首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Owens TG  Wold ER 《Plant physiology》1986,80(3):732-738
Three pigment-protein complexes were isolated from the marine diatom Phaeodactylum tricornutum (Bohlin) by treatment of thylakoid membrane fragments with 1% Triton X-100 at 4°C followed by centrifugation on sucrose density gradients. The major complex contains chlorophyll a, c1, c2, and the carotenoid fucoxanthin (chlorophyll a: c1: c2: fucoxanthin = 1.0: 0.09: 0.28: 2.22) bound to an apoprotein doublet of 16.4 and 16.9 kilodaltons. This complex accounts for >70% of the total pigment and 20 to 40% of the protein in the thylakoid membranes. Efficient coupling of chlorophyll c and fucoxanthin absorption to chlorophyll a fluorescence supports a light-harvesting function for the complex. A minor light-harvesting complex containing chlorophyll a, c1, and c2 but no fucoxanthin (chlorophyll a: c1: c2 = 1.0: 0.23: 0.26) was also isolated at Triton: chlorophyll a ratios between 20 and 40. These pigments are bound to a similar molecular weight apoprotein doublet. The third complex isolated was the P700-chlorophyll a protein, the reaction center of photosystem I, which showed characteristics similar to those isolated from other plant sources. The yield of the chlorophyll a/c-fucoxanthin complex was shown to respond strongly to changes in light intensity during growth, accounting for most of the changes in cellular pigmentation.  相似文献   

2.
L.A. Gugliemelli 《BBA》1984,766(1):45-50
The light-harvesting complex of the marine diatom Phaeodactylum tricornutum was fractionated into two large pigment-protein particles. One pigment-protein particle, which was contained in a yellow fraction, has a molecular weight, determined by gel filtration, of approx. 230 000 and can be dissociated in sodium dodecyl sulfate/mercaptoethanol solution to apopolypeptides of approx. 15 000. Characterization of particles with regard to molecular weights, subunits, protein and pigments suggests approx. 12 subunits per particle. The other pigment-protein particle, which was found in a green fraction, of approx. 95 000 molecular weight also reduces to apopolypeptide subunits of approx. 15 kDa. The relative molar proportions of chlorophyll a, chlorophyll c, fucoxanthin and total other accessory pigments in the former fraction are 3:1.3:6:2, whereas the proportions in the latter fraction are 5:1:3:1.  相似文献   

3.
The apoprotein of the major light harvesting pigment-protein complex from the diatom Phaeodactylum tricornutum (UTEX 646) is composed of two similar polypeptides of 17.5 and 18.0 kilodaltons (kD). The in vivo synthesis of these polypeptides is inhibited by the 80s protein synthesis inhibitor cycloheximide, but not by the 70s ribosome inhibitor chloramphenicol. When total poly(A)+ RNA was used in in vitro protein synthesis, a number of polypeptides were synthesized with a dominant product at 22 kD. When the polypeptides were immunoprecipitated with monospecific antibodies to the 17.5 and 18.0 polypeptides, a single protein zone of 22 kD was detected. Immunoprecipitation with preimmune serum failed to precipitate detectable levels of protein at any relative molecular weight (Mr). These findings indicate that the two apoprotein polypeptides of the diatom light harvesting pigment-protein are translated from polyadenylated message on cytoplasmic ribosomes as either a single or two (or more) similar Mr precursor proteins. These findings also suggest that this protein is encoded in the nucleus.

Photosynthetic light adaptation features of P. tricornutum UTEX 646 indicate that it responds to low light by increasing cell size and numbers of photosystem I and II reaction centers per cell, but does not change photosynthetic rate per cell or photosynthetic unit sizes significantly. When low light cells are exposed to higher photon flux densities, the in vivo incorporation of label into the apoprotein of the light harvesting complex decreases. In contrast, high light grown cells show rapid (<3 hour) increases in apoprotein synthesis when exposed to low light levels. This is the first demonstration of a specific role of photon flux density in regulating the synthesis of a major light harvesting pigment-protein during photosynthetic light adaptation.

  相似文献   

4.
The present study examined the protein associations and energy transfer characteristics of chlorophyll c and fucoxanthin which are the major light-harvesting pigments in the brown and diatomaceous algae. It was demonstrated that sodium dodecyl sulfate (SDS)-solubilized photosynthetic membranes of these species when subjected to SDS polyacrylamide gel electrophoresis yielded three spectrally distinct pigment-protein complexes. The slowest migrating zone was identical to complex I, the SDS-altered form of the P-700 chlorophyll a-protein. The zone of intermediate mobility contained chlorophyll c and chlorophyll a in a molar ratio of 2 : 1, possessed no fucoxanthin, and showed efficient energy transfer from chlorophyll c to chlorophyll a. The fastest migrating pigment-protein zone contained fucoxanthin and chlorophyll a, possessed no chlorophyll c, and showed efficient energy transfer from fucoxanthin to chlorophyll a. It is demonstrated that the chlorophyll ac-protein and the chlorophyll afucoxanthin-protein complexes are common to the brown algae and diatoms examined, and likely share similar roles in the photosynthetic units of these species.  相似文献   

5.
Thomas Veith 《BBA》2007,1767(12):1428-1435
A photosystem I (PSI)-fucoxanthin chlorophyll protein (FCP) complex with a chlorophyll a/P700 ratio of approximately 200:1 was isolated from the diatom Phaeodactylum tricornutum. Spectroscopic analysis proved that the more tightly bound FCP functions as a light-harvesting complex, actively transferring light energy from its accessory pigments chlorophyll c and fucoxanthin to the PSI core. Using an antibody against all FCP polypeptides of Cyclotella cryptica it could be shown that the polypeptides of the major FCP fraction differ from the FCPs found in the PSI fraction. Since these FCPs are tightly bound to PSI, active in energy transfer, and not found in the main FCP fraction, we suppose them to be PSI specific. Blue Native-PAGE, gel filtration and first electron microscopy studies of the PSI-FCP sample revealed a monomeric complex comparable in size and shape to the PSI-LHCI complex of green algae.  相似文献   

6.
Photosynthetic Enhancement in the Diatom Phaeodactylum tricornutum   总被引:1,自引:1,他引:0       下载免费PDF全文
Mann JE  Myers J 《Plant physiology》1968,43(12):1991-1995
Enhancement phenomena in photosynthesis of the diatom Phaeodactylum tricornutum Lewin were studied by means of a Haxo oxygen electrode and 2 monochromatic light beams. It was necessary to correct for a minor non-linearity in rate oxygen evolution vs. intensity similar to that reported for Chlorella. Action spectra on complementary backgrounds and derived enhancement spectra were compared to in vivo absorption spectra in identifying the character of pigment systems 1 and 2. Fucoxanthin, chlorophyll c, and chlorophyll a-670 are clearly assignable to pigment system 2 which absorbs in excess at wavelengths 400 to 678 mμ. Chlorophyll a-1 (and a portion of the fucoxanthin) are assignable to pigment system 1 which absorbs in excess at wavelengths 678 to 750 mμ. Enhancement values were generally lower than those observed in Chlorella or Anacystis and lead to conclusion that diatom pigmentation provides an effective light harvesting apparatus.  相似文献   

7.
Thylakoid membranes retaining high oxygen-evolving activity (about 250 μmol O2/mg Chl/h) were prepared from a marine centric diatom, Chaetoceros gracilis, after disruption of the cells by freeze-thawing. We also succeeded in purification of Photosystem II (PSII) particles by differential centrifugation of the thylakoid membranes after treatment with 1% Triton X-100. The diatom PSII particles showed an oxygen-evolving activity of 850 and 1045 μmol O2/mg Chl/h in the absence and presence of CaCl2, respectively. The PSII particles contained fucoxanthin chlorophyll a/c-binding proteins in addition to main intrinsic proteins of CP47, CP43, D2, D1, cytochrome b559, and the antenna size was estimated to be 229 Chl a per 2 molecules of pheophytin. Five extrinsic proteins were stoichiometrically released from the diatom PSII particles by alkaline Tris-treatment. Among these five extrinsic proteins, four proteins were red algal-type extrinsic proteins, namely, PsbO, PsbQ', PsbV and PsbU, whereas the other one was a novel, hypothetical protein. This is the first report on isolation and characterization of diatom PSII particles that are highly active in oxygen evolution and retain the full set of extrinsic proteins including an unknown protein.  相似文献   

8.
Summary We have cloned and characterized members of a gene family encoding polypeptide constituents of the fucoxanthin, chlorophyll a/c protein complex, a light-harvesting complex associated with photosystem II of diatoms and brown algae. Three cDNA clones encoding proteins associated with this complex in the diatom Phaeodactylum tricornutum have been isolated. As deduced from the nucleotide sequences, these light-harvesting proteins show homology to the chlorophyll a/b binding polypeptides of higher plants. Specifically, the N-terminal regions of the fucoxanthin, chlorophyll a/c-binding proteins are homologous to the chlorophyll a/b binding proteins in both the third membrane-spanning domain and the stroma-exposed region between membrane-spanning domains 2 and 3. Like the chlorophyll a/b-binding proteins, the mature fucoxanthin, chlorophyll a/c polypeptides have three hydrophobic -helical domains which could span the membrane bilayer. The similarities between the two light-harvesting proteins might reflect the fact that both bind chlorophyll molecules and/or might be important for maintaining certain structural features of the complex. There is little similarity between the N-terminal sequences of the primary translation products of the fucoxanthin, chlorophyll a/c proteins and any transit sequences that have been characterized. Instead, the N-terminal sequences have features resembling those of signal sequences. Thus either transit peptides used in P. tricornutum show little resemblance to those of higher plants and green algae or the nuclear-encoded plastid proteins enter the organelle via a mechanism different from that used in higher plants.  相似文献   

9.
Light-harvesting chlorophyll-protein was purified from thylakoidmembranes of the marine unicellular alga Nannochloropsis sp.(Eustigmatophyceae), which contains neither chlorophyll b norchlorophyll c. Solubilization of thylakoid membranes with octyl-ß-D-glucopyranosideor with digitonin followed by separation on sucrose densitygradient yielded a chlorophyll-protein complex composed of anapoprotein of 26 kDa and an average of 9 chlorophyll a and 4violaxanthin molecules per apoprotein. Excitation spectra ofchlorophyll a fluorescence for the algal thylakoid membranesindicated energy transfer from the xanthophylls; however, anyattempt to solubilize the membranes greatly decreased energytransfer which was further reduced as the purification proceeded.The 26 kDa polypeptide of the isolated light-harvesting complexdid not cross-react with polyclonal antibodies raised againstanalogous proteins from higher plants and chlorophyll a/c alga.The N-terminus amino acid sequence of the apoprotein shows significantstructural similarity to the N-termini of the mature light harvestingfucoxanthin, chlorophyll a/c proteins from the diatom Phaeodactylumtricornutum, but not with the N-termini of light-harvestingproteins from chlorophyll a/b containing organisms. (Received June 25, 1992; Accepted July 28, 1992)  相似文献   

10.
Two cDNA clones encoding fucoxanthin chlorophyll a/c-binding proteins (FCP) in the diatom Odontella sinensis have been cloned and sequenced. The derived amino acid sequences of both clones are identical, comparison of the corresponding nucleic acids reveals differences only in the third codon position, suggesting a recent gene duplication. The derived proteins are similar to the chlorophyll a/b-binding proteins of higher plants. The presequences for plastid import resemble signal sequences for cotranslational import rather than transit peptides of higher plants. They are very similar to the presequences of FCP proteins in the diatom Phaeodactylum, but different from the presequences of the -subunit of CF0CF1 of Odontella and the peridinin chlorophyll a binding proteins (PCP) of the dinoflagellate Symbiodinium.Abbreviations CAB chlorophyll a/b-binding protein - FCP fucoxanthin chlorophyll a/c-binding protein - fcp the respective FCP genes - LHC light-harvesting complex - PCP peridinin chlorophyll a-binding protein - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

11.
《BBA》2023,1864(2):148935
Detailed information on the photo-generated triplet states of diatom and haptophyte Fucoxanthin Chlorophyll-binding Proteins (FCPs and E-FCPs, respectively) have been obtained from a combined spectroscopic investigation involving Transient Absorption and Time-Resolved Electron Paramagnetic Resonance. Pennate diatom Phaeodactylum tricornutum FCP shows identical photoprotective Triplet-Triplet Energy Transfer (TTET) pathways to the previously investigated centric diatom Cyclotella meneghiniana FCP, with the same two chlorophyll a-fucoxanthin pairs that involve the fucoxanthins in sites Fx301 and Fx302 contributing to TTET in both diatom groups. In the case of the haptophyte Emilianina huxleyi E-FCP, only one of the two chlorophyll a-fucoxanthins pairs observed in diatoms, the one involving chlorophyll a409 and Fx301, has been shown to be active in TTET. Furthermore, despite the marked change in the pigment content of E-FCP with growth light intensity, the TTET pathway is not affected. Thus, our comparative investigation of FCPs revealed a photoprotective TTET pathway shared within these classes involving the fucoxanthin in site Fx301, a site exposed to the exterior of the antenna monomer that has no equivalent in Light-Harvesting Complexes from the green lineage.  相似文献   

12.
Diatoms occupy a key position as a primary producer in the global aquatic ecosystem. We developed methods to isolate highly intact thylakoid membranes and the photosystem I (PS I) complex from a marine centric diatom, Chaetoceros gracilis. The PS I reaction center (RC) was purified as a super complex with light-harvesting fucoxanthin-chlorophyll (Chl)-binding proteins (FCP). The super complex contained 224 Chl a, 22 Chl c, and 55 fucoxanthin molecules per RC. The apparent molecular mass of the purified FCP-PS I super complex (∼ 1000 kDa) indicated that the super complex was composed of a monomer of the PS I RC complex and about 25 copies of FCP. The complex contained menaquinone-4 as the secondary electron acceptor A1 instead of phylloquinone. Time-resolved fluorescence emission spectra at 77 K indicated that fast (16 ps) energy transfer from a Chl a band at 685 nm on FCP to Chls on the PS I RC complex occurs. The ratio of fucoxanthin to Chl a on the PS I-bound FCP was lower than that of weakly bound FCP, suggesting that PS I-bound FCP specifically functions as the mediator of energy transfer between weakly bound FCPs and the PS I RC.  相似文献   

13.
This report describes the isolation and preliminary characterization of a new pigment-protein complex from the chromophyte alga, Ochromonas danica. The pigment-protein complex was obtained by extracting a thylakoid membrane preparation with the zwitterionic detergent lauryldimethylamine oxide followed by ultracentrifugation on sucrose gradients. The pigment-protein complex has been characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, absorption spectroscopy, and low temperature (77 Kelvin) chlorophyll fluorescence spectroscopy. A polypeptide with a monomeric molecular weight of 31,000 as determined by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis was the major constituent of this pigment-protein complex. The major pigment in this complex was chlorophyll a, although an as yet unidentified carotenoid was also present. There was no evidence for the presence of chlorophyll c.  相似文献   

14.
The photosynthetic pigments of 51 species (71 isolates) of tropical and sub-tropical diatoms from 13 out of 22 families were examined. These were the Thalassiosiraceae, Melosiraceae, Coscinodiscaceae, Rhizosoleniaceae, Biddulphiaceae, Chaetoceraceae, Lithodesmiaceae, Eupodiscaceae, Cymatosiraceae, Diatomaceae, Naviculaceae, Nitzschiaceae and Phaeodactylinaceae. Pigments were analyzed by cellulose and polyethylene thin-layer chromatography (TLC) and reverse-phase high-performance thin-layer chromatography (HPTLC). All species contained chlorophylls a and c2 and the carotenoids carotene, fucoxanthin, diatoxanthin and diadinoxanthin. In addition, 14 species (20 isolates) contained one or more of four minor carotenoids, which were not identified further. One species, Thalassiothrix heteromorpha, contained small amounts of a 19′-butanoyloxyfucoxanthin-like pigment, in addition to fucoxanthin. Chlorophyll c2 was present in all the diatoms tested and occurred together with chlorophyll c1 in 88% of them. The presence of both chlorophylls c1 and c2 therefore can no longer be considered a universal characteristic of the diatom class. Where chlorophyll c1 was absent or occurred in trace amounts only (8 species, 11 isolates), it was usually replaced by a new chlorophyll c pigment designated chlorophyll c3, recently characterized from several prymnesiophytes and one chrysophyte. Exceptions were Nitzschia closterium (CS-114), which contained only chlorophyll c2, and Nitzschia bilobata (CS-47), which contained all three chlorophylls (c1, c2 and c3) in approximately equal amounts. Five species that contained chlorophylls c1 and c2 also contained chlorophyll c3 in trace quantities Quantitative pigment analyses of the 71 isolates showed that chlorophyll concentrations ranged from 0.02 μg. 106 cells?1 in the smallest diatom, Extubocellulus spinifer, to 174.4 μg. 106 cells?1 in one of the largest diatoms, Coscinodiscus sp. under the standard growth conditions used. The mean molar ratio of chlorophyll a:c in the 72 isolates was 3.33, with a range of 1.65–7.25. The close similarity between diatom and prymnesiophyte pigmentation was confirmed. Each class has three patterns of pigmentation: viz species with chlorophylls c1 and c2 and‘true’fucoxanthin, species with chlorophylls c3 and c2 and‘true’fucoxanthin, and species with chlorophylls c3 and c2 and fucoxanthin derivatives.  相似文献   

15.
Summary Exponentially grown cells of the freshwater diatom Navicula pelliculosa (Bréb) Hilse, contained chlorophyll a, chlorophyll c, fucoxanthin, diadinoxanthin, diatoxanthin, neofucoxanthin, -carotene, and an unknown pigment, the absorption spectrum of which is reported. Changes in amounts of chlorophyll a, fucoxanthin and diadinoxanthin were determined during the course of silicon-starvation synchrony carried out in the light or dark. Changes in the rate of chlorophyll a and fucoxanthin syntheses were similar. Synthesis ceased after 5–7 hr of silicon starvation, but recommenced in cultures kept in the light, once silicon was re-introduced. In cultures kept in the dark no significant synthesis was observed after re-introduction of silicon. Diadinoxanthin synthesis continued in the light at all times, although at a lower rate during the silicon-starvation period. In the dark, synthesis of this pigment ceased when cell division stopped, and the amount per unit volume of culture decreased. These results are discussed in relation both to the effect of silicon on the metabolism of the diatom and to the possible function of the carotenoids.Dedicated to Prof. C. B. van Niel on the occasion of his 70th birthday.  相似文献   

16.
We characterized the energy transfer pathways in the fucoxanthin–chlorophyll protein (FCP) complex of the diatom Cyclotella meneghiniana by conducting ultrafast transient absorption measurements. This light harvesting antenna has a distinct pigment composition and binds chlorophyll a (Chl-a), fucoxanthin and chlorophyll c (Chl-c) molecules in a 4:4:1 ratio. We find that upon excitation of fucoxanthin to its S2 state, a significant amount of excitation energy is transferred rapidly to Chl-a. The ensuing dynamics illustrate the presence of a complex energy transfer network that also involves energy transfer from the unrelaxed or ‘hot’ intermediates. Chl-c to Chl-a energy transfer occurs on a timescale of a 100 fs. We observe no significant spectral evolution in the Chl-a region of the spectrum. We have applied global and target analysis to model the measured excited state dynamics and estimate the spectra of the states involved; the energy transfer network is discussed in relation to the pigment organization of the FCP complex.  相似文献   

17.
The pigments of the chromophyte freshwater alga, Chrysophaera magna Belcher were analyzed by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) to reveal the presence of chlorophylls a and c, β-carotene, fucoxanthin, and antheraxanthin. The presence of antheraxanthin was verified by comparison of TLC RF values, HPLC retention times, and absorption features to those of authentic, synthetic antheraxanthin. Antheraxanthin accounted for about 15% of the total carotenoid content of C. magna. The molar ratio of the major carotenoids was antheraxanthin:fucoxanthin:β-carotene, 1:2.3:3.3. The whole-cell absorption spectrum revealed a broad band between 470 and 520 nanometers which was attributed to fucoxanthin and antheraxanthin in vivo. Upon extraction in hydrocarbon, this broad absorption region was lost. The in vivo fluorescence excitation spectrum for 680 nm emission revealed the energy transfer activities and light harvesting roles of chlorophylls a and c, and fucoxanthin. In addition, an excitation band was resolved at 487 nanometers which could be attributed only to antheraxanthin. Comparison of whole-cell fluorescence excitation spectra of C. magna with the diatom Phaeodactylum tricornutum, which possesses fucoxanthin but not antheraxanthin, supports the assignment of the 487 nm band to antheraxanthin. This is the first report of a photosynthetic light harvesting function of the xanthophyll, antheraxanthin. This carotenoid broadens the absorption cross-section for photosynthesis in C. magna and extends light harvesting into the green portion of the spectrum.  相似文献   

18.
19.
J. Hladík  P. Pančoška  D. Sofrová 《BBA》1982,681(2):263-272
Thylakoid membranes of the cyanobacterium Plectonema boryanum solubilized with Triton X-100 can be resolved into three fractions of pigment-protein complexes (Hladík, J. and Sofrová, D. (1981) Photosynthetica 15, 490–503). Fraction I contained relatively the highest amount of carotenoids as well as monomeric forms of chlorophyll a, Fractions II and III contained chlorophyll-protein complexes with a characteristic exciton-split circular dichroism in the red region. It has been shown that fraction III is an oligomeric form of the chlorophyll-protein complex of fraction II. Circular dichroism spectra indicate that, different from fraction II, fraction III contains specifically oriented and space-fixed molecules of carotenoids. Thermal dissociation of fracion III to fraction II is accompanied by disappearance of the positive circular dichroism effect of carotenoids in the 500–550 nm region, thus causing deorganization of the carotenoids, proceeding in parallel to the geometrical rearrangement of chlorophyll molecules. Extraction of the carotenoids of fraction III with heptane is acompanied by dissociation of fraction III. We assume that the observed effects are due to binding of the two pigments to the protein component of the complex and that carotenoids can mediate a part of the interactions which stabilize the structure of pigment-protein complexes. Thus, besides the light-harvesting and protective functions, carotenoids can also play a structural role.  相似文献   

20.
Monospecific, polyclonal antibodies raised against the apoprotein of the major light-harvesting pigment-protein of Phaeodactylum tricornutum Bohlin UTEX 646 were used to determine (1) whether this complex was common to the class Bacillariophyceae, whose members contain chlorophylls a and c and fucoxanlhin; (2) whether antigenically-related apoproteins were present in other chlorophyll c-containing groups, and (3) whether there was immunological homology with the light-hanvsting chlorophyll a/b protein of similar photosynthetic function in the Chlorophyta and vascular plants. We have used protein blotting techniques to show that antibodies against the two P. tricornutum light-harvesting complex polypeptides cross-reacted with one or two polypeptides of similar molecular weight (17–21 kD) in all ten diatom species examined, representing two orders and six families. No cross-reactivity was obtained with total membrane polypeptides from isolated representatives of three chromophyte algal divisions (Chrysophyta, Cryptophyta, Pyrrophyta), all of which contained chlorophyll c. No cross-reactivity was observed with membrane Polypeptides isolated from members of two classes of Chlorophte algae. These data suggest that the Bacillariophyceae may be monophyletic, and that the primary structure of the diatom light-harvesting complex is not closely related to pigment-protein complexes with similar function in other chlorophyll c-containing unicellular algal groups. Lastly, it may be possible to use the antibodies to the diatom light-harvesting polypeptides as specific markers for diatoms in natural phytoplankton assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号