首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hypodermin B, a serine proteinase with a molecular weight of 23000, was purified to homogeneity from the larvae Hypoderma lineatum. It is stoichiometrically inhibited by diisopropylfluorophosphate and fully inactivated by N-tosyllysine chloromethyl ketone and soya bean and bovine pancreatic trypsin inhibitors. N-Tosylphenylalanine chloromethyl ketone and ovomucoid are without effect on its activity. Hypodermin B hydrolyses both amide and ester substrates of trypsin but does not display any chymotryptic activity on synthetic substrates. Its specificity on the B chain of insulin is slightly broader than that of bovine trypsin. Its amino acid composition and N-terminal sequence suggest structural homology with serine proteinases of the trypsin family and with two other serine proteinases, hypodermin A and Hypoderma collagenase, previously isolated from the same larvae. Hypodermins A and B are very similar with respect to their inhibition and specificity, they differ however strongly from Hypoderma collagenase.  相似文献   

2.
Specificity of the collagenase from the larvae Hypoderma lineatum, a serine protease related to trypsin, has been investigated by using native collagen and non-collagenous substrates. At 25 degrees C and neutral pH the degradation of collagen by the larval enzyme in solution results in a 52% loss of specific viscosity, without loss of helicity. Electron microscopy of segment-long-spacing crystallites of the digest shows the occurrence of one cleavage region between bands 41 and 44 whereas Edman degradation indicates several cleavage loci in this region. Hypoderma collagenase differs from proteinases I and II from the crab Uca pugilator, which catalyse cleavages in multiple regions of the collagen molecule, and also from vertebrate collagenases, which cleave collagen only between residues 775 and 776. Apart of specific action on collagen, Hypoderma collagenase degrades the oxidized chain B of insulin; the major cleavage occurs at the Leu15-Tyr16 bond followed by two minor cleavages at the Arg22-Gly23 and Lys29-Ala30 bonds. The larval enzyme has no action on synthetic peptide substrates of trypsin or chymotrypsin.  相似文献   

3.
A gelatin-specific protease from the culture media of human pulmonary alveolar macrophages has been partial purified by gel filtration and characterized. The macrophages were obtained by bronchopulmonary lavage from the lungs of disease-free smoking volunteers. The gelatin-specific protease initially requires trypsin activation. After chromatographing the culture media on a Sephadex G-200 column, trypsin is no longer required for activation. The gelatin-specific protease reported here shares many properties of previously reported gelatinases. It is inhibited by EDTA, cysteine, dithiothreitol and serum. It is unaffected by other protease inhibitors: phenylmethylsulfonyl fluoride, tosyllysine chloromethyl ketone and p-chloromercuribenzoate. Of all substrates tested activity was observed only with gelatin. It was inactive toward collagen, elastin and methemoglobin. This enzyme may have a role in the digestion of collagen which has been cleaved by a mammalian collagenase.  相似文献   

4.
The primary structure of the Hypoderma lineatum collagenase was determined. Chymotrypsin digestion and thermolysin fragmentation of the chymotryptic core gave 30 and 5 peptides, respectively, accounting for all the residues of the protein. These peptides were aligned with overlapping peptides derived from tryptic and Staphylococcus aureus V8 proteinase digests. Hypoderma collagenase is a serine proteinase composed of 230 amino acids (Mr 25,223). It displays a high degree of sequential homology with the serine proteinases of the trypsin family, especially with another collagenolytic enzyme, the proteinase I of the crab Uca pugilator. The six half-cystinyl residues of Hypoderma collagenase correspond to 6 of the 10 half-cystinyl residues of chymotrypsin, and the residues forming the charge-relay system of the active site of chymotrypsin (His-57, Asp-102, and Ser-195) are found in corresponding regions. The prediction of the secondary structure of the collagenase is given.  相似文献   

5.
The collagenase from the larvae Hypoderma lineatum is a serine proteinase sequentially related to the trypsin family. The tryptic peptide containing the serine residue of the active site, labelled with [3H] diisopropylfluorophosphate was isolated and determined to be Ser-Pro-Cys-Phe-Gly-Asp-Ser-Gly-Gly-Pro-(Phe-Ser)-Lys. It is highly conservative with respect to the corresponding peptide in other serine proteinases related to trypsin.  相似文献   

6.
A serine collagenolytic protease was purified from the internal organs of filefish, Novoden modestrus, by ammonium sulfate, ion-exchange chromatography on a DEAE-Sephadex A-50, ion-exchange rechromatography on a DEAE-Sephadex A-50, and gel filtration on a Sephadex G- 150 column. The molecular mass of the filefish serine collagenase was estimated to be 27.0 kDa by gel filtration and SDS-PAGE. The purified collagenase was optimally active at pH 7.0-8.0 and 55 degrees C. The purified enzyme was rich in Ala, Ser, Leu, and Ile, but poor in Trp, Pro, Tyr, and Met. In addition, the purified collagenolytic enzyme was strongly inhibited by N-P-toluenesulfonyl-L-lysine chloromethyl ketone (TLCK), diisopropylfluorophosphate (DFP), and soybean trypsin inhibitor.  相似文献   

7.
M C Alliegro  H Schuel 《Biochemistry》1985,24(15):3926-3931
A serine protease from sea urchin eggs has been isolated by affinity chromatography on soybean trypsin inhibitor-agarose. Benzamidine hydrochloride was included to minimize autodegradation. We present data on the properties of the protease with respect to molecular weight and its interaction with trypsin inhibitors and substrates. The molecular weight of the enzyme is 47 000 by gel filtration under nonreducing conditions and 35 000 by electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol. The pH optimum and Km with N alpha-benzoyl-L-arginine ethyl ester (BAEE) are 8.0 and 75 microM, respectively. The specific activity is comparable to that of bovine pancreatic trypsin. Proteolytic activity was measured by beta-casein hydrolysis. The caseinolytic activity is completely inhibited by 1 mumol of soybean trypsin inhibitor (SBTI) per micromole of enzyme. BAEE esterase activity is inhibited competitively by SBTI (Ki = 1.6 nM), lima bean trypsin inhibitor (150 nM), chicken ovomucoid (100 nM), and leupeptin (130 nM). Bowman-Birk inhibitor, benzamidine hydrochloride, and antipain are also inhibitors of the purified enzyme. Inhibition by phenylmethanesulfonyl fluoride and N alpha-p-tosyl-L-lysine chloromethyl ketone indicates the presence of serine and histidine residues in the active center, respectively. The chymotrypsin inhibitor L-1-(tosylamido)-2-phenylethyl chloromethyl ketone is ineffective. The protease is susceptible to autodegradation which can result in the appearance of a minor 23-kilodalton component. The egg protease appears to be similar in many respects to trypsins and trypsin-like enzymes isolated from a wide variety of sources, including sea urchin and mammalian sperm.  相似文献   

8.
Summary Chemical and enzymatic properties of four collagenases newly isolated from anaerobic Clostridium histolyticum, aerobic Achromobacter iophagus, and from two lower eucaryotes, the fungus Entomophthora coronata and the insect Hypoderma lineatum are reviewed.The problems of their biosynthesis and precursors, namely the effect of induction of collagenase and neutral proteinase in Achromobacter by their macromolecular substrates are discussed.The two bacterial collagenases are Zn-metallo-enzymes; the highly purified Clostridium collagenase contains cyst(e)ine, serine phosphate and tryptophan additionally to amino acids reported previously. Achromobacter collagenase has the highest specific activity of all collagenases; it yields by autolysis enzymatically active degraded forms. The active dimer is composed of two identical subunits of molecular weight 35,000. Similarities between Achromobacter collagenase, thermolysin and Bacillus subtilis neutral proteinase in molecular weight, amino acid composition, and amino acids important for the active sites are discussed.The two collagenases from low eucaryotes are serine proteinases; Hypoderma collagenase is homologous to the trypsin family in the amino terminal sequence.The initial cleavage of native collagen by highly purified bacterial collagenases occurs in the central helical part of the a chains and not progressively from the amino terminal end. One of the two initial cleavages produced by Achromobacter collagenase is situated in the region cleaved specifically by vertebrate collagenases, but with different bond specificity. The same is true for the insect collagenase. Entomophthora collagenase is a proteinase of broad specificity which also cleaves collagen in its helical parts. All four collagenases also degrade other proteins according to their bond specificity.  相似文献   

9.
Properties of a collagenolytic enzyme from Bipalium kewense   总被引:1,自引:0,他引:1  
A collagenolytic enzyme from the land planarian Bipalium kewense has been purified by preparative isoelectric focusing. The enzyme has a molecular weight of 47,000 +/- 2,000 and appears to be dimeric. It has an isoelectric point of 4.6 +/- 0.1 and a high content of acidic amino acids. The amino acid composition of the Bipalium collagenase is similar to that of human skin fibroblast collagenases but clearly different from previously reported collagenolytic proteases from other invertebrates, Uca pugilator and Hypoderma lineatum. In its action on guinea-pig collagen, the enzyme produces distinct products, at low incubation temperatures, different from those produced by vertebrate and other invertebrate collagenolytic enzymes. These products have glycine as their N-terminal amino acids. As determined by viscosity measurements, the Bipalium collagenase is more active on invertebrate, earthworm, collagen than it is on the vertebrate, Type I guinea-pig skin, collagen. The Bipalium collagenase differs from both bacterial and vertebrate collagenases as well as from invertebrate, collagenolytic serine proteases.  相似文献   

10.
Poly(L-lactic acid) (PLA)-degrading Amycolatopsis sp. strains K104-1 and K104-2 were isolated by screening 300 soil samples for the ability to form clear zones on the PLA-emulsified mineral agar plates. Both of the strains assimilated >90% of emulsified 0.1% (wt/vol) PLA within 8 days under aerobic conditions. A novel PLA depolymerase with a molecular weight of 24,000 was purified to homogeneity from the culture supernatant of strain K104-1. The purified enzyme degraded high-molecular-weight PLA in emulsion and in solid film, ultimately forming lactic acid. The optimum pH for the enzyme activity was 9.5, and the optimum temperature was 55 to 60 degrees C. The PLA depolymerase also degraded casein and fibrin but did not hydrolyze collagen type I, triolein, tributyrin, poly(beta-hydroxybutyrate), or poly(epsilon-caprolactone). The PLA-degrading and caseinolytic activities of the enzyme were inhibited by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride but were not significantly affected by soybean trypsin inhibitor, N-tosyl-L-lysyl chloromethyl ketone, N-tosyl-L-phenylalanyl chloromethyl ketone, and Streptomyces subtilisin inhibitor. Thus, Amycolatopsis sp. strain K104-1 excretes the unique PLA-degrading and fibrinolytic serine enzyme, utilizing extracellular polylactide as a sole carbon source.  相似文献   

11.
棉铃虫幼虫中肠主要蛋白酶活性的鉴定   总被引:28,自引:3,他引:25  
根据棉铃虫Helicoverpa armigera(Hubner)中肠酶液对蛋白酶专性底物在不同pH下的水解作用,棉铃虫中肠的3种丝氨酸蛋白酶得到鉴定。它们是:强碱性类胰蛋白酶,水 解a-N-苯甲酰-DL-精氨酸-p-硝基苯胺的最适pH在10.50以上;弱碱性类胰蛋白酶,水解p-甲苯磺酰-L-精氨酸甲酯的最适pH为8.50~9.00;类胰凝乳蛋白酶, 水解N一苯甲酰-L-酪氨酸乙酯的最适pH亦为8.50-9.00。中肠总蛋白酶活性用偶 氮酪蛋白测定,最适pH亦在10.50以上。Ca2+对昆虫蛋白酶无影响,Mg2+仅对弱碱性类胰蛋白酶有激活作用。对苯甲基磺酰氟和甲基磺酰-L-赖氨酸氯甲基酮对弱碱性类胰蛋白酶的抑制作用较强,而对强碱性类胰蛋白酶的抑制作用较弱。甲基磺酰-L苯丙氨酸氯甲基酮除能抑制类胰凝乳蛋白酶外,还能激活弱碱性类胰蛋白酶。对牛胰蛋白酶有强抑制作用的卵粘蛋白抑制剂对昆虫蛋白酶却无抑制作用。大豆胰蛋白酶抑制剂对该虫的3种丝氨酸蛋白酶均有强的抑制作用。  相似文献   

12.
Serine proteases, ubiquitous enzymes known to function in digestion and immune protection in both vertebrates and invertebrates and implicated in regeneration in some species, were investigated in the California blackworm, Lumbriculus variegatus. Several serine proteases, rather than a single enzyme with broad specificity, were present in tissue extracts from the worms. Extracts were treated with a fluorescein‐labeled peptide chloromethyl ketone that specifically binds to trypsin/thrombin‐like proteases. Denaturing gel electrophoresis of labeled extracts showed several serine proteases with their molecular weight ranging 28,000–38,000 daltons. The trypsin/thrombin‐like activity was localized, using the fluorescein‐conjugated reagent, to the pharynx and digestive tract of L. variegatus. Movement of cells labeled by the reagent into regenerating tissues suggests that some differentiated endodermal tissues were used for reformation of digestive structures during regeneration in L. variegatus. The types of serine proteases in the extracts were further characterized by inhibitor studies. Presence of plasmin‐like activity was indicated by degradation of fibrin by tissue homogenates from the worms and the inhibitory effect of aprotinin on enzymes in these extracts. The ability of L. variegatus extracts to generate clots when incubated with rabbit plasma and partial inhibition of extract activity by phenylmethylsulfonyl fluoride and hirudin indicated presence of thrombin‐like activity. Consistent with the detection of trypsin, chymotrypsin, and plasmin‐like enzymes in the extracts was partial inhibition of L. variegatus serine protease activity by aminoethyl benzenesulfonyl fluoride and soybean trypsin inhibitor. Selective inhibition of chymotrypsin‐like activity by N‐tosyl‐l ‐phenylalanine chloromethyl ketone and chymostatin as well as trypsin‐like activity by N‐tosyl‐l ‐lysine chloromethyl ketone was observed. A potential role during regeneration for serine proteases is suggested by blockage of formation of head and tail structures by aminoethyl benzenesulfonyl fluoride, an inhibitor of these proteases.  相似文献   

13.
Previously purified arginine esterase from dog seminal plasma was characterized enzymatically. The enzyme was found to have a rather narrow specificity for arginine esters, much less for lysine esters and was practically devoid of activity towards tyrosine esters, casein, albumin and azocoll. It had a broad optimum pH between 8 and 9. It presented no kallikrein-like activities either in the blood pressure test in dog or in the rat uterus contraction test. It was inhibited by bovine pancreas trypsin inhibitor, aprotinin, phenylalanylprolyl arginine chloromethyl ketone, diisopropylfluorophosphate, phenylmethylsulfonyl fluoride, sodium dodecyl sulfate and leupeptin, but not by soybean trypsin inhibitor, tosyllysine chloromethyl ketone, tosylamide-2-phenylethyl chloromethyl ketone, iodoacetamide, Triton X-100 and EDTA. Experiments involving incubation of prostatic cytosol with purified arginine esterase showed that actin was the only important prostatic protein that was extensively hydrolyzed by this enzyme. It is not known presently whether the hydrolysis of actin is related to a true physiological function of the enzyme and whether actin and arginine esterase ever come into contact with each other in vivo. These properties indicate that arginine esterase from dog seminal plasma is different from other known proteinases including classical kallikreins, although it presents many similarities with this class of enzyme.  相似文献   

14.
Neutral histone-hydrolyzing protease has been isolated by fractionation of bovine spleen extract. The low level of the protease activity in the extract may be due to the presence of an inhibitor. The enzyme activity was increased 100--1200-fold during ammonium sulfate fractionations, gel filtration on Sephadex G-100 and G-75, chromatography on CM- and DEAE-celluloses. The protease was detected in the fraction with a molecular weight lower than 25000. The enzyme was markedly activated by dithiothreitol and EDTA and inhibited by p-chloromercuribenzoate and iodoacetic acid. It was also inhibited by N-tosyl-L-lysyl chloromethyl ketone, N-tosyl-L-phenylalanyl chloromethylketone, bovine blood serum and partially by soybean trypsin inhibitor DFP, trasylol and epsilon-amino caproic acid had no effect. Beside histone, the neutral protease hydrolyzed casein and gamma-globulin and fibrinogen in a low extent. The enzyme had no activity toward N-benzoyl-D,L-arginine p-nitroanilide, N-benzoyl-L-arginine ethyl ester and N-acetyl-L-tyrosine ethyl ester, collagen, elastin and fibrin. Some properties of the enzyme were similar to those of neutral SH-dependent proteases described by Hayashi and Lo Spalluto et al.  相似文献   

15.
Although angiotensin II (Ang II)-forming enzymatic activity in the human left cardiac ventricle is minimally inhibited by angiotensin I (Ang I) converting enzyme inhibitors, over 75% of this activity is inhibited by serine proteinase inhibitors (Urata, H., Healy, B., Stewart, R. W., Bumpus, F. M., and Husain, A. (1990) Circ. Res. 66, 883-890). We now report the identification and characterization of the major Ang II-forming, neutral serine proteinase, from left ventricular tissues of the human heart. A 115,150-fold purification from human cardiac membranes yielded a purified protein with an Mr of 30,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Based upon its amino-terminal sequence, the major human cardiac Ang II-forming proteinase appears to be a novel member of the chymase subfamily of chymotrypsin-like serine proteinases. Human heart chymase was completely inhibited by the serine proteinase inhibitors, soybean trypsin inhibitor, phenylmethylsulfonyl fluoride, and chymostatin. It was partially inhibited by p-tosyl-L-phenylalanine chloromethyl ketone, but was not inhibited by p-tosyl-L-lysine chloromethyl ketone, and aprotinin. Also, human heart chymase was not inhibited by inhibitors of the other three classes of proteinases. Human heart chymase has a high specificity for the conversion of Ang I to Ang II and the Ang I-carboxyl-terminal dipeptide His-Leu (Km = 60 microM; Kcat = 11,900 min-1; Kcat/Km = 198 min-1 microM-1). Human heart chymase did not degrade several peptide hormones, including Ang II, bradykinin, and vasoactive intestinal peptide, nor did it form Ang II from angiotensinogen. The high substrate specificity of human heart chymase for Ang I distinguishes it from other Ang II-forming enzymes including Ang I converting enzyme, tonin, kallikrein, cathepsin G, and other known chymases.  相似文献   

16.
A second collagenolytic serine protease has been isolated from the hepatopancreas of the fiddler crab, Uca pugilator. This enzyme cleaves the native triple helix of collagen under physiological conditions of pH, temperature, and ionic strength. In addition to its collagenolytic activity, the enzyme exhibits endopeptidase activity toward other polypeptides and small molecular weight synthetic substrates. The polypeptide bond specificity of this enzyme is similar to that of bovine trypsin as is its interaction with specific protease inhibitors. The amino-terminal sequence of this enzyme displays significant homology with other serine proteases, most notably with that of crayfish trypsin, and demonstrates that this enzyme is a member of the trypsin family of serine endopeptidases. The relatively unique action of this protease with regard to both collagenous and noncollagenous substrates has important implications concerning the specificity and mechanism of collagen degradation.  相似文献   

17.
A metalloprotease from the rattlesnake Crotalus atrox venom was isolated and purified from multiple-step chromatographies including anion-exchange chromatography, gel permeation and reversed-phase HPLC. The fraction was shown to be homogeneous as judged by SDS-gel electrophoresis. It also showed a high proteolytic activity against alpha- and beta-chains of fibrinogen molecules. Further characterization of the purified fraction with fibrinogenase activity indicated that it is a single-chain protease with a molecular mass of about 24 kDa and an acidic isoelectric point. It is relatively heat stable up to about 65 degrees C, inhibited by EDTA, beta-mercaptoethanol, but not by phenylmethanesulfonyl fluoride, N alpha-p-tosyl-L-phenylalanine chloromethyl ketone and N alpha-p-tosyl-L-lysine chloromethyl ketone, soybean trypsin inhibitor and aprotinin. Amino acid analysis showed that the enzyme possesses an amino acid composition very similar to some metalloproteases characterized before from the closely related rattlesnake venoms. N-Terminal sequence analysis of the enzyme corroborated some similarity between this enzyme and the reported sequences of these enzymes characterized from the Crotalidae snake family. This study indicated the presence of a novel fibrinogenase (termed Catroxase) with N-terminal sequence different from the metalloprotease with hemorrhagic activity isolated from the same Western diamondback rattlesnake.  相似文献   

18.
Venom toxins were isolated from rattlesnake (Crotalus atrox) venom by cation-exchange chromatography. Seven major fractions could be obtained by single-step ion-exchange chromatography with two fractions showing essentially apparent homogeneity by SDS-gel electrophoresis. All fractions showed various extents of specific proteolytic activity against alpha- or beta-chains of fibrinogen molecules. Further characterization of one of the purified fractions with alpha-fribrinogenase activity indicated that it is a single-chain thrombin-like protease with a molecular mass of about 30 kDa. It is relatively heat stable, inhibited by phenylmethanesulfonyl fluoride, N alpha-p-tosyl-L-phenylalanine chloromethyl ketone and N alpha-p-tosyl-L-lysine chloromethyl ketone but not by soybean trypsin inhibitor and beta-mercaptoethanol. Amino acid analysis showed that the enzyme possesses an amino acid composition very similar to thrombin and crotalase characterized before from the closely related snake venoms. N-Terminal sequence analysis of the enzyme corroborated the close similarity between this enzyme and those sequences of crotalase and kallikrein-like enzymes characterized from the same Crotalidae snake family. This study is in contrast to the previous reports which indicated a lack of thrombin- and crotalase-like enzyme in the venom of Western diamondback rattlesnake.  相似文献   

19.
A Ca2+-activated neutral protease was purified to homogeneity from an aquatic Phycomycete fungus, Allomyces arbuscula. It requires millimolar concentrations of Ca2+ for activation (1.8 to 2 mM for 50% activation). Sr2+ can replace Ca2+ but at higher concentrations (4 mM for 50% activation). The enzyme is a dimer of 40-kilodalton subunits and contains six cysteine residues, three of which are revealed only after the addition of micromolar concentrations of Ca2+; the other three are free. Enzyme activity is strongly inhibited by SH-group inhibitors and some trypsin inhibitors (leupeptin and alpha-N-tosyl-L-lysine chloromethyl ketone). The enzyme lacks general trypsinlike specificity, since substrates containing tryptic cleavage sites are not cleaved nor is enzyme activity inhibited by other trypsin inhibitors. The enzyme has many functional similarities to the extensively characterized mammalian and avian Ca2+-activated neutral proteases but differs in its substrate specificity, inhibition by alpha-N-tosyl-L-phenylalanine chloromethyl ketone, and subunit structure. It is, nevertheless, presumed that this enzyme has a similar high order of specificity and is involved in the regulation of a specific growth function.  相似文献   

20.
Latent and active collagenase were demonstrated following direct extraction from normal skin homogenates with 0.1M calcium chloride at 60 degrees C. 83% of the collagenase activity was in latent form and could be maximally activated with trypsin. Partial activation of the latent enzyme could also be demonstrated by incubation of the skin extract without added trypsin. This endogenous activation was inhibited by the addition of soya bean trypsin inhibitor, trasylol, di-isopropylphosphofluoridate and phenylmethanesulphonylfluoride, none of which inhibited collagenase directly. This suggests that the skin extracts contain a collagenase activating enzyme with the inhibition profile of a serine proteinase. A chymotryptic proteinase with a similar inhibition profile was extracted from normal human skin and partially purified. This enzyme activated fibroblast procollagenase derived from tissue culture of normal skin. The procollagenase was also partially activated by plasmin and chymotrypsin. This is the first demonstration of a collagenase activating enzyme in human skin and raises the possibility that collagenase activation by this mechanism may be responsible for collagen degradation in some disease processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号