首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of carbonic anhydrase (CA) on time courses of photosynthetic14C incorporation in the presence of 14CO2 or NaH14CO3 was studiedwith cells of Chlamydomonas reinhardtii which had been grownunder ordinary air (low-CO2 cells) or air enriched with 4% CO2(high-CO2 cells). Experimental data obtained at 20°C andpH 8.0 suggested that the major form of inorganic carbon utilizedby high-CO2 cells was CO2, while that utilized by low-CO2 cellswas HCO3. The cell suspension showed CA activity which was comparableto that observed in the sonicate of cells. Both activities werehigher in low-CO2 cells than in high-CO2 cells. The mechanism by which HCO3 is utilized by low-CO2 cellsof C. reinhardtii is discussed. 3Present address: Department of Biology, Faculty of Science,University of Niigata, Niigata 950-21, Japan. (Received August 4, 1982; Accepted January 19, 1983)  相似文献   

2.
Rates of CO2 and HCC3 fixation in cells of various Chlorellaspecies in suspension were compared from the amounts of 14Cfixed during the 5 s after the injection of a solution containingonly 14CO2 or H14CO3. Results indicated that irrespectiveof the CO2 concentration during growth, Chlorella vulgaris 11h and C. miniata mainly utilized CO2, whereas C. vulgaris C-3,C. sp. K. and C. ellipsoidea took up HCO3 in additionto CO2. Cells of C. pyrenoidosa that had been grown with 1.5%CO2 (high-CO2 cells) mainly utilized CO2, whereas those grownwith air (low-CO2 cells) utilized HCO3 in addition toCO2. Cells that utilized HCO3 had carbonic anhydrase(CA) on their surfaces. The effects of Diamox and CA on the rates of CO2 and HCO3fixation are in accord with the inference that HCO3 wasutilized after conversion to CO2 via the CA located on the cellsurface. CA was found in both the soluble and insoluble fractions;the CA on the cell surface was insoluble. Independent of the modes of utilization, the apparent Km (NaHCO3)for photosynthesis was much lower in low-CO2 cells than in high-CO2ones. The fact that the CA in the soluble fraction in C. vulgarisC-3 was closely correlated with the Km(NaHCO3) indicates thatsoluble CA lowers the Km. 1 Dedicated to the late Professor Joji Ashida, one of the foundersand first president of the Japanese Society of Plant Physiologists. 4 On leave from Research and Production Laboratory of Algology,Bulgarian Academy of Sciences, Sofia. (Received September 14, 1982; Accepted March 1, 1983)  相似文献   

3.
In cells of cyanobacterium Anabaena variabilis grown under ordinaryair (low-CO2 cells), the transport of both CO2 and HCO3was significantly enhanced by Na+. This effect was pronouncedas the external pH increased. When low-CO2 cells were treatedwith an inhibitor of carbonic anhydrase (CA), only CO2 transportbut not HCO3 transport, was inhibited. The initial rateof photosynthetic carbon fixation as a function of the concentrationof internal inorganic carbon (IC) was practically the same irrespectiveof whether CO2 or HCO3 was externally supplied. Theseresults suggest that IC is actively transported through theplasma membrane in a form of HCO3 probably by some transporterand that the transmembrane Na+ gradient is involved in thisIC transport system. Free CO2 may be hydrated by CA to HCO3and then transported to the cells by this transporter. On the other hand, CO2 is actively taken up by cells grown withair containing 5% CO2 (high-CO2 cells) though the enhancingeffect of Na+ was much smaller in high- CO2 cells than in low-CO2cells. The initial rate of fixation as a function of internal IC concentrationindicated that the rate of the carboxylation reaction of accumulatedIC is higher in I0W-CO2 cells than in high-CO2 cells. The studieswith ethoxyzolamide indicated that even in low-CO2 cells, CAdoes not function inside Anabaena cells. These results suggestthat inside the low-CO2 cells of Anabaena, some mediator(s)facilitates the transport of IC to RuBPCase. (Received January 23, 1987; Accepted April 24, 1987)  相似文献   

4.
Time courses of photosynthetic 14CO2 fixation and its simulationare presented for Chlorella cells grown under low CO2 concentration(low-CO2 cells) and subsequently exposed to 0.2 mM NaH14CO3or 130 ppm 14CO2 in the presence or absence of carbonic anhydrase(CA) in the suspending medium. It was shown that Chlorella cells utilized only free CO2 whenNaHCO3 was given in the presence or absence of CA, or when CO2was bubbled in the absence of CA. However, the present simulationindicated that both CO3 and HCO3 were utilized when CO2was given in the presence of CA. Based on these results, weconcluded that 1) Chlorella cells absorb only free CO2 and 2)this gas is provided to algal cells in two ways, i.e., by directand indirect CO2 supply. Usually, the dissolved CO2 is directlyutilized by the algal cells (direct supply of CO2). However,when the concentration of dissolved CO2 is extremely low andwhen there is CA, CO2 reconverted from HCO3 is also utilizedby Chlorella cells (indirect supply of CO2). The utilizationof HCO3 indicated by the above simulation was explainedby the indirect supply of CO2. We further assumed that the indirectsupply of CO2 to ribulose 1,5-bisphosphate carboxylase occursmainly in the chloroplasts of low-CO2 cells containing highCA. Thus, under low CO2 concentrations, low-CO2 cells can carryout more efficient CO2 fixation than high-CO2 cells, resultingin the lower apparent Km(CO2). 3Department of Biology, Faculty of Science, Niigata University,Niigata, Japan. (Received April 2, 1980; )  相似文献   

5.
The ratio of the extracellular to the intracellular activityof carbonic anhydrase (CA) in cells of Chlorella ellipsoideaC-27, adapted to low levels of CO2 for 24 h (low-CO2 cells),was about one to one. Treatment of intact cells with PronaseP inactivated about one-half of the extracellular CA activitywithout affecting photosynthetic activity. The CA activity incell homogenates and in cell-wall ghosts liberated during celldivision was completely inactivated by the same treatment. Pretreatmentwith Glycosidase mix, Chitosanase and Macerozyme enhanced theinactivation of the CA activity in intact cells. These resultssuggest that extracellular CA is evenly distributed throughoutthe whole cell-wall region. The apparent K1/2 for dissolved inorganic carbon (DIC) in low-CO2cells doubled when extracellular CA was inactivated by treatmentwith Pronase P, but the K1/2 obtained was still one-half ofthat in high-CO2 cells. Photosynthetic 14CO2-fixation in low-CO2cells was enhanced by acetazolamide, whereas H14CO3-fixationwas suppressed. The results suggest that CO2 is a dominant substrateutilized by cells and that HCO3 is utilized after conversionto CO2. The present results show that both intracellular andextracellular CA contribute to the increase in affinity forDIC during photosynthesis in low-CO2 cells of Chlorella ellipsoideaC-27. (Received May 7, 1990; Accepted July 18, 1990)  相似文献   

6.
The affinity for NaHCO3 (CO2) in photosynthesis of Anabaenavariabilis ATCC 29413 was much higher in the cells grown underordinary air (low-CO2 cells) than in those grown in air enrichedwith 2–4% CO2 (high-CO2 cells) (pH 8.0, 25?C). Ethoxyzolamide(50 µM) increased the Km(NaHCO3 in low-CO2 cells aboutnine times (from 14.3 to 125), while the maximum rate of photosynthesisdecreased about 20%. When high-CO2 cells were transferred tolow-CO2 conditions, carbonic anhydrase (CA) activity increased,while Km(NaHCO3) in photosynthesis decreased from 140 to 30µM within about 5 h. The addition of CA to the suspensionof both high- and low-CO2 cells enhanced the rates of photosyntheticO2 evolution under CO2-limiting conditions. The rate of 14CO2fixation was much faster than that of H14CO3 fixation.The former reaction was greatly suppressed, while the latterwas enhanced by the addition of CA. These results indicate thatthe active species of inorganic carbon utilized for photosynthesiswas free CO2 irrespective of the CO2 concentration given duringgrowth. It is suggested that CA plays an active role in increasingthe affinity for CO2 in photosynthesis of low-CO2 cells of thisblue-green alga. (Received January 24, 1984; Accepted October 22, 1984)  相似文献   

7.
In Dunaliella tertiolecta, D. bioculata and D. viridis the activitiesof phosphoenolpyruvate carboxylase and carbonic anhydrase werehigher in the cells grown in ordinary air (low-CO2 cells) thanin those grown in air enriched with 1–5% CO2 (high-CO2cells), whereas in Porphyridium cruentum R-1 there was no differencein phosphoenolpyruvate carboxylase activity between these twotypes of cells. Apparent Km(NaHCO3) values for photosynthesisin low-CO2 cells of all species tested were smaller than thosein high-CO2 cells. Most of the 14C was incorporated into 3-phosphoglycerate,sugar mono- and di-phosphates during the initial periods ofphotosynthetic NaH14CO3 indicating that both types of cellsin D. tertiolecta are C3 plants. (Received May 27, 1985; Accepted June 25, 1985)  相似文献   

8.
Intracellular accumulation of inorganic carbon (Ci) and itsfixation in photosynthesis were investigated using siliconeoil layer filtering centrifugation technique with the cellsof Chlorella vulgaris 11h grown under ordinary air. Both CO2and HCO3 were transported into the cells from the reactionmedium and accumulated in the cells, but the rate of transportwas much faster for the former than the latter. 14C-fixationfrom the total transported Ci was much more efficient when CO2was added in the external medium than when HCO3 was added.This indicates that CO2 and HCO3 were not converted tothe common compound in the cells during the initial period ofphotosynthesis. Accumulation of Ci into the cells was much lesssusceptible to low temperature than its fixation. Accumulationof Ci was also observed in the dark. Ethoxyzolamide, an inhibitorof carbonic anhydrase (CA), inhibited the fixation of accumulatedCO2 in the cells, suggesting that CA enhanced the supply ofCO2 to the reaction site of ribulose bisphosphate carboxylasein the stroma. Mechanism for transport and fixation of Ci duringphotosynthesis in low-CO2 cells of C. vulgaris 1lh was proposedfrom these results. (Received March 19, 1986; Accepted June 26, 1986)  相似文献   

9.
Mass spectrometry has been used to investigate the transportof CO2 in the freshwater diatom Navicula pelliculosa. The timecourseof CO2 formation in the dark after addition of 100 mmol m–3dissolved inorganic carbon (DIC) to cell suspensions showedthat no external carbonic anhydrase (CA) was present in thesecells. Upon illumination, cells pre-incubated at pH 75 with100 mmol m–3 DIC, removed almost all free CO2 from themedium at an initial rate of 285 µmol CO2 mg–1Chl h–1. Equilibrium between HCO3 and CO2 in themedium occurred rapidly upon addition of bovine CA, showingthat CO2 depletion resulted from a selective uptake of CO2 ratherthan an uptake of all inorganic carbon species. However, photosyntheticO2 evolution rate remained constant after CO2 had been depletedfrom the medium indicating that photosynthesis is sustainedprimarily by active HCO3 uptake. Treatment of cells with2-iodoacetamide (83 mol m–3) completely inhibited CO2fixation but had little effect on CO2 transport since initialrates of CO2 depletion were about 81% that of untreated cells.Transfer of iodoacetamide-treated cells to the dark caused arapid increase in the CO2 concentration in the medium largelydue to the efflux of the unfixed intracellular DIC pool whichwas found to be about 194 times the concentration of that inthe external medium. These results indicate that Navicula pelliculosaactively takes up molecular CO2 against a concentration gradientby a process distinct from HCO3 transport. Key words: Dissolved inorganic carbon, carbonic anhydrase, bicarbonate transport, CO2 transport, mass spectrometry  相似文献   

10.
Inorganic carbon transport during photosynthesis of cyanobacteriumAnabaena variabilis grown under ordinary air was investigatedby supplying 14CO2 or H14CO3 solution to three differentstrains. Both CO2 and HCO3 were accumulated within thealgal cells. In the cell suspension from which dissolved inorganiccarbon had been depleted by pre-illumination, CO2 was transportedand accumulated faster than HCO3. When the concentrationof HCO3 injected into the cell suspension of A. variabilisM3 was 25 times as high as that of CO2 (the expected ratio atequilibrium at pH 7.8), the initial rates of fixation of bothinorganic carbon species were practically the same. On the otherhand, when 14CO2 or H14CO3 was added under steady statephotosynthetic conditions, both carbon species were transportedat similar rates. The ratio of fixed to transported carbon measuredafter the initial 5 s was only 23–27% regardless of thecarbon species supplied. This percentage is much lower thanthat reported for Chlorella cells. 1 To whom reprint requests should be addressed (Received June 30, 1986; Accepted December 16, 1986)  相似文献   

11.
When Chlorella vulgaris 11h, Chlorella vulgaris C-l, Chlamydomonasreinhardtii, Chlamydomonas moewusii, Scenedesmus obliquus, orDunaliella tertiolecta were illuminated in with 0.5 mM NaHCO3,the pH of the medium increased in a few minutes from 6 to about9 or 10. The alkalization, which was accompanied by O2 evolution,was dependent on light, external dissolved inorganic carbon(DIC) as HCO-3, and algae grown or adapted to a low, air-levelCO2 in order to develop a DIC concentrating mechanism. Therewas little pH increase by algae without a DIC concentratingprocess from growth on 3% CO2 in air. Photosynthetic O2 evolutionwithout alkalization occurred using either internal DIC or externalCO2 at acidic pH. The PH increase stopped between pH 9 to 10,but the alkalization would restart upon re-acidification betweenpH 6 and 8. Alkalization was suppressed by the carbonic anhydraseinhibitors, acetazolamide, ethoxyzolamide or carbon oxysulfide.The pH increase appeared to be the consequence of the externalconversion of HCO3 into CO2 plus OH during photosynthesisby cells with a high affinity for CO2 uptake. Cells grown onhigh CO2 to suppress the DIC pump, when given low levels ofHCO3 in the light, acidified the medium from pH 10 to7. Air adapted Scenedesmus cells with a HCO3 pump, aswell as a CO2 pump, alkalized the medium very rapidly in thelight to a pH of over 10, as well as slower in the dark or inthe light with DCMU or without external DIC and O2 evolution.Alkalization of the medium during photosynthetic DIC uptakeby algae has been considered to be part of the global carboncycle for converting H2CO3 to HCO3 and for the formationof carbonate salts by calcareous algae from the alkaline conversionof bicarbonate to carbonate. These processes seem to be a consequenceof the algal CO2 concentrating process. 1Present address: Department of Biology, Faculty of Science,Niigata University, Niigata, 950-21 Japan.  相似文献   

12.
Hydrodictyon africanum can photosynthesize at high pH underconditions in which HCO3 rather than CO2 is the carbonspecies entering the cell. A passive entry of HCO3 seemsunlikely; a metabolic HCO3 pump is proposed. It is possiblethat such a pump is related to a light-dependent reaction specificto the use of HCO3. This reaction is dependent on photosystem2, but appears to be independent of ATP. These characteristicsare similar to those of active lightdependent Cl influx in H.africanum, and suggest a similar energy source for the two pumps.The HCO3 pump may be electrogenic.  相似文献   

13.
Competitive inhibition of the HCO3 transport site, atthe plasmalemma of Chara coraUina, by the CO2–3 ion isdemonstrated. This CO2–3 inhibition was used to demonstratethat HCO3 ions enter the cell by facilitated ‘diffusion’when the HCO3 transport system has been inactivated bytreatment with 10 mM K+. Use of CO2–3 as a HCO3analogue is limited, however, because of the necessity to employsolutions of high pH. Inhibition was not observed in the presenceof a range of organic and inorganic acid anions. These resultsdemonstrate the stereo-specific nature of the HCO3 bindingsite. A variety of amino compounds were found to inhibit H14CO3influx. Inhibition appeared to be competitive, being completelyrelieved at higher substrate (HCO3) concentrations. Asimple correlation was not found between the degree of inhibitionand the concentration of neutral base. A combination of thepresence of neutral base and experimental pH values of at least8·0 was required to produce the reactive species thatinhibited HCO3 transport. This species is consideredto be the amino carbamate. These results are discussed withrespect to further HCO3 analogue experiments.  相似文献   

14.
The cells of Dunaliella tertiolecta grown under ordinary air(low-CO2 cells) had a well developed pyrenoid with many morestarch granules than those grown under air enriched with CO2(high-CO2 cells). The chloroplast was located close to the plasmamembranein low-CO2 cells, while that in high-CO2 cells was located inthe inner area of the cells. Chloroplast envelope was electronicallydenser in low-CO2 cells than in high-CO2 cells, while the oppositeeffect of CO2 was observed for the plasmamembrane. 2On leave from Institute of Biology, University of Novi Sad,Novi Sad, Yugoslavia. (Received November 7, 1985; Accepted March 5, 1986)  相似文献   

15.
Chlorella vulgaris 11h cells grown in air enriched with 4% CO2(high-CO2 cells) had carbonic anhydrase (CA) activity whichwas 20 to 90 times lower than that of algal cells grown in ordinaryair (containing 0.04% CO2, low-CO2 cells). The CO2 concentrationduring growth did not affect either ribulose 1,5-bisphosphate(RuBP) carboxylase activity or its Km for CO2. When high-CO2 cells were transferred to low CO2 conditions,CA activity increased without a lag period, and this increasewas accompanied by an increase in the rate of photosynthetic14CO2 fixation under 14CO2-limiting conditions. On the otherhand, CA activity as well as the rate of photosynthetic 14CO2fixation at low 14CO2 concentrations decreased when low-CO2cells were transferred to high CO2 conditions. Diamox, an inhibitor of CA, at 0.1 mM did not affect photosynthesisof low-CO2 cells at high CO2 concentration (0.5%). Diamox inhibitedphotosynthesis only under low CO2 concentrations, and the lowerthe CO2 concentration, the greater was the inhibition. Consequently,the CO2 concentration at which the rate of photosynthesis attainedone-half its maximum rate (Km) greatly increased in the presenceof this inhibitor. When CO2 concentration was higher than 1%, the photosyntheticrate in low-CO2 cells decreased, while that in high-CO2 cellsincreased. Fractionation of the low-CO2 cells in non-aqueous medium bydensity showed that CA was fractionated in a manner similarto the distribution of chlorophyll and RuBP carboxylase. These observations indicate that CA enhances photosynthesisunder CO2-limiting conditions, but inhibits it at CO2 concentrationshigher than a certain level. The mechanism underlying the aboveregulatory functions of CA is discussed. 1This work was reported at the International Symposium on PhotosyntheticCO2-Assimilation and Photorespiration, Sofia, August, 1977 (18).Requests for reprints should be addressed to S. Miyachi, RadioisotopeCentre, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan. (Received December 11, 1978; )  相似文献   

16.
The aquatic bryophytes Fontinalis antipyretica Hedw. and Fissidensgrandifrons Brid. were investigated for their ability to utilizeHCO3 and CO2 as exogenous carbon sources for photosynthesis.In NaHCO3 solutions Fontinalis increased the pH to a maximumof 9.6 corresponding to a CO2 compensation point of 1.1 mmolm–3 CO2. Measured photosynthetic rates cannot be explainedonly by uptake of CO2. Net photosynthesis decreased at highpH but did not decline to zero until pH 10.10 in Fissidens andpH 11.8–12.0 in Fontinalis. Furthermore, photosynthesiswas increased by higher HCO–3 concentrations at constantCO2 concentration. It is concluded that Fontinalis antipyreticahas the capability to utilize HCO3. Key words: Carbon source, Photosynthesis, Aquatic bryophytes  相似文献   

17.
Larsson, M., Larsson, C.-M. and Guerrero, M. G. 1985. Photosyntheticnitrogen metabolism in high and low CO2-adapted Scenedesmus.I. Inorganic carbon-dependent O2 evolution, nitrate utilizationand nitrogen recycling.—J. exp Bot. 36: 1373–1386 Scenedesmus obtusiusculus Chod. was grown on an inorganic mediumflushed with either air or air supplemented with 3% CO2. Inair-grown cells, O2 evolution dependent on low, but not high,HCO3 concentrations was strongly inhibited by the carbonicanhydrase inhibitor acetazolamide. Cells grown with 3% CO2 exhibitedlow rates of O2 evolution at low external inorganic C; however,after 30 min in air O2 evolution rates at low inorganic C approachedthose of air-grown cells. These results are compatible withthe view that Scenedesmus develops a ‘CO2 concentratingmechanism’ in air, with carbonic anhydrase as an importantconstituent When 3% CO2-grown cells were subjected to air-level of CO2,just a transient decline in NO3 utilization was observed,but in the presence of acetazolamide the rate of the processdecreased drastically in response to the decrease in the CO2level. In CO2-free air NO3 was taken up at high ratesbut in a deregulated manner, leading to release of NH4+. A portionof the NO3 taken up in the absence of CO2 was apparentlyassimilated Cellular nitrate reductase (NR) activity initially decreasedbut subsequently recovered after a transition from 3% CO2 toair. In the presence of acetazolamide, a persistent decreasein NR activity was observed. Cellular glutamine synthetase (GS)activity increased after transition from 3% CO2 to air, theactivity increase being unaffected by acetazolamide. NH4+ releaseto the medium in the presence of L-methionine-D, L-sulphoximine(MSO) transiently increased in 3% CO2-grown cells in responseto a transfer to air. MSO-induced NH4+ release was in fact higherin air-grown cells than in 3% CO2-grown cells. Glycollate wasinitially released after transition from 3% CO2 to air, butthere was no difference in glycollate release between MSO-treatedand untreated cells. In air-adapted Scenedesmus, N recyclingseems to be of minor importance in comparison to primary N assimilation Key words: CO2-fixation, N recycling, nitrate uptake, Scenedesmus  相似文献   

18.
Several studies suggest the involvement of Na+ and HCO3 transport in the formation of cerebrospinal fluid. Two Na+-dependent HCO3 transporters were recently localized to the epithelial cells of the rat choroid plexus (NBCn1 and NCBE), and the mRNA for a third protein was also detected (NBCe2) (Praetorius J, Nejsum LN, and Nielsen S. Am J Physiol Cell Physiol 286: C601–C610, 2004). Our goal was to immunolocalize the NBCe2 to the choroid plexus by immunohistochemistry and immunogold electronmicroscopy and to functionally characterize the bicarbonate transport in the isolated rat choroid plexus by measurements of intracellular pH (pHi) using a dual-excitation wavelength pH-sensitive dye (BCECF). Both antisera derived from COOH-terminal and NH2-terminal NBCe2 peptides localized NBCe2 to the brush-border membrane domain of choroid plexus epithelial cells. Steady-state pHi in choroidal cells increased from 7.03 ± 0.02 to 7.38 ± 0.02 (n = 41) after addition of CO2/HCO3 into the bath solution. This increase was Na+ dependent and inhibited by the Cl and HCO3 transport inhibitor DIDS (200 µM). This suggests the presence of Na+-dependent, partially DIDS-sensitive HCO3 uptake. The pHi recovery after acid loading revealed an initial Na+ and HCO3-dependent net base flux of 0.828 ± 0.116 mM/s (n = 8). The initial flux in the presence of CO2/HCO3 was unaffected by DIDS. Our data support the existence of both DIDS-sensitive and -insensitive Na+- and HCO3-dependent base loader uptake into the rat choroid plexus epithelial cells. This is consistent with the localization of the three base transporters NBCn1, Na+-driven Cl bicarbonate exchanger, and NBCe2 in this tissue. bicarbonate metabolism; BCECF; cerebrospinal fluid; acid/base transport; ammonium prepulse  相似文献   

19.
Millhouse, J. and Strother, S. 1987. Further characteristicsof salt-dependent bicarbonate use by the seagrass Zostera muelleri.—J.exp. Bot. 38: 1055–1068. The contribution of HCO3to photosynthetic O2 evolutionin the seagrass Zostera muelleri Irmisch ex Aschers. increasedwith increasing salinity of the bathing seawater when the inorganiccarbon concentration was kept constant. K1/2 (seawater salts)for HCO3 -dependent photosynthesis was 66% of seawatersalinity. Both short- and long-term pretreatment at low salinitiesstimulated photosynthesis in full strength seawater. Twentyfour hours pre-incubation of seagrass plants in 3·0 molm–3 NaHCO3 resulted in increased photosynthesis at allsalinities, apparently due to stimulation of HCO3 use(K1/2 (seawater salts) = 26%). Vmax (HCO3) was not affectedby low salinity pretreatment. The kinetics of HCO3 stimulationby the major seawater cations was investigated. Ca2+ was themost effective cation with the highest Vmax (HCO3) andwith K1/2(Ca2+) = 14 mol m–3. Mg2+ was also very effectiveat less than 50 mol m–3 but higher concentrations wereinhibitory. This inhibition cannot be accounted for solely byprecipitation of MgCO3. Na+ and K+ were both capable of stimulatingHCO3 use. Stimulation was in two distinct parts. Up to500 mol m–3, both citrate and chloride salts gave similarresults (K1/2(Na+) 81 mol m–3, Vmax(HCO3) 0·26µmol O2 mg–1 chl min–1), but use of citratesalts above 500 mol m–2 caused a second stimulation ofHCO3 use (K1/2(Na+) 830 mol m–3, Vmax(HCO3)0·68 µmol O2 mg–1 chl min–1). Vmax(HCO3)for the second-phase Na+ or K+ stimulation was of the same orderas for Ca2+-stimulated HCO3 use. To further characterizesalt-dependent HCO3 use, the sensitivity of photosynthesisto Tris and TES buffers was investigated. The effects of Trisappear to be due to the action of Tris+ causing stimulationof HCO3 -dependent photosynthesis in the absence of salt,but inhibition of HCO3 use in saline media. TES has noeffect on photosynthesis. External carbonic anhydrase, althoughimplicated in salt-dependent HCO3 use in Z. muelleri,could not be detected in whole leaves. Key words: Zostera muelleri, HCO3 use, salinity  相似文献   

20.
The permeability of the plasmalemma of Chlamydomonas reinhardtiicells was increased by treatment with poly-L-lysine or dimethylsulphoxideas indicated by 3-phosphoglyceric acid dependent O2 evolution.These treatments decreased the ability of the cells to accumulateinorganic carbon internally and hence their photosynthetic affinityfor inorganic carbon in the medium. With saturating light andinorganic carbon, the photosynthetic rate was less affectedby the poly-L-lysine and dimethylsulphoxide treatments. Thusthe poly-L-lysine and dimethylsulphoxide did not alter the activityof the chloroplasts but rather made the intracellular inorganiccarbon pool more freely exchangeable with the medium. It isconcluded that the transporting system for inorganic carbonis located at the plasmalemma. Treatment with Diamox, an inhibitor of carbonic anhydrase, didnot affect photosynthetic rate and accumulation of inorganiccarbon when CO2 was supplied but strongly inhibited both parameterswhen HCO3 was supplied. In a mutant of Chlamydomonasreinhardtii lacking a cell wall, carbonic anhydrase leaks tothe medium and uptake of inorganic carbon is much faster whenCO2 is supplied than when HCO3 is supplied. These resultssuggest that CO2 rather than HCO3 is the inorganic carbonspecies that is actively translocated across the plasmalemma. Key words: Chlamydomonas, Inorganic carbon uptake  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号