Degenerate primers for the α-subunit of arr genes were designed and used with PCR amplification to detect uncultured DARB in the sediments collected from three stations (upper, mid and lower bay) in the Chesapeake Bay. Phylogenetic analysis of putative arrA genes revealed the diversity of DARB with distinct community structures at each of the three stations. Arsenate reduction in sediment communities was confirmed using enrichment cultures established with sediment samples from the upper bay. In addition, terminal restriction fragment length polymorphism analysis of the putative arrA genes showed changes in the community structure of DARB in the enrichment cultures while reducing arsenate. This was also confirmed by cloning and sequence analysis of the arrA genes obtained from the enrichment cultures. Thus, we were able to detect diverse uncultured DARB in sediments, as well as to describe changes in DARB community structure during arsenic reduction in anoxic environments.  相似文献   

14.
While evolutionary ecologists emphasize different ways in which plants can evolutionarily respond to herbivory, such as resistance or tolerance, community ecology has lagged in its understanding of how these different plant traits can influence interactions, abundance, composition, and diversity within more complex food webs. In this paper, we present a series of models comparing community level outcomes when plants either resist or tolerate herbivory. We show that resistance and tolerance can lead to very different outcomes. A particularly important result is that resistant species should often coexist locally with other, less resistant competitors, whereas tolerant species should not be able to coexist locally with less tolerant competitors, although priority effects allow them to coexist regionally. We also use these models to suggest some insights into the evolution of these traits within more complex communities. We emphasize how understanding the differential effects of plant tolerance and resistance in food webs provides greater appreciation of a variety of empirical patterns that heretofore have appeared enigmatic. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Using DNA sequence data for phylogenetic assessment of toxicant targets is a new and promising approach to study toxicant-induced selection in communities. Irgarol 1051 is a photosystem (PS) II inhibitor used in antifouling paint. It inhibits photosynthesis through binding to the D1 protein in PS II, which is encoded by the psbA gene found in genomes of chloroplasts, cyanobacteria and cyanophages. psbA mutations that alter the target protein can confer tolerance to PS II inhibitors. We have previously shown that irgarol induces community tolerance in natural marine periphyton communities and suggested a novel tolerance mechanism, involving the amino acid sequence of a turnover-regulating domain of D1, as contributive to this tolerance. Here we use a large number of psbA sequences of known identity to assess the taxonomic affinities of psbA sequences from these differentially tolerant communities, by performing phylogenetic analysis. We show that periphyton communities have high psbA diversity and that this diversity is adversely affected by irgarol. Moreover, we suggest that within tolerant periphyton the novel tolerance mechanism is present among diatoms only, whereas some groups of irgarol-tolerant cyanobacteria seem to have other tolerance mechanisms. However, it proved difficult to identify periphyton psbA haplotypes to the species or genus level, which indicates that the genomic pool of the attached, periphytic life forms is poorly studied and inadequately represented in international sequence databases.  相似文献   

16.
A humped-back relationship between species richness and community biomass has frequently been observed in plant communities, at both local and regional scales, although often improperly called a productivity-diversity relationship. Explanations for this relationship have emphasized the role of competitive exclusion, probably because at the time when the relationship was first examined, competition was considered to be the significant biotic filter structuring plant communities. However, over the last 15 years there has been a renewed interest in facilitation and this research has shown a clear link between the role of facilitation in structuring communities and both community biomass and the severity of the environment. Although facilitation may enlarge the realized niche of species and increase community richness in stressful environments, there has only been one previous attempt to revisit the humped-back model of species richness and to include facilitative processes. However, to date, no model has explored whether biotic interactions can potentially shape both sides of the humped-back model for species richness commonly detected in plant communities. Here, we propose a revision of Grime's original model that incorporates a new understanding of the role of facilitative interactions in plant communities. In this revised model, facilitation promotes diversity at medium to high environmental severity levels, by expanding the realized niche of stress-intolerant competitive species into harsh physical conditions. However, when environmental conditions become extremely severe the positive effects of the benefactors wane (as supported by recent research on facilitative interactions in extremely severe environments) and diversity is reduced. Conversely, with decreasing stress along the biomass gradient, facilitation decreases because stress-intolerant species become able to exist away from the canopy of the stress-tolerant species (as proposed by facilitation theory). At the same time competition increases for stress-tolerant species, reducing diversity in the most benign conditions (as proposed by models of competition theory). In this way our inclusion of facilitation into the classic model of plant species diversity and community biomass generates a more powerful and richer predictive framework for understanding the role of plant interactions in changing diversity. We then use our revised model to explain both the observed discrepancies between natural patterns of species richness and community biomass and the results of experimental studies of the impact of biodiversity on the productivity of herbaceous communities. It is clear that explicit consideration of concurrent changes in stress-tolerant and competitive species enhances our capacity to explain and interpret patterns in plant community diversity with respect to environmental severity.  相似文献   

17.
The tolerance of microbenthic algal communities to two model toxicants,atrazine and copper, was studied in the Ter river during spring and summer.Artificial substrata were colonised at 9 sites and used to perform short-term(1–4 h) toxicity tests in the laboratory and to obtain photon yield as theecotoxicological endpoint. The tolerance was lower in spring than insummer for both toxic substances and varied according to the site studied.Copper toxicity was associated with physico-chemical conditions (totalsuspended solids and water pH) and, especially, with severalbiomass-related parameters, whereas atrazine toxicity was related to algalabundance and species composition. Temporal and spatial changes innutrient concentration may alter the biomass and species composition ofthe communities and thus affect their tolerance to toxic substances. It hasto be therefore considered that the environmental characteristics of theriver system may determine relevant direct and indirect effects on the algalcommunities, then affecting their specific ecotoxicological responses. Oncethis is assumed, the empirical expressions obtained on calculatingEC50 and EC10 can be used to predict the community-leveltransient effects of toxic exposures.  相似文献   

18.
Abstract. Three granite inselbergs and six dolerite dykes and their surroundings were investigated in the Central Namib, at the interface between the Namib Desert and Nama Karoo biomes. The main objectives of this study included a phytoso‐ciological interpretation of the described plant communities, explanation of the correlation of the communities with environmental variables and quantification of the relative contribution of different types of variables to structuring plant communities. Nine grassland and shrubland plant communities were recognized, largely organized according to general habitat, elevation, size of inselberg and geology. Soil properties, often thought to play an important role in arid environments, showed no clear patterns in the level of analyses used in this study. Other environmental parameters of importance in arid mountain habitats, such as slope aspect and angle, also played a minor role. The main implications of the study are: 1. Central Namib inselbergs, particularly granite domes, harbour diverse plant communities, often with species from neighbouring higher rainfall areas, and are thus of high conservation value. 2. The poor contribution of environmental variables in this study, which are conventionally used in field studies of plant community – environment relationships, may demand a critical review of additional parameters to be included when analysing plant community – environment relations in arid environments. In particular between‐season variation, phytogeographic aspects and the heterogeneity of microhabitats, often contained within a plant community, need to be taken into account.  相似文献   

19.
Environmental factors act as drivers of species coexistence or competition. Mesic environments favor the action of parasites and predators on gall communities, while the factors that determine the structure of gall communities in xeric environments remain unknown. We evaluated the structure of gall communities along an environmental gradient defined by intrinsic plant characteristics, soil fertility, and aridity, and investigated the role of competition as a structuring force of gall communities in xeric environments. We created null models to compare observed and simulated patterns of co‐occurrence of galls and used the C‐score index to assess community aggregation or segregation. We used the NES C‐score (standardized C‐score) to compare patterns of co‐occurrence with parameters of environmental quality. Xeric environments had poorer and more arid soils and more sclerophyllous plants than mesic environments, which was reflected in the distribution patterns of gall communities. Values of the C‐score index revealed a segregated distribution of gall morphospecies in xeric environments, but a random distribution in mesic environments. The low availability of resources for oviposition and the high density of gallers in xeric environments reinforce interspecific competition as an important structuring force for gall communities in these environments.  相似文献   

20.
Toxic metal pollution affects the composition and metal tolerance of soil bacterial communities. However, there is virtually no knowledge concerning the responses of members of specific bacterial taxa (e.g., phyla or classes) to metal toxicity, and contradictory results have been obtained regarding the impact of metals on operational taxonomic unit (OTU) richness. We used tag-coded pyrosequencing of the 16S rRNA gene to elucidate the impacts of copper (Cu) on bacterial community composition and diversity within a well-described Cu gradient (20 to 3,537 μg g−1) stemming from industrial contamination with CuSO4 more than 85 years ago. DNA sequence information was linked to analysis of pollution-induced community tolerance (PICT) to Cu, as determined by the [3H]leucine incorporation technique, and to chemical characterization of the soil. PICT was significantly correlated to bioavailable Cu, as determined by the results seen with a Cu-specific bioluminescent biosensor strain, demonstrating a specific community response to Cu. The relative abundances of members of several phyla or candidate phyla, including the Proteobacteria, Bacteroidetes, Verrumicrobia, Chloroflexi, WS3, and Planctomycetes, decreased with increasing bioavailable Cu, while members of the dominant phylum, the Actinobacteria, showed no response and members of the Acidobacteria showed a marked increase in abundance. Interestingly, changes in the relative abundances of classes frequently deviated from the responses of the phyla to which they belong. Despite the apparent Cu impacts on Cu resistance and community structure, bioavailable Cu levels did not show any correlation to bacterial OTU richness (97% similarity level). Our report highlights several bacterial taxa responding to Cu and thereby provides new guidelines for future studies aiming to explore the bacterial domain for members of metal-responding taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号