首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In brain, levels of cholesterol, desmosterol and 7-dehydrodesmosterol are reduced in shiverer and quaking, but not in trembler 60-day-old dysmyelinating mutant mice. Very interestingly, 7-dehydrocholesterol is not altered in any mutant. The amount of cholesterol is similar in the different normal control mouse strains and in rat. In contrast, levels of precursors are not the same. In sciatic nerve, cholesterol is slightly reduced in shiverer, reduced 2-fold in quaking, and dramatically reduced in trembler (10-fold). 7-Dehydrocholesterol is affected in all mutants.  相似文献   

2.
Expression of myelin proteins was studied in the brains of 21-day-old normal mice and three dysmyelinating mutants-jimpy, quaking, and shiverer. Total brain polyribosomes and poly(A)+ mRNA were translated in two cell-free systems and the levels of synthesis of the myelin basic proteins (MBPs) and proteolipid protein (PLP) were determined. Synthesis of the MBPs in quaking homozygotes was at or above normal levels but PLP synthesis was significantly reduced to approximately 15% of control values, indicating independent effects on the expression of these proteins in this mutant. Immunoblot analysis of 21-day-old quaking brain homogenates showed a reduction in the steady-state levels of MBPs and PLP, suggesting a failure of newly synthesized MBPs to be incorporated into a stable membrane structure such as myelin. In the shiverer mutant very little synthesis of MBPs was observed, whereas greater synthesis of PLP occurred (approximately 50% of control). Almost no MBP, and low levels of PLP, were detected in the immunoblots, suggesting the possibility of a partial failure of PLP to be assembled into myelin in shiverer. In the jimpy mutant, low levels of MBP synthesis were observed in vitro (approximately 26% of controls) and very little synthesis of PLP was evident. The immunoblots of 21-day jimpy brain homogenates revealed no appreciable steady-state levels of PLP or MBP, again indicating that most newly synthesized MBPs were not incorporated into a stable membrane structure in this mutant. In sum, the data show that in the three cases examined, the mutation appears to affect the expression of the MBPs and PLP independently. Furthermore, regardless of their absolute levels of synthesis these proteins may or may not be assembled into myelin.  相似文献   

3.
Myelin was purified from the spinal cords of normal mice and mice heterozygous for the shiverer mutation, and measurements were made of the major myelin proteins and lipids and the specific activities of three myelin-associated enzymes. The myelin purified from the spinal cords of the heterozygotes (shi/+) was deficient by 30-40% in yield and had an apparently unique composition. In particular, when compared with normal mouse spinal cord myelin, there were more high-molecular-weight protein, less myelin basic protein, a higher protein-to-lipid ratio, and higher specific activities of 2',3'-cyclic nucleotide-3'-phosphohydrolase (EC 3.1.4.37) and carbonic anhydrase (EC 4.2.1.1) in the myelin purified from the shi/+ animals. These abnormalities were reflected in the composition of shi/+ whole spinal cord, where the protein-to-lipid ratio was intermediate between the respective values for +/+ and shi/shi spinal cords. Whole brains from shi/+ mice showed deficiencies in galactocerebroside and galactocerebroside sulfate and an increase in total phospholipid, and the lipid composition in the brains of the shi/shi mice was similar to that reported for another dysmyelinating mutant, quaking. The findings provide the first values for the lipids in normal mouse spinal cord myelin and show that heterozygotes are affected by the shiverer mutation. The observations imply that there can be considerable deviation from the normal CNS myelin content and composition without apparent qualitative morphological abnormalities or loss of function and that the amount of myelin basic protein available during myelination may influence the incorporation of other constituents into the myelin membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The spin labels, 5-nitroxide stearic acid and 16-nitroxide stearic acid were incorporated into whole sciatic nerves dissected from normal, quaking, jimpy and trembler mice. With 5-nitroxide stearic acid, we have studied the thermal variation of the maximal apparent coupling constant (T) between 0 degrees C and 50 degrees C. Within this range of temperatures, we obtained identical values of 2 T for nerves from normal and jimpy mice, whereas 2 T was smaller for nerves from quaking and trembler mice. With 16-nitroxide stearic acid, composite spectra were recorded, particularly in the high-field range. A line characteristic of myelin was clearly observed in the spectra of nerves from normal and jimpy mice; its intensity was somewhat less in nerves from quaking mice and much less in spectra from trembler mice. A shoulder in the principal highfield line of the spectrum is modified only with nerves from jimpy mice. The results agree well with those obtained by electron microscopy, which reveal normal myelination in nerves from jimpy mice, a slight modification of the myelin from those of quaking mice and a practically complete demyelination in peripheral nerves from trembler mice. However, the structure of the nerves of jimpy mice also seems to be modified at an, as yet, undetermined level.  相似文献   

5.
Abstract: 5'Nucleotidase and Na+,K+-ATPase are very probably myelin-associated enzymes, although not specific for this membrane. Thus, it is important to determine their activity in dysmyelinating mutants in either CNS (quaking, jimpy, shiverer, and mld) or PNS (Trembler). CNS: The activity of 5'nucleotidase was lower in mouse than in rat (10.5 and 28.0 nmol/min/mg protein in brain, respectively). In mouse myelin, the activity was 30 nmol/min/mg protein (and 72 in rat myelin). In mutants, the brain activity was very close to normal. In contrast, ATPase, the activity of which was higher in myelin as compared with forebrain homogenate, presented a reduced activity in various 21-day-old and adult mutants, except Trembler. It was normal in 8-day-old quaking and in cerebella from mutants. PNS: ATPase was lower than in brain and reduced in most mutants, this being expected for Trembler and quaking but not for shiverer and mld. 5'-Nucleotidase activity was higher compared with that in brain homogenate (relatively stable between 10-day postnatal and adult). It was affected in the mutants; in Trembler it was nearly normal in young animals but increased during development. Thus in Trembler, two different myelin-related enzymes and a myelin-specific enzyme (CNPase) presented different developmental patterns: ATPase was always reduced, 5'-nucleotidase was normal, and CNPase was slightly below normal in young (68% of the control value); CNPase activity declined during development but 5'-nucleotidase increased (42% and 190% of the control in 60-day-old animals). It is necessary to consider these results in parallel with alterations in the PNS because of Schwann cell abnormalities. Thus, determination of these two enzymes will provide a useful tool to study myelination and myelin assembly under both normal and pathological conditions.  相似文献   

6.
X-ray diffraction patterns were obtained from freshly dissected central and peripheral nerves of quaking, myelin synthesis deficiency (msd), and trembler mutants, as well as immature and adult normal mice. The patterns were compared with respect to strength of myelin diffraction, background scatter level, repeat period, and intensity and linewidth of Bragg reflections. The deficiency of myelin in optic nerves was found to be (in decreasing severity): quaking > immature > trembler ? normal adult; and in sciatic nerves: trembler > immature > quaking msd ? normal adult. Repeat periods about 3 Å less than that for normal adult sciatic myelin were detected in corresponding nerves from immature, quaking, and trembler mice. In some trembler sciatic nerves a second phase having a 190–200 Å period and accounting for about 60% of the total ordered myelin was also evident. Comparison of electron density profiles of membrane units calculated from the repeat periods and diffracted intensities for sciatic myelins indicate structural differences at the molecular level. The main findings are: (1) quaking myelin shows a significant elevation of density in the external protein-water layer between membrane bilayers; (2) the membrane bilayer of immature myelin is ≈ 2 Å thinner than that for normal adult; (3) the membrane bilayer of the more compact phase in trembler myelin is ≈ 5 Å thinner than for normal; and (4) the difference in repeat periods for the two phases present in some of the trembler nerves can be accounted for predominantly by distinct membrane bilayer separations at the external boundary.  相似文献   

7.
The spin labels, 5-nitroxide stearic acid and 16-nitroxide stearic acid were incorporated into whole sciatic nerves dissected from normal, quaking, jimpy and trembler mice. With 5-nitroxide stearic acid, we have studied the thermal variation of the maximal apparent coupling constant (T6) between 0°C and 50°C. Within this range of temperatures, we obtained identical values of 2 T6 for nerves from normal and jimpy mice, whereas 2 T6 was smaller for nerves from quaking and trembler mice. With 16-nitroxide stearic acid, composite spectra were recorded, particularly in the high-field range. A line characteristic of myelin was clearly observed in the spectra of nerves from normal and jimpy mice; its intensity was somewhat less in nerves from quaking mice and much less in spectra from trembler mice. A shoulder in the principal highfield line of the spectrum is modified only with nerves from jimpy mice.The results agree well with those obtained by electron microscopy, which reveal normal myelination in nerves from jimpy mice, a slight modification of the myelin from those of quaking mice and a practically complete demyelination in peripheral nerves from trembler mice. However, the structure of the nerves of jimpy mice also seems to be modified at an, as yet, undetermined level.  相似文献   

8.
The activities of peroxide-detoxifying enzymes such as superoxide dismutase (SOD), glutathione peroxidase, glutathione reductase, and catalase were measured in the nervous system of neurological dysmyelinating mutants: quaking (Qk), shiverer (Shi), and trembler (Tr) mice. Cu/Zn-SOD activity was higher in the cerebellum of Qk and Shi mice (by 53% and 106%, respectively) in comparison with controls, but it was the same in the cerebellum of Tr mice and their corresponding controls. In contrast, there was no difference in the level of Cu/Zn-SOD activity in the cerebrum of Qk, Shi, and Tr mice and their respective controls. Mn-SOD activity was the same among all the mutants compared to control animals in both cerebrum and cerebellum. In Shi cerebellum, glutathione peroxidase and glutathione reductase activities were slightly decreased (a 21.6% and a 13.2% diminution, respectively), whereas catalase activity in cerebrum and cerebellum was the same among mutants and control mice. In the sciatic nerve from Tr mice, all the enzymatic activities were enhanced: sixfold increase for total SOD, and 2.4-fold, 3.5-fold, and 1.8-fold increase for glutathione peroxidase, glutathione reductase, and catalase, respectively.  相似文献   

9.
Myelin partially purified from spinal cords of dysmyelinating mutant (shiverer) mice had almost three-fold the specific activity of 5'-nucleotidase found in the respective myelin fraction from normal mice. The specific activities of two other normally myelin-associated enzymes, 2',3'-cyclic nucleotide-3'-phosphohydrolase and carbonic anhydrase, were only slightly higher in the myelin membranes from shiverers, compared to those from controls. In the mutants, the three enzymes probably occur in oligodendrocyte processes. Hypothetically, the 5'-nucleotidase in the myelin sheath in shiverer and normal mice may be localized in specialized structures.  相似文献   

10.
Jimpy mice are dysmyelinating mutants characterized by producing near normal levels of myelin basic protein (MBP) in the brain but failing to incorporate these proteins into the myelin sheath. In this study, the activity of MBP-specific protein-arginine N-methyltransferase (protein methylase I) was studied in the brains of normal and jimpy mice of different ages. The enzyme activity varied little with age in normal mice but in 18 and 21 days-old homozygous jimpy mice the activity was reduced by 50% and 75% respectively from the level of their normal littermates. Interestingly, however, heterozygous jimpy mice who are phenotypically normal and quaking mice (a similar dysmyelinating mutant) showed unaltered enzyme levels.  相似文献   

11.
Meylin partially purified from spinal cords of dysmyelinating mutant (shiverer) mice had almost three-fold the specific activity of 5′-nucleotidase found in the respective myelin fraction from normal mice. The specific activities of two other normally myelin-associated enzymes, 2′,3′-cyclic nucleotide-3′-phosphohydrolase and carbonic anhydrase, were only slightly higher in the myelin membranes from shiveres, compared to those from controls. In the mutants, the three enzymes probably occur in oligodendrocyte processes. Hhypothetically, the 5′-nucleotidase in the myelin sheath in shiverer and normal mice may be localized in specialized structures.  相似文献   

12.
An ontogenetic survey of the basic protein of myelin, common to both central and peripheral nervous systems, was carried out on normal C57Bl and five dysmyelinating mutant mice. Myelin basic protein (MBP) was quantified by radioimmunoassay in the optic and sciatic nerves of mice from birth to adult stages, giving special attention to the premyelinating and early myelination periods. In the optic nerves of normal mice, MBP was already detectable at birth but the active period of myelin deposition was shown to occur after day 10 postnatal. The timing and rate of accumulation of MBP were normal in Trembler. In contrast, they were abnormal in the other mutants. In the quaking mouse, the active period of MBP deposition was delayed, and its final concentration represented no more than 12% of normal in the adult. No active period of MBP deposition was observed in the other mutants. In the jimpy mouse, a slow accumulation of MBP resulted in a final concentration reaching 2% of the normal value at 25 days. In mild and shiverer mice, the MBP was hardly detectable. In the sciatic nerves of normal mice, the active period of MBP deposition occurred between days 3 and 12 postnatal. No substantial changes occurred in the period of 2 months--2 years.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
Developmental changes in three enzymes associated with myelin lipids were studied in the shiverer mouse, a murine mutant showing a severe deficiency of CNS myelin. Age-related changes in cerebroside sulfotransferase (measured in brain) and arylsulfatase A and cerebroside B-galactosidase (measured in brain and liver) were the same for shiverer and control mice. The shiverer mouse, therefore, demonstrates a dissociation between the genetic mechanisms regulating myelination in the CNS and developmental changes in enzyme activities thought to be closely related to the synthesis of myelin. In addition, we found no defect in the shiverer mouse in the incorporation of glycine-labeled basic protein into CNS myelin, indicating an important metabolic difference between the morphologically similar shiverer and quaking mutants.  相似文献   

15.
Expression of the myelin proteolipid protein (PLP) was examined in the nuclei and polysomes of 12-27-day-old quaking, jimpy, and shiverer mouse brains and in 2-27-day-old normal brains and compared with expression of the myelin basic proteins (MBPs). Northern blots showed the presence of multiple mouse PLP RNAs, the developmental expression of which coincided with myelination. Two major mouse PLP RNAs, 3.5 and 2.6 kilobases in length, were observed in both cytoplasmic polyribosomes and nuclei, and, in addition, a larger 4.6-kilobase PLP RNA was observed in nuclei. Quantitative measurements with slot blot analyses showed that the levels of PLP and MBP RNAs peaked simultaneously at 18 days in nuclei but that maximal levels of PLP RNA lagged behind MBP RNA by several days in the polysomes. The developmental expression of both major classes of myelin protein mRNAs was affected in all three mutants. In shiverer brains, the levels of PLP mRNA in polysomes and nuclei were only 30-55% of control levels after 15 days. Thus, the deletion of a portion of the MBP gene appeared to have a major effect on the expression of the PLP gene in this mutant. In jimpy mice, where the mutation has been shown to involve the PLP gene, expression of MBP mRNA was also severely reduced, to less than 25% of control values. In quaking brains, the expression of each gene followed its own developmental course, different from each other and different from the normal mouse. The extent to which the expression of PLP and MBP was affected by the quaking mutation depended on the age at which it was examined.  相似文献   

16.
Studies of brain myelin in the "quaking mouse"   总被引:6,自引:0,他引:6  
Myelin was isolated from the brains of "quaking" and littermate control animals and its composition was determined. The brains of quaking animals contained approximately one-fourth as much myelin as the control animals. There were qualitative as well as quantitative differences between the myelin from the two groups. By continuous cesium chloride gradient flotation it was shown that the myelin from the quaking animals consisted solely of a band corresponding to the heavier and smaller of the two bands found in normal controls. Cholesterol and glycolipids were lower and phospholipids (mainly phosphatidylcholine) and protein were higher in quaking animals than in controls. Also, phosphatidal-ethanolamine was decreased, and several consistent differences in the fatty acids (both unsubstituted and hydroxy) and aldehydes of the component lipids were found. In general there were smaller amounts of monounsaturated fatty acids in quaking animals. We suggest from these findings that myelin in the quaking mouse has certain compositional similarities with juvenile myelin, but it may be an abnormal type of myelin.  相似文献   

17.
Expression of myelin protein genes in the developing brain   总被引:1,自引:0,他引:1  
The major myelin proteins fall into two classes, the basic proteins and the proteolipid proteins. In mice, five forms of the myelin basic protein (MBP) have been identified with apparent molecular masses of 21.5 kD, 18.5 kD, 17 kD and 14 kD. The 17 kD MBP variant consists of two molecular forms with similar molecular masses but different amino acid sequences. Cell-free translation studies and analyses of MBP cDNAs have shown that each of the MBP variants is encoded by a separate mRNA of approximately 2 000 bp. The five mouse MBP mRNAs appear to be derived by alternative splicing of exons 2, 5, and 6 of the MBP gene. cDNAs encoding four forms of MBP have been isolated from a human fetal spinal cord library. The mRNAs corresponding to these cDNAs are probably derived by alternative splicing of exons 2 and 5 of the human MBP gene. Proteolipid protein (PLP) cDNAs have been isolated from several species and used to establish that the size of the major PLP mRNA is approximately 3 kb. Multiple size classes of the PLP mRNAs exist in mice and rats whereas the 3 kb mRNA is the predominant form in the developing human spinal cord. In normal mice, maximal expression of the PLP gene lags behind that of the MBP gene by several days. Studies on dysmyelinating mutants have determined some of the molecular defects with respect to these two classes of myelin proteins. For example, there is a deletion of a portion of the MBP gene in the shiverer mutant. In the quaking mutant, the expression of both classes of myelin proteins is significantly reduced prior to 3 weeks. However, after 3 weeks, MBP expression approaches normal levels but the newly synthesized protein fails to be incorporated into myelin. In the jimpy mutant, although the expression of both classes of proteins is reduced, PLP expression is most severely affected.  相似文献   

18.
The relative proportions of four myelin basic proteins (preL, L, preS,S) were determined in myelin subfractions prepared from the forebrains of quaking and littermate control mice. The distribution pattern of each protein was similar in both mutant and control fractions. The S component was the only basic protein present in low amounts in myelin from the mutant.  相似文献   

19.
Alpha Hydroxylation of lignoceric acid (n-tetracosanoic acid) to cerebronic acid (2-hydroxylignoceric acid) by postnuclear preparations of brains from developing rat, mouse, and several neurological mouse mutants was studied. The preparations of brains from jimpy and myelin synthesis deficiency (msd) mice were found to synthesize cerebronic acid at less than 10 percent of their control rates, and those from quaking and dilute-lethal approximately 30 and 50 percent, respectively. The apparent low rate of in vitro hydroxylation by brains of the mutant mice appeared to be due to decreased synthesis rather than increased oxidation of cerebronic acid. Mixing experiments eliminated the possibility of an inhibitor in the mutant or an activator in normal animals. The preparations of brains from wabbler-lethal, ducky, and weaver mice showed normal activity. The developmental pattern of the hydroxylase activity was examined in quaking, jimpy, and their control mice. In normal brains the hydroxylase activity was low in the immediate postnatal period, increased sharply between 10 and 20 days after birth, and fell to a low level following maturation of the brain. The hydroxylase activity in quaking mice changed similarly during brain development but at a much reduced level. The brains of jimpy mice had barely detectable hydroxylase activity which changed little with age and reached a peak at about 15 days postpartum. The subnormal hydroxylase activity in brains of quaking mice and the near absence in brains of jimpy and msd mice correlate with the observations that myelin deficiency is more severe in jimpy and msd than in quaking. These results suggest a close association of the synthesis of cerebronic acid with the synthesis of the characteristic myelin lipid that is cerebroside (N-acyl sphingosine beta-D-galactoside).  相似文献   

20.
Ganglioside compositions in the brains of the mutant mice quaking and shiverer were compared with those of their littermate controls, C57BL/6 and C3HSWV. Neither ganglioside content nor composition of shiverer brains differed from those of the control brains. Change in the ganglioside composition of the mutant brain from that of the control was observed only in the quaking mutant brain, in which monosialoganglioside GM1 was significantly reduced and GM4 was completely absent. The structures of the gangliosides were determined by negative ion fast atom bombardment mass spectrometry, and the GM3 and GM4 gangliosides in the quaking brain were found to be altered in regard to their long-chain base and fatty acid compositions when compared to the normal C57BL/6 brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号