首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
A1 is a core protein of the eukaryotic heterogeneous nuclear ribonucleoprotein complex and is under study here as a prototype single-stranded nucleic acid-binding protein. A1 is a two-domain protein, NH2-terminal and COOH-terminal, with highly conserved primary structure among vertebrate homologues sequenced to date. It is well documented that the NH2-terminal domain has single-stranded DNA and RNA binding activity. We prepared a proteolytic fragment of rat A1 representing the COOH-terminal one-third of the intact protein, the region previously termed COOH-terminal domain. This purified fragment of 133 amino acids binds to DNA and also binds tightly to the fluorescent reporter poly(ethenoadenylate), which is used to access binding parameters. In solution with 0.41 M NaCl, the equilibrium constant is similar to that observed with A1 itself, and binding is cooperative. The purified COOH-terminal fragment can be photochemically cross-linked to bound nucleic acid, confirming that COOH-terminal fragment residues are in close contact with the polynucleotide lattice. These binding results with isolated COOH-terminal fragment indicate that the COOH-terminal domain in intact A1 can contribute directly to binding properties. Contact between both COOH-terminal domain and NH2-terminal domain residues in an intact A1:poly(8-azidoadenylate) complex was confirmed by photochemical cross-linking.  相似文献   

2.
Characterization of the domain structure of DNA polymerase beta is reported. Large scale overproduction of the rat protein in Escherichia coli was achieved, and the purified recombinant protein was verified by sequencing tryptic peptides. This protein is both a single-stranded DNA binding protein and a DNA polymerase consisting of one polypeptide chain of 334 amino acids. As revealed by controlled proteolysis experiments, the protein is organized in two relatively protease-resistant segments linked by a short protease-sensitive region. One of these protease-resistant segments represents the NH2-terminal 20% of the protein. This NH2-terminal domain (of about 75 residues) has strong affinity for single-stranded nucleic acids. The other protease-resistant segment, representing the COOH-terminal domain of approximately 250 residues, does not bind to nucleic acids. Neither domain, tested as purified proteins, has substantial DNA polymerase activity. The results suggest that the NH2-terminal domain is principally responsible for the template binding activity of the intact protein.  相似文献   

3.
The lymphocyte-specific phosphoprotein LSP1 associates with the cytoplasmic face of the plasma membrane and with the cytoskeleton. Mouse LSP1 protein contains 330 amino acids and contains an NH2-terminal acidic domain of approximately 177 amino acids. The COOH-terminal half of the LSP1 protein is rich in basic residues. In this paper we show that LSP1 protein which is immunoprecipitated with anti-LSP1 antibodies from NP-40-soluble lysates of the mouse B-lymphoma cell line BAL17 is associated with actin. In vitro binding experiments using recombinant LSP1 (rLSP1) protein and rabbit skeletal muscle actin show that LSP1 binds along the sides of F-actin but does not bind to G-actin. rLSP1 does not alter the initial polymerization kinetics of actin. The highly conserved COOH-terminal basic domains of mouse and human LSP1 share a significant homology with the 20-kD COOH-terminal F-actin binding fragment of caldesmon. A truncated rLSP1 protein containing the entire COOH-terminal basic domain from residue 179 to 330, but not the NH2-terminal acidic domain binds to F-actin at least as well as rLSP1. When LSP1/CAT fusion proteins are expressed in a LSP1-negative T-lymphoma cell line, only fusion proteins containing the basic COOH-terminal domain associate with the NP-40-insoluble cytoskeleton. These data show that LSP1 binds F-actin through its COOH-terminal basic domain and strongly suggest that LSP1 interacts with the cytoskeleton by direct binding to F-actin. We propose that LSP1 plays a role in mediating cytoskeleton driven responses in lymphocytes such as receptor capping, cell motility, or cell-cell interactions.  相似文献   

4.
5.
Chimeric molecules between human lipoprotein lipase (LPL) and rat hepatic lipase (HL) were used to identify structural elements responsible for functional differences. Based on the close sequence homology with pancreatic lipase, both LPL and HL are believed to have a two-domain structure composed of an amino-terminal (NH2-terminal) domain containing the catalytic Ser-His-Asp triad and a smaller carboxyl-terminal (COOH-terminal) domain. Experiments with chimeric lipases containing the HL NH2-terminal domain and the LPL COOH-terminal domain (HL/LPL) or the reverse chimera (LPL/HL) showed that the NH2-terminal domain is responsible for the catalytic efficiency (Vmax/Km) of these enzymes. Furthermore, it was demonstrated that the stimulation of LPL activity by apolipoprotein C-II and the inhibition of activity by 1 M NaCl originate in structural features within the NH2-terminal domain. HL and LPL bind to vascular endothelium, presumably by interaction with cell surface heparan sulfate proteoglycans. However, the two enzymes differ significantly in their heparin affinity. Experiments with the chimeric lipases indicated that heparin binding avidity was primarily associated with the COOH-terminal domain. Specifically, both HL and the LPL/HL chimera were eluted from immobilized heparin by 0.75 M NaCl, whereas 1.1 M NaCl was required to elute LPL and the HL/LPL chimera. Finally, HL is more active than LPL in the hydrolysis of phospholipid substrates. However, the ratio of phospholipase to neutral lipase activity in both chimeric lipases was enhanced by the presence of the heterologous COOH-terminal domain, demonstrating that this domain strongly influences substrate specificity. The NH2-terminal domain thus controls the kinetic parameters of these lipases, whereas the COOH-terminal domain modulates substrate specificity and heparin binding.  相似文献   

6.
The DNA and protein sequences of single-stranded DNA binding proteins (SSBs) encoded by the plP71a, plP231a, and R64 conjugative plasmids have been determined and compared to Escherichia coli SSB and the SSB encoded by F-plasmid. Although the amino acid sequences of all of these proteins are highly conserved within the NH2-terminal two-thirds of the protein, they diverge in the COOH-terminal third region. A number of amino acid residues which have previously been implicated as being either directly or indirectly involved in DNA binding are conserved in all of these SSBs. These residues include Trp-40, Trp-54, Trp-88, His-55, and Phe-60. On the basis of these sequence comparisons and DNA binding studies, a role for Tyr-70 in DNA binding is suggested for the first time. Although the COOH-terminal third of these proteins diverges more than their NH2-terminal regions, the COOH-terminal five amino acid residues of all five of these proteins are identical. In addition, all of these proteins share the characteristic property of having a protease resistant, NH2-terminal core and an acidic COOH-terminal region. Despite the high degree of sequence homology among the plasmid SSB proteins, the F-plasmid SSB appears unique in that it was the only SSB tested that neither bound well to poly(dA) nor was able to stimulate DNA polymerase III holoenzyme elongation rates. Poly [d(A-T)] melting studies suggest that at least three of the plasmid encoded SSBs are better helix-destabilizing proteins than is the E. coli SSB protein.  相似文献   

7.
The Z-line represents a critical link between the transverse tubule network and cytoskeleton of cardiac cells with a role in anchoring structural proteins, ion channels, and signaling molecules. Protein kinase C-epsilon (PKC-epsilon) regulates cardiac excitability, cardioprotection, and growth, possibly as a consequence of translocation to the Z-line/T tubule region. To investigate the mechanism of PKC-epsilon translocation, fragments of its NH2-terminal 144-amino acid variable domain, epsilonV1, were fused with green fluorescent protein and evaluated by quantitative Fourier image analysis of decorated myocytes. Deletion of 23 amino acids from the NH2-terminus of epsilonV1, including an EAVSLKPT motif important for binding to a receptor for activated C kinase (RACK2), reduced but did not abolish Z-line binding. Further deletions of up to 84 amino acids from the NH2-terminus of epsilonV1 also did not prevent Z-line decoration. However, deletions of residues 85-144 from the COOH-terminus strongly reduced Z-line binding. COOH-terminal deletions caused 2.5-fold greater loss of binding energy (deltadeltaG) than did NH2-terminal deletions. Synthetic peptides derived from these regions modulated epsilonV1 binding and cardiac myocyte function, but also revealed considerable heterogeneity within populations of adult cardiac myocytes. The COOH-terminal subdomain important for Z-line anchoring maps to a surface in the epsilonV1 crystal structure that complements the eight-amino acid RACK2 binding site and two previously identified membrane docking motifs. PKC-epsilon anchoring at the cardiac Z-line/T tubule appears to rely on multiple points of contact probably involving protein-lipid and protein-protein interactions.  相似文献   

8.
The UP1 single-stranded nucleic acid binding protein from calf thymus (Herrick, G. & Alberts, B.M. (1976) J. Biol. Chem. 251, 2124-2132) has recently been shown to be a proteolytic fragment derived from the A1 heterogeneous nuclear ribonucleoprotein (hnRNP) (Pandolfo et al. (1985) Nucleic Acids Res. 13, 6577-6590). The NH2-terminus of the 22,162 dalton UP1 protein appears to be blocked, which suggests that UP1 represents the NH2-terminal two thirds of this 32,000 dalton hnRNP protein. The complete amino acid sequence for UP1 was derived from automated sequencing of peptides that were purified by HPLC from digests with trypsin, chymotrypsin, Staphylococcus aureus protease, endoproteinase Lys-C, and cyanogen bromide. Trichloroacetic acid precipitation followed by enzymatic digestion in 2 M urea proved to be the best approach for generating UP1 peptides. By carboxymethylating after, rather than before, digestion it was possible to avoid problems associated with the insolubility of the carboxymethylated UP1. All of the resulting peptides in amounts varying from 2 to 15 nmol were coupled to aminopolystyrene prior to solid-phase sequencing. Using these methods, no difficulties were encountered in assigning glutamic acid residues or in completely sequencing peptides that contained up to 25-30 residues. The relative ease with which the UP1 protein was sequenced, requiring only about a year to complete, and the comparatively modest amount of protein required, less than 5 mg, attests to the usefulness of water soluble carbodiimide coupling and solid-phase sequencing for determining the primary structures of proteins. In addition to serving as a basis for determining structural relationships among various mammalian single-stranded nucleic acid binding proteins, the amino acid sequence of UP1 reveals that the A1 hnRNP protein contains a region of internal sequence homology that apparently corresponds to two independent nucleic acid binding sites.  相似文献   

9.
Functional characterization of the 180-kD ribosome receptor in vivo   总被引:8,自引:2,他引:6       下载免费PDF全文
A cDNA encoding the 180-kD canine ribosome receptor (RRp) was cloned and sequenced. The deduced primary structure indicates three distinct domains: an NH2-terminal stretch of 28 uncharged amino acids representing the membrane anchor, a basic region (pI = 10.74) comprising the remainder of the NH2-terminal half and an acidic COOH- terminal half (pI = 4.99). The most striking feature of the amino acid sequence is a 10-amino acid consensus motif, NQGKKAEGAP, repeated 54 times in tandem without interruption in the NH2-terminal positively charged region. We postulate that this repeated sequence represents a ribosome binding domain which mediates the interaction between the ribosome and the ER membrane. To substantiate this hypothesis, recombinant full-length ribosome receptor and two truncated versions of this protein, one lacking the potential ribosome binding domain, and one lacking the COOH terminus, were expressed in Saccharomyces cerevisiae. Morphological and biochemical analyses showed all proteins were targeted to, and oriented correctly in the ER membrane. In vitro ribosome binding assays demonstrated that yeast microsomes containing the full-length canine receptor or one lacking the COOH-terminal domain were able to bind two to four times as many human ribosomes as control membranes lacking a recombinant protein or microsomes containing a receptor lacking the NH2-terminal basic domain. Electron micrographs of these cells revealed that the expression of all receptor constructs led to a proliferation of perinuclear ER membranes known as "karmellae." Strikingly, in those strains which expressed cDNAs encoding a receptor containing the putative ribosome binding domain, the induced ER membranes (examined in situ) were richly studded with ribosomes. In contrast, karmellae resulting from the expression of receptor cDNA lacking the putative ribosome binding domain were uniformly smooth and free of ribosomes. Cell fractionation and biochemical analyses corroborated the morphological characterization. Taken together these data provide further evidence that RRp functions as a ribosome receptor in vitro, provide new evidence indicating its functionality in vivo, and in both cases indicate that the NH2-terminal basic domain is essential for ribosome binding.  相似文献   

10.
A key feature to the dimeric structure for the GrpE heat shock protein is the pair of long helices at the NH(2)-terminal end followed by a presumable extended segment of about 30 amino acids from each monomer. We have constructed a GrpE deletion mutant protein that contains only the unique tail portion (GrpE1-89) and another that is missing this region (GrpE88-197). Circular dichroism analysis shows that the GrpE1-89 mutant still contains one-third percent alpha-helical secondary structure. Using an assay that measures bound peptide to DnaK we show that the GrpE1-89 is able to lower the amount of bound peptide, whereas GrpE88-197 has no effect. Additionally, when the same peptide binding assay is carried out with the COOH-terminal domain of DnaK, the full-length GrpE and the two GrpE deletion mutants show little to no effect on peptide release. Furthermore, the GrpE88-197 mutant is able to enhance the off-rate of nucleotide from DnaK and the 1-89 mutant has no effect on the nucleotide release. Similar results of nucleotide release are observed with the NH(2)-terminal ATPase domain mutant of DnaK. The results presented show directly that there is interaction between the GrpE protein's "tail" region and the substrate COOH-terminal peptide binding domain of DnaK, although the effect is only fully manifest with an intact full-length DnaK molecule.  相似文献   

11.
Evidence is presented for rapid, limited proteolysis of protein Z by alpha-thrombin. This alpha-thrombin-catalyzed proteolysis of protein Z occurred at a single peptide linkage, between Arg-365 and Gly-366, located in the COOH-terminal portion. The resulting NH2-terminal large fragment (PZt) and the COOH-terminal peptide (C-peptide) were isolated and chemically characterized. The C-peptide consisted of 31 amino acid residues including one galactosamine-type Thr residue and was assigned to the position from Gly-366 to the COOH-terminal residue of Val-396 in protein Z. The NH2-terminal large fragment, PZt, constituted the remainder of protein Z. The abilities to bind calcium of intact protein Z, PZt, and the derivative of protein Z devoid of the NH2-terminal gamma-carboxyglutamic acid (Gla) domain (Gla-domainless), prepared with the known chymotrypsin treatment, were examined by equilibrium dialysis. The results indicated that intact protein Z and PZt contain four calcium binding sites with dissociation constants of 0.1 mM. Moreover, the Scatchard plot analysis showed positive cooperativity, suggesting the presence of at least two initial sites for calcium binding. In contrast, the Gla-domainless protein Z had no calcium binding site, indicating that the domain of protein Z functional for calcium binding occurs within the NH2-terminal Gla domain. This differed from factor X, factor IX, protein S, and protein C, all of which contain one or two calcium binding site(s) independent on their Gla-domains.  相似文献   

12.
SM22 is a 201-amino acid actin-binding protein expressed at high levels in smooth muscle cells. It has structural homology to calponin, but how SM22 binds to actin remains unknown. We performed site-directed mutagenesis to generate a series of NH(2)-terminal histidine (His)-tagged mutants of human SM22 in Escherichia coli and used these to analyze the functional importance of potential actin binding domains. Purified full-length recombinant SM22 bound to actin in vitro, as demonstrated by cosedimentation assay. Binding did not vary with calcium concentration. The COOH-terminal domain of SM22 is required for actin affinity, because COOH terminally truncated mutants [SM22-(1-186) and SM22-(1-166)] exhibited markedly reduced cosedimentation with actin, and no actin binding of SM22-(1-151) could be detected. Internal deletion of a putative actin binding site (154-KKAQEHKR-161) partially prevented actin binding, as did point mutation to neutralize either or both pairs of positively charged residues at the ends of this region (KK154LL and/or KR160LL). Internal deletion of amino acids 170-180 or 170-186 also partially or almost completely inhibited actin cosedimentation, respectively. Of the three consensus protein kinase C or casein kinase II phosphorylation sites in SM22, only Ser-181 was readily phosphorylated by protein kinase C in vitro, and such phosphorylation greatly decreased actin binding. Substitution of Ser-181 to aspartic acid (to mimic serine phosphorylation) also reduced actin binding. Immunostains of transiently transfected airway myocytes revealed that full-length NH(2)-terminal FLAG-tagged SM22 colocalizes with actin filaments, whereas FLAG-SM22-(1-151) does not. These data confirm that SM22 binds to actin in vitro and in vivo and, for the first time, demonstrate that multiple regions within the COOH-terminal domain are required for full actin affinity.  相似文献   

13.
Linker insertion mutagenesis was employed to create structural disruptions of the lethal factor (LF) protein of anthrax toxin to map functional domains. A dodecameric linker was inserted at 17 blunt end restriction enzyme sites throughout the gene. Paired MluI restriction sites within the linker allowed the inserts to be reduced from four to two amino acids. Shuttle vectors containing the mutated genes were transformed into the avirulent Bacillus anthracis UM23C1-1 for expression and secretion of the gene products. Mutations at five sites in the central one-third of the sequence made the protein unstable, and purified protein could not be obtained. Mutated LF proteins with insertions at the other sites were purified and assessed for toxic activity in a macrophage lysis assay and for their ability to bind to the protective antigen (PA) component of anthrax toxin, the receptor binding moiety. Most insertions located in the NH2-terminal one-third of the LF protein eliminated both toxicity and binding to PA, while all four insertions in the COOH-terminal one-third of the protein eliminated toxicity without affecting binding to PA. These data support the hypothesis that the NH2-terminal domain contains the structures required for binding to PA and the COOH-terminal domain contains the putative catalytic domain of LF.  相似文献   

14.
BPAG1 (bullous pemphigoid antigen 1) was originally identified as a 230-kDa hemidesmosomal protein and belongs to the plakin family, because it consists of a plakin domain, a coiled-coil rod domain and a COOH-terminal intermediate filament binding domain. To date, alternatively spliced products of BPAG1, BPAG1e, and BPAG1n are known. BPAG1e is expressed in epithelial tissues and localized to hemidesmosomes, on the other hand, BPAG1n is expressed in neural tissues and muscles and has an actin binding domain at the NH(2)-terminal of BPAG1e. BPAG1 is also known as a gene responsible for Dystonia musculorum (dt) neurodegeneration syndrome of the mouse. Another plakin family protein MACF (microtubule actin cross-linking factor) has also an actin binding domain and the plakin domain at the NH(2)-terminal. However, in contrast to its high homology with BPAG1 at the NH(2)-terminal, the COOH-terminal structure of MACF, including a microtubule binding domain, resembles dystrophin rather than plakins. Here, we investigated RNAs and proteins expressed from the BPAG1 locus and suggest novel alternative splicing variants, which include one consisting of the COOH-terminal domain structure homologous to MACF. The results indicate that BPAG1 has three kinds of cytoskeletal binding domains and seems to play an important role in linking the different types of cytoskeletons.  相似文献   

15.
The Flp and Cre recombinases are members of the integrase family of tyrosine recombinases. Each protein consists of a 13 kDa NH(2)-terminal domain and a larger COOH-terminal domain that contains the active site of the enzyme. The COOH-terminal domain also contains the major determinants for the binding specificity of the recombinase to its cognate DNA binding site. All family members cleave the DNA by the attachment of a conserved nucleophilic tyrosine residue to the 3'-phosphate group at the sites of cleavage. In order to gain further insights into the determinants of the binding specificity and modes of cleavage of Flp and Cre, we have made chimeric proteins in which we have fused the NH(2)-terminal domain of Flp to the COOH-terminal domain of Cre ("Fre") and the NH(2)-terminal domain of Cre to the COOH-terminal domain of Flp ("Clp"). These chimeras have novel binding specificities in that they bind strongly to hybrid sites containing elements from both the Flp and Cre DNA targets but poorly to the native target sites.In this study we have taken advantage of the unique binding specificities of Fre and Clp to examine the mode of cleavage by Cre, Flp, Fre and Clp. We find that the COOH-terminal domain of the recombinases determines their mode of cleavage. Thus Flp and Clp cleave in trans whereas Cre and Fre cleave in cis. These results agree with the studies of Flp and with the cocrystal structure of Cre bound to its DNA target site. They disagree with our previous findings that Cre could carry out trans cleavage. We discuss the variations in the experimental approaches in order to reconcile the different results.  相似文献   

16.
A yeast gene for a methionine aminopeptidase, one of the central enzymes in protein synthesis, was cloned and sequenced. The DNA sequence encodes a precursor protein containing 387 amino acid residues. The mature protein, whose NH2-terminal sequence was confirmed by Edman degradation, consists of 377 amino acids. The function of the 10-residue sequence at the NH2 terminus, containing 1 serine and 6 threonine residues, remains to be established. In contrast to the structure of the prokaryotic enzyme, the yeast methionine aminopeptidase consists of two functional domains: a unique NH2-terminal domain containing two motifs resembling zinc fingers, which may allow the protein to interact with ribosomes, and a catalytic COOH-terminal domain resembling other prokaryotic methionine aminopeptidases. Furthermore, unlike the case for the prokaryotic gene, the deletion of the yeast MAP1 gene is not lethal, suggesting for the first time that alternative NH2-terminal processing pathway(s) exist for cleaving methionine from nascent polypeptide chains in eukaryotic cells.  相似文献   

17.
A common feature shared by myosin-binding proteins from a wide variety of species is the presence of a variable number of related internal motifs homologous to either the Ig C2 or the fibronectin (Fn) type III repeats. Despite interest in the potential function of these motifs, no group has clearly demonstrated a function for these sequences in muscle, either intra- or extracellularly. We have completed the nucleotide sequence of the fast type isoform of MyBP-C (C protein) from chicken skeletal muscle. The deduced amino acid sequence reveals seven Ig C2 sets and three Fn type III motifs in MyBP-C. alpha-chymotryptic digestion of purified MyBP-C gives rise to four peptides. NH2-terminal sequencing of these peptides allowed us to map the position of each along the primary structure of the protein. The 28-kD peptide contains the NH2-terminal sequence of MyBP-C, including the first C2 repeat. It is followed by two internal peptides, one of 5 kD containing exclusively spacer sequences between the first and second C2 motifs, and a 95-kD fragment containing five C2 domains and three fibronectin type III motifs. The C-terminal sequence of MyBP-C is present in a 14- kD peptide which contains only the last C2 repeat. We examined the binding properties of these fragments to reconstituted (synthetic) myosin filaments. Only the COOH-terminal 14-kD peptide is capable of binding myosin with high affinity. The NH2-terminal 28-kD fragment has no myosin-binding, while the long internal 100-kD peptide shows very weak binding to myosin. We have expressed and purified the 14-kD peptide in Escherichia coli. The recombinant protein exhibits saturable binding to myosin with an affinity comparable to that of the 14-kD fragment obtained by proteolytic digestion (1/2 max binding at approximately 0.5 microM). These results indicate that the binding to myosin filaments is mainly restricted to the last 102 amino acids of MyBP-C. The remainder of the molecule (1,032 amino acids) could interact with titin, MyBP-H (H protein) or thin filament components. A comparison of the highly conserved Ig C2 domains present at the COOH- terminus of five MyBPs thus far sequenced (human slow and fast MyBP-C, human and chicken MyBP-H, and chicken MyBP-C) was used to identify residues unique to these myosin-binding Ig C2 repeats.  相似文献   

18.
The complete amino acid sequence of a calcium-binding "proline-rich phosphoprotein," named Protein A, from human saliva was determined by automated and manual Edman degradation of peptides obtained by enzymatic and chemical cleavage of the intact protein. The NH2-terminal pyrrolidone carboxylic acid was identified by means of NMR. The protein consists of 106 amino acids, including 24 residues of proline. The NH2-terminal 32 residues contain 13 of the 15 negatively charged residues including 2 phosphoserines, but only 1 proline. In spite of a high concentration of proline in the COOH-terminal part of the molecule, the longest oligoproline sequence is tetraproline. The protein contains a number of repeated sequences and there are also several sequences of 3 or 4 residues identical with known sequences of collagen, but the characteristic occurrence of glycine in every third position in collagen is not found in salivary Protein A.  相似文献   

19.
Calcium binding protein 40 (CBP40) is a Ca(2+)-binding protein abundant in the plasmodia of Physarum polycephalum. CBP40 consists four EF-hand domains in the COOH-terminal half and a putative alpha-helix domain in the NH(2)-terminal half. We expressed recombinant proteins of CBP40 in Escherichia coli to investigate its Ca(2+)-binding properties. Recombinant proteins of CBP40 bound 4 mol of Ca(2+) with much higher affinity (pCa(1/2) = 6.5) than that of calmodulin. When residues 1-196 of the alpha-helix domain were deleted, the affinity for Ca(2+) decreased to pCa(1/2) = 4.6. A chimeric calmodulin was generated by conjugating the alpha-helix domain of CBP40 with calmodulin. The affinity of Ca(2+) for the chimeric calmodulin was higher than that for calmodulin, suggesting that the alpha-helix domain is responsible for the high affinity of CBP40 for Ca(2+). CBP40 forms large aggregates reversibly in a Ca(2+)-dependent manner. A mutant protein with a deletion of NH(2)-terminal 32 residues, however, could not aggregate, indicating the importance of these residues for the aggregation. The aggregation occurs above micromolar levels of Ca(2+) concentration, so it may only occur when CBP40 is secreted out of the plasmodial cells.  相似文献   

20.
Secreted proteins are processed from a nascent form that contains an NH2-terminal signal peptide. During processing, the latter is cleaved by a specific NH2-terminal signal peptidase. The nascent form of phosphatidylinositol glycan (PI-G) tailed proteins contain both an NH2- and a COOH-terminal signal peptide. The two signal peptides have much in common, such as size and hydrophobicity. The COOH-terminal peptide is also cleaved during processing. We propose that the amino acid in a nascent protein that ultimately combines with the PI-G moiety be designated the omega site. Amino acids adjacent and COOH-terminal to the omega site would then be omega + 1, omega + 2, etc. In previous studies, we showed that allowable substitutions at the omega site of an engineered form of placental alkaline phosphatase (miniPLAP) are limited to 6 small amino acids. In the present study, mutations were made at the omega + 1 and omega + 2 sites. At the omega + 1 site, processing to varying degrees was observed with 8 of the 9 amino acids substituted for alanine, the normal constituent. Only the proline mutant showed no processing. By contrast, the only substituents permitted at the omega + 2 site were glycine and alanine, with only trace activity observed with serine and cysteine. Thus, just as there is a -1, -3 rule for predicting cleavage by NH2-terminal signal peptidase, there appears to be a comparable omega, omega + 2 rule for predicting cleavage/PI-G addition by COOH-terminal signal transamidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号