首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using nuclear reaction 6Li(n, alpha)3H and dielectric detectors, we have studied the distribution of Li in the brain of adult mice, following Li treatment of the animals. Two strains of animals were used in parallel: "quaking" dysmyelinating mutants and normally myelinated controls. The distribution appeared to be sharply regionalized in the brain of the normal mice (higher Li concentration in the gray rather than in the white matter, with the area postrema being particularly Li rich). In contrast, the Li distribution was practically homogeneous in the brain of the quaking dysmyelinating mutants, with a mean Li concentration comparable to that in the gray matter of the controls. The present method of Li detection has made it possible to estimate the Li equilibrium potentials (nerve cells with regard to plasma) in the different brain substructures. The results are consistent with (a) Li being actively extruded from nerve cells in all the cases and (b) myelination decreasing the relative importance of the passive component of Li transport in the nerve cells, as compared with the active component.  相似文献   

2.
Expression of the myelin proteolipid protein (PLP) was examined in the nuclei and polysomes of 12-27-day-old quaking, jimpy, and shiverer mouse brains and in 2-27-day-old normal brains and compared with expression of the myelin basic proteins (MBPs). Northern blots showed the presence of multiple mouse PLP RNAs, the developmental expression of which coincided with myelination. Two major mouse PLP RNAs, 3.5 and 2.6 kilobases in length, were observed in both cytoplasmic polyribosomes and nuclei, and, in addition, a larger 4.6-kilobase PLP RNA was observed in nuclei. Quantitative measurements with slot blot analyses showed that the levels of PLP and MBP RNAs peaked simultaneously at 18 days in nuclei but that maximal levels of PLP RNA lagged behind MBP RNA by several days in the polysomes. The developmental expression of both major classes of myelin protein mRNAs was affected in all three mutants. In shiverer brains, the levels of PLP mRNA in polysomes and nuclei were only 30-55% of control levels after 15 days. Thus, the deletion of a portion of the MBP gene appeared to have a major effect on the expression of the PLP gene in this mutant. In jimpy mice, where the mutation has been shown to involve the PLP gene, expression of MBP mRNA was also severely reduced, to less than 25% of control values. In quaking brains, the expression of each gene followed its own developmental course, different from each other and different from the normal mouse. The extent to which the expression of PLP and MBP was affected by the quaking mutation depended on the age at which it was examined.  相似文献   

3.
Total polyribosomes were isolated from the brains of 16-20 day C57BL/6 mice, four neurological mutants (qk/qk, shi/shi, mld/mld, and jp/Y), and four heterozygote or littermate controls (qk/+, shil/+, mld, and jp littermates) and translated in a homologous, cell-free system. No differences were observed among the nine genotypes in either the yield of polysomes (32.2 +/- 0.6 A260/g brain) or in the incorporation of [35S]methionine into trichloroacetic acid-precipitable protein. However, when the four myelin basic proteins (BPs) were isolated from the translation mixtures little incorporation of [35S]methionine into the BPs was noted in those assays directed by polysomes from mld/mld or from shi/shi animals. Compared with C57BL/6 polysomes, mld littermate and shi/+ polysomes incorporated approximately half the levels of label into the four BPs while qk/+ and qk/qk incorporated normal and close-to-normal levels. Polysomes from jp littermates and jp/Y brains synthesized 66% and less than 15% of the levels of the 14K BP compared with C57BL/6 polysomes. Incorporation of label into the other three BPs was normal with jp littermate polysomes and about half the control levels with jp/Y polysomes. The data indicate that shi/shi and mld/mld mutants either produce altered BPs not recognized by our antibody or synthesize very low levels of BP. The data provide additional support for the notion that the qk/qk mutant synthesizes much higher levels of MBP than are incorporated into myelin. They also indicate that in the jimpy mutant the synthesis of the four BPs is affected to differing extents; thus, the mutant cannot be easily characterized as either an "assembly" or "synthesis" defect.  相似文献   

4.
Expression of myelin proteins was studied in the brains of 21-day-old normal mice and three dysmyelinating mutants-jimpy, quaking, and shiverer. Total brain polyribosomes and poly(A)+ mRNA were translated in two cell-free systems and the levels of synthesis of the myelin basic proteins (MBPs) and proteolipid protein (PLP) were determined. Synthesis of the MBPs in quaking homozygotes was at or above normal levels but PLP synthesis was significantly reduced to approximately 15% of control values, indicating independent effects on the expression of these proteins in this mutant. Immunoblot analysis of 21-day-old quaking brain homogenates showed a reduction in the steady-state levels of MBPs and PLP, suggesting a failure of newly synthesized MBPs to be incorporated into a stable membrane structure such as myelin. In the shiverer mutant very little synthesis of MBPs was observed, whereas greater synthesis of PLP occurred (approximately 50% of control). Almost no MBP, and low levels of PLP, were detected in the immunoblots, suggesting the possibility of a partial failure of PLP to be assembled into myelin in shiverer. In the jimpy mutant, low levels of MBP synthesis were observed in vitro (approximately 26% of controls) and very little synthesis of PLP was evident. The immunoblots of 21-day jimpy brain homogenates revealed no appreciable steady-state levels of PLP or MBP, again indicating that most newly synthesized MBPs were not incorporated into a stable membrane structure in this mutant. In sum, the data show that in the three cases examined, the mutation appears to affect the expression of the MBPs and PLP independently. Furthermore, regardless of their absolute levels of synthesis these proteins may or may not be assembled into myelin.  相似文献   

5.
Abstract: Myelin basic protein (MBP) is a highly heterogeneous family of membrane proteins consisting of several isoforms resulting from alternative splicing and charge isomers arising from posttranslational modifications. Although well characterized in the bovine and human species, those in the mouse are not. With the availability of a number of transgenic and knockout mice, the need to understand the chemical nature of the MBPs has become very important. To isolate and characterize the MBP species in murine brain, two methods were adapted for use with the small amounts of MBP available from mice. The first was a scaled-down version of the preparative CM-52 chromatographic system commonly used to isolate MBP charge isomers; the second was an alkaline-urea slab gel technique that required five times less material than the conventional tube gel system and, from these gels, western blots were readily obtained. Murine MBP was resolved into two populations of charge isomers: the 18.5- and 14-kDa isoforms. Isolation and characterization of these charge isomers or components permitted us to assign possible posttranslational modifications to some of them. Component 1 (C-1), the most cationic isomer, had a molecular weight of 14,140.38 ± 0.79. C-2 consisted of two 14-kDa species, 14,136.37 ± 0.74 and 14,204.45 ± 0.70. Two variants, 14,215.57 ± 0.94 and 18,413.57 ± 0.76, constituted C-3. C-4, C-5, and C-8 (the least cationic isomer) each consisted of both 14- and 18.5-kDa isoforms. During myelinogenesis, the 18.5-kDa isoform appeared first (day 4); the 14-kDa isoform appeared at day 16 and subsequently became the dominant isoform. The transgenic shiverer mutant synthesized mainly the 18.5-kDa isoform, but none of the 14-kDa isoform, similar to the 4-day-old mouse. We concluded that the trangenic shiverer was able to initiate myelinogenesis with the 18.5-kDa isoform, but was unable to complete myelinogenesis because of the absence of the 14-kDa isoform.  相似文献   

6.
Total cytoplasmic brain RNA was isolated at two different ages from three neurological mutant mice (qk/qk, jp/Y, and shi/shi) and their apparently normal littermates. This RNA was translated in vitro in a rabbit reticulocyte lysate system. Myelin-associated glycoprotein (MAG)-related polypeptides were immunoprecipitated from equal amounts of total translation products derived from mRNA of mutant animals, normal littermates, or control animals. The developmentally regulated synthesis of MAG polypeptides was compared among the mutants and normal animals. mRNA from qk/qk brains synthesized an overabundance of p67MAG (five- to sevenfold) which may be compensation for a decreased synthesis of p72MAG. mRNA from jp/Y brains synthesized less than 10% of normal amounts of both MAG polypeptides. The quantity of MAG synthesized by 15-day shi/shi brain mRNA was slightly decreased compared with normal brain mRNA but the quantity of MAG synthesized by adult shi/shi brain mRNA was normal. No apparent differences were detected in the sizes of the MAG polypeptides synthesized by any of the mutants studied. The data suggest that the genetic defect in qk/qk mutants directly or indirectly affects the coordinated developmental regulation of MAG polypeptide synthesis leading to an overabundance of the MAG polypeptide that is normally found in older animals. The jp/Y mutation appears to affect general myelin protein synthesis. Finally, shi/shi mutants may have a delayed synthesis of MAG. The data are discussed in the light of recent observations concerning the synthesis of myelin proteins and their proposed role in myelin assembly.  相似文献   

7.
Mice affected by the autosomal dominant Trembler mutation exhibit a severe hypomyelinization of the PNS. Previous biochemical studies have shown that the accumulation of the major PNS myelin proteins, P0 and myelin basic protein (MBP), is strongly diminished in Trembler sciatic nerves during postnatal development. We performed Northern blots which showed that the size of mRNA species for P0 and MBP in normal and mutant mice are indistinguishable. Densitometric analysis of Northern blots showed that, in normal mice, the proportion of P0 mRNA increases up to the 12th day, then decreases slowly. At day 40, the proportion is 60% of the maximal value. In the mutant, the proportion of P0 mRNA increases up to the 12th day and then decreases much faster than in the control. At days 12 and 40, the P0 mRNA proportion measured in Trembler sciatic nerves represents only 40% and 7%, respectively, of the proportion measured in control littermates. The MBP mRNA proportion in the normal mice increases up to the 16th day, and then decreases to attain 45% of the maximum level at day 40. In the Trembler mouse, there is a maximum level at day 12, representing 25% of the normal level, but the MBP mRNA is barely detectable at days 8 or 40. Thus, these data seem to indicate that in the Trembler sciatic nerves, the proportions of P0 and MBP mRNAs are too small to allow the synthesis of normal levels of the corresponding proteins.  相似文献   

8.
The activities of peroxide-detoxifying enzymes such as superoxide dismutase (SOD), glutathione peroxidase, glutathione reductase, and catalase were measured in the nervous system of neurological dysmyelinating mutants: quaking (Qk), shiverer (Shi), and trembler (Tr) mice. Cu/Zn-SOD activity was higher in the cerebellum of Qk and Shi mice (by 53% and 106%, respectively) in comparison with controls, but it was the same in the cerebellum of Tr mice and their corresponding controls. In contrast, there was no difference in the level of Cu/Zn-SOD activity in the cerebrum of Qk, Shi, and Tr mice and their respective controls. Mn-SOD activity was the same among all the mutants compared to control animals in both cerebrum and cerebellum. In Shi cerebellum, glutathione peroxidase and glutathione reductase activities were slightly decreased (a 21.6% and a 13.2% diminution, respectively), whereas catalase activity in cerebrum and cerebellum was the same among mutants and control mice. In the sciatic nerve from Tr mice, all the enzymatic activities were enhanced: sixfold increase for total SOD, and 2.4-fold, 3.5-fold, and 1.8-fold increase for glutathione peroxidase, glutathione reductase, and catalase, respectively.  相似文献   

9.
Abstract: Ser55 within the head domain of neurofilament light chain (NF-L) is a target for phosphorylation by protein kinase A. To understand further the physiological role(s) of NF-L Ser55 phosphorylation, we generated transgenic mice with a mutant NF-L transgene in which Ser55 was mutated to Asp so as to mimic permanent phosphorylation. Two lines of NF-L(Asp) mice were created and these animals express the transgene in many neurones of the central and peripheral nervous systems. Both transgenic lines display identical, early onset, and robust pathological changes in the brain. These involve the formation of NF-L(Asp)-containing perikaryal neurofilament inclusion bodies and the development of swollen Purkinje cell axons. Development of these pathologies was rapid and fully established in mice as young as 4 weeks of age. The two transgenic lines show no elevation of NF-L, neurofilament middle chain (NF-M), or neurofilament heavy chain (NF-H), and transgenic NF-L(Asp) represents only a minor proportion of total NF-L protein. Because other published transgenic lines expressing higher levels of wild-type NF-L do not exhibit phenotypic changes that in any way resemble those in the NF-L(Asp) mice and because the two different NF-L(Asp) transgenic lines display identical neuropathological changes, it is likely that the pathological alterations observed in the NF-L(Asp) mice are the result of properties of the mutant NF-L. These results support the notion that phosphorylation of Ser55 is a mechanism for regulating neurofilament organisation in vivo.  相似文献   

10.
We recently reported an abnormal production of interleukin-1 (IL-1) in peripheral macrophages of several neurological mutant mice that exhibit patterns of neuronal degeneration, especially in the cerebellum. After in vitro activation by lipopolysaccharide acid (LPS), these macrophages hyperexpress IL-1 beta mRNA and hyperproduce IL-1 protein in comparison with +/+ controls. In the present study, focused on the staggerer mutant mice, we investigate if this genetic dysregulation is specific for IL-1 beta or if it reflects a generalized hyperexcitability of these macrophages. The hyperexpression of IL-1 beta mRNA in sg/sg macrophages is present whatever the duration of LPS stimulation, even for periods as short as 15 min, although it reaches a maximum after 4 h of stimulation. The hyperinducibility of sg/sg macrophages is observed even when very low doses of LPS are used (0.01 microgram/ml) and reaches its maximum for 5 micrograms/ml LPS. Synthetic molecules (muramyl dipeptides), such as N-acetylmuramyl-L-alanyl-D-isoglutamine or murabutide, known as macrophage activators, are also efficient in revealing the cytokine hyperexpression in sg/sg macrophages. In addition, hyperexpression of two other cytokines, i.e., tumor necrosis factor-alpha and IL-1 alpha mRNAs, is also detected in LPS-stimulated macrophages of mutant mice. Finally, the effect of an inhibitor of protein synthesis, cycloheximide, is similar in +/+ and sg/sg macrophages. As a whole, these data lead us to conclude that the sg/sg macrophages are in a state of general hyperexcitability when compared with +/+ ones.  相似文献   

11.
Abstract: Snell dwarf mice (dw) showed a lower CNPase activity (59% of the normal controls) only in the cerebrum among different parts of the CNS, and a strikingly reduced level of spontaneous locomotion activity with an indistinct diurnal periodicity in a 24-h record at 40 days of age. Daily administration of bGH and T4 to the dwarfs during the first 40 days of postnatal life restored CNPase activity to the level of the normal controls, and was accompanied by normalization of the pattern of spontaneous locomotion activity. Daily administration of bGH alone also restored CNPase activity and spontaneous locomotion, but to a lesser extent. The daily administration of thyroid stimulating hormone (TSH) alone, however, failed to restore CNPase activity, in spite of the fact that the thyroid glands of the TSH-treated dwarfs were indistinguishable from the normal controls in organization and appearance. These results indicate that the restoration of both the retarded myelinogenesis and abnormal behavior of the Snell dwarf mice might essentially depend upon GH levels and the synergistic effects of T4.  相似文献   

12.
Familial juvenile hyperuricemic nephropathy is caused by mutations in the UMOD gene encoding uromodulin. A transgenic mouse model was developed by introducing a human mutant UMOD (C148W) cDNA under control of the mouse umod promoter. Uromodulin accumulation was observed in the thick ascending limb cells in the kidney of transgenic mice. However, the urinary excretion of uromodulin in transgenic mice did not decrease and LC-MS/MS analysis indicated it was of mouse origin. Moreover, the creatinine clearance was not different between wildtype and transgenic animals. Consequently, the onset of the disease was not observed in transgenic mice until 24 weeks of age.  相似文献   

13.
The M3 muscarinic acetylcholine (ACh) receptor (M3 mAChR) is expressed in many central and peripheral tissues. It is a prototypic member of the superfamily of G protein-coupled receptors and preferentially activates G proteins of the Gq family. Recent studies involving the use of newly generated mAChR mutant mice have revealed that the M3 mAChR plays a key role in regulating many important metabolic functions. Phenotypic analyses of mutant mice that either selectively lacked or overexpressed M3 receptors in pancreatic β -cells indicated that β -cell M3 mAChRs are essential for maintaining proper insulin release and glucose homeostasis. The experimental data also suggested that strategies aimed at enhancing signaling through β -cell M3 mAChRs might be beneficial for the treatment of type 2 diabetes. Recent studies with whole body M3 mAChR knockout mice showed that the absence of M3 receptors protected mice against various forms of experimentally or genetically induced obesity and obesity-associated metabolic deficits. Under all experimental conditions tested, M3 receptor-deficient mice showed greatly ameliorated impairments in glucose homeostasis and insulin sensitivity, reduced food intake, and a significant elevation in basal and total energy expenditure, most likely due to increased central sympathetic outflow and increased rate of fatty acid oxidation. These findings are of potential interest for the development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.  相似文献   

14.
15.
Myelin Proteolipid Protein Gene Expression in Jimpy and Jimpymsd Mice   总被引:1,自引:1,他引:1  
Proteolipid protein (PLP) gene expression was studied in the dysmyelinating mouse mutant jimpy(msd) (jpmsd; myelin synthesis deficient) and compared with that in wild-type mice and the allelic mutant, jimpy (jp). Southern analyses of genomic DNA from jpmsd mice revealed no major rearrangements of the PLP gene relative to the wild-type mouse PLP gene. PLP-specific mRNA levels were significantly reduced in these mutant mice, although both the 3.2- and 2.4-kilobase PLP-specific mRNAs were seen. Also, no size differences in either PLP or DM20 mRNAs were found by S1 nuclease assays of brain RNA from either jpmsd or wild-type mice. Both PLP and DM20 protein were detectable at low levels in jpmsd brain homogenates, and these proteins comigrated with PLP and DM20 protein from normal mice. Western analyses showed an altered PLP:DM20 ratio in jpmsd mice relative to wild-type mice; DM20 levels exceeded PLP levels. It is surprising that a similar pattern of expression was seen in normal mice at less than 10 days of age: DM20 protein expression preceding PLP expression. Thus, jpmsd mice are capable of synthesizing normal PLP and DM20 protein; however, the PLP gene defect has affected the normal developmental pattern of expression for these two proteins.  相似文献   

16.
Nucleotides are new players in the intercellular communication network. P2X7 is a member of the P2X family of receptors, which are ATP-gated plasma membrane ion channels with diverse biological functions. Abnormal expression and dysfunction of P2X7 have been reported in leukemias. Here, we report a new P2X7 mutant (an A559-to-G substitution causing N187D P2X7) cloned from J6-1 leukemia cells. The characteristics of N187D P2X7 were studied by establishing stably transfected K562 cell lines. Our results show that N187D P2X7 required a higher concentration of agonist for its activation, leading to Ca2+ influx (EC50 = 293.3 ± 6.6 μm for the mutant and 93.6 ± 2.2 μm for wild-type P2X7) and ERK phosphorylation, which were not caused by differential cell-surface expression or related to high ATPase activity on the cell surface and in the extracellular space. K562 cells expressing this N187D mutant showed a proliferative advantage and reduced pro-apoptosis effects in vitro and in vivo. Furthermore, elevated angiogenesis and CD206-positive macrophage infiltration were found in tumor tissues formed by K562-M cells. In addition, higher expression of VEGF and MCP1 could be detected in tumor tissues formed by K562-M cells. Our results suggest that N187D P2X7, representing mutants hyposensitive to agonist, might be a positive regulator in the progression of hematopoietic malignancies.  相似文献   

17.
[目的]探讨乙型肝炎病毒(HBV)转基因小鼠模型筛选抗HBV药物的可行性。[方法]用公认抗HBV复制药物拉米夫定对我们建立高复制HBV转基因鼠进行实验,选我们建立的1.3copy高复制HBV转基因小鼠20只,随机分成两组,每组10只。采用灌胃针灌胃法给药。对照组灌喂生理盐水,实验组灌喂拉米夫定,剂量为100mg/kg,每天2次,连续灌21d,每7d采血1次。荧光定量PCR检测血清中HBVDNA。[结果]实验组用拉米夫定前小鼠血清HBVDNA5.50±0.42(拷贝数log10数值),3周后HBVDNA已显著降低(4.63±0.57),4周后,小鼠血清HBVNDA为4.08±0.51,停药1周后,再次检测血清HBVDNA,小鼠血清HBVDNA又恢复正常水平(5.70±0.39)。[结论]我们建立的高复制HBV转基因小鼠模型验证了拉米夫定对HBV复制的抑制程度和持续时间,表明该模型可应用于抗HBV药物的筛选、评价研究。  相似文献   

18.
The shaking pup is an X-linked canine mutant with a severe hypomyelination of the CNS. Proteolipid protein (PLP) and the related DM-20 protein were examined in this mutant by densitometric scanning of Western blots stained with PLP antiserum. In the spinal cord of 4-week-old mutants, PLP was reduced to less than 1% of the control level, which is a greater deficiency than was found for other myelin proteins. On Western blots of control spinal cord, PLP stained much more intensely than DM-20. However, on Western blots of the mutant spinal cord, a component with the electrophoretic mobility of DM-20 stained slightly more intensely with PLP antiserum than PLP itself. This component was shown to be DM-20 by its lack of reactivity with an antiserum raised to a synthetic peptide corresponding to part of the PLP sequence that is missing in DM-20. Thus PLP and DM-20 are expressed in approximately equal and greatly reduced amounts in the mutant spinal cord. Although PLP or DM-20 could not be detected in brain from the 4-week-old mutant, similar disproportional expression of these two proteins was demonstrated in both spinal cord and brain from a 10-week-old mutant pup. Immunostaining of tissue sections showed that the small amounts of PLP and/or DM-20 synthesized in the mutant are present in the thin myelin sheaths. The results suggest that the shaking pup could have a primary defect in the PLP gene leading to a severe deficiency of PLP and DM-20 as well as disproportional expression of these two proteins.  相似文献   

19.
Mutant p53 is not only deficient in tumor suppression but also acquires additional activity, called gain of function. Mutant p53 gain of function is recapitulated in knock-in mice that carry one null allele and one mutant allele of the p53 gene. These knock-in mice develop aggressive tumors compared with p53-null mice. Recently, we and others showed that tumor cells carrying a mutant p53 are addicted to the mutant for cell survival and resistance to DNA damage. To further define mutant p53 gain of function, we used the MCF-10A three-dimensional model of mammary morphogenesis. MCF-10A cells in three-dimensional culture undergo a series of morphological changes and form polarized and growth-arrested spheroids with hollow lumen, which resembles normal glandular architectures in vivo. Here, we found that endogenous wild-type p53 in MCF-10A cells was not required for acinus formation, but knockdown of endogenous wild-type p53 (p53-KD) led to partial clearance of cells in the lumen due to decreased apoptosis. Consistent with this, p53-KD altered expression patterns of the cell adhesion molecule E-cadherin, the cytoskeletal marker β-catenin, and the extracellular matrix protein laminin V. We also found that ectopic expression of the mutant G245S led to a phenotype similar to p53-KD, whereas a combination of ectopic expression of siRNA-resistant G245S with p53-KD led to a less cleared lumen. In contrast, ectopic expression of mutant R248W, R175H, and R273H disrupted normal acinus architectures with filled lumen and led to formation of irregular and multiacinus structures regardless of p53-KD. In addition, these mutants altered normal expression patterns and/or levels of E-cadherin, β-catenin, laminin V, and tight junction marker ZO-1. Furthermore, epithelial-to-mesenchymal transitions (EMT) markers, Snail, Slug, and Twist, were highly induced by mutant p53 and/or p53-KD. Together, we postulate that EMT represents a mutant p53 gain of function and mutant p53 alters cell polarity via EMT.  相似文献   

20.
激活标签法构建拟南芥突变体库及其表型分析   总被引:1,自引:2,他引:1  
以拟南芥(ArabMopsis thaliana)野生生态型(Columbia)植株为实验材料,以含有激活标记双元质粒pCB260的农杆菌进行转化,并以抗除草剂Basta为筛选标记,构建了拟南芥激活标签突变体库,所用pCB260双元质粒含有两个Ds位点、一个GFP标记基因与一个抗basta标记基因,可以方便高效地筛选转基因植物.目前经初步筛选获得了约10 000个独立转化株系(T1代),其中约50个株系具有明显的表型变化,包括花期改变、株型变异、叶形特异、育性降低、花发育异常、种子颜色变浅等.运用TAIL-PCR技术,成功获得了其中10个表型特异株系的T-DNA侧翼序列,分别分布于拟南芥基因组的5条染色体上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号