首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 198 毫秒
1.
We analysed the long-term dynamics (1980–2007) of hypolimnetic and epilimnetic bacterial abundances and organic carbon concentrations, both dissolved (DOC) and particulate (POC), in the deep holo-oligomictic Lake Maggiore, included in the Southern Alpine Lakes Long-Term Ecological Research (LTER) site. During the 28 years of investigation, bacterial abundance and POC concentrations did not decrease with declining phosphorus concentrations, while DOC concentrations showed a pronounced decrease in the epi- and hypolimnion. We used the annual mean total lake heat content and total annual precipitation as climate-related variables, and in-lake total phosphorus as a proxy for trophic state. The model (forward stepwise regression, FSR) showed that reduced anthropogenic pressure was more significant than climate change in driving the trend in DOC concentrations. Bacterial dynamics in the hypolimnion mirrored the fluctuations observed in the epilimnion, but average cell abundance was three times lower. The FSR model indicates that bacterial number variability was dependent on POC in the epilimnion and DOC in the hypolimnion. In the hypolimnion, cell biovolumes for rod and coccal morphotypes were significantly larger than in the epilimnion.  相似文献   

2.
Lake Kinneret (Israel) has undergone several prominent chemical and biological changes since 1970. Between 1970 and 1991 significant, long-term gradual increase were recorded in epilimnetic dissolved oxygen (DO) concentrations (about 20%), and in pH levels (0.2 units). Concomitantly there was a significant increase in hypolimnetic H2S concentrations (about 75%) and a long-term gradual drop in zooplankton biomass (50%). Since 1994 these trends were reversed and the levels of the three chemical parameters have returned to those found in the 1970's and that of zooplankton to mid 1980's levels. The present study is an attempt to relate some of these long term changes by means of yearly oxygen budgets, based on fluxes of oxygen producing and consuming processes. This analysis raises the possibility that part of the long-term increase in epilimnetic DO and pH between 1970 to 1990 may be attributed to reduced inputs of organic matter from alochthonous sources and possibly to enhanced burial of organic matter in the bed sediments. However, the major cause for the observed increase in epilimnetic DO and pH is increased sedimentation of organic matter to the hypolimnion during stratification. As indicated by the amount of H2S formed in the hypolimnion during stratification added to the amount of oxygen entrapped in this layer at the onset of thermal stratification, between 1970 to 1991 the sedimentation flux of organic matter increased by approximately 40%. It is estimated that during these two decades hypolimnetic respiration increased from ca. 8% of the annual amount of oxygen evolved due to photosynthesis during the early 1970's to ca. 12.5% during the 1980's. The shift in the layer of oxidative processes is suggested to be the result of a multi-annual decline in zooplankton grazing pressure, which led to increased sedimentation of organic matter. The reversed trends for DO, pH and H2S since 1994 may have partially been due to the increase in zooplankton activity and partially due to changes in phytoplankton community structure.  相似文献   

3.
The effect of river water quality, its inflow rate, and temperature on planktonic food web composition and activities were studied in the eutrophic Sau Reservoir (Catalonia, NE Spain). We analyzed 8 longitudinal transects conducted between July 1996 and April 1999 covering a wide range of variability in both seasonal and spatial circulation patterns. To compare objectively the biological longitudinal gradients under seasonally fluctuating water levels and different types of water circulation patterns, we applied a model based on the relative distance of a sampling station from the river inflow. Even under different hydrological scenarios, the model was able to characterize epilimnetic food chain successions and locations of peaks of bacteria, heterotrophic nanoflagellates, ciliates, phytoplankton, and zooplankton along the longitudinal gradient. The amplitude of microbial peaks was directly related to the proportion of nutrient and organic carbon rich river water that mixed into the reservoir epilimnion. Enhanced abundances and activities of microbes were detected in spring and summer periods, mainly during events of river water overflow when a large proportion of the river was directly mixed into the epilimnion. Thus, the relative input of river water is suggested to be a useful predictor of the amplitude of the development of the epilimnetic microbial food webs in highly loaded canyon-shaped reservoirs. These results may have important implications in the context of global change in Mediterranean regions, where expected reductions in runoff may profoundly affect river water circulation patterns in reservoirs and hence organic carbon cycling in these ecosystems.  相似文献   

4.
We investigated the effect of dissolved organic carbon (DOC) on hypolimnetic metabolism (accumulation of dissolved inorganic carbon (DIC) and methane (CH4)) in 21 lakes across a gradient of DOC concentrations (308 to 1540 mol C L–1). The highly colored nature of the DOC in these lakes suggests it is mostly of terrestrial origin. Hypolimnetic methane accumulation was positively correlated with epilimnetic DOC concentration (Spearman rank correlation = 0.67; p < 0.01), an indicator of allochthonous DOC inputs, but not with photic zone chlorophyll a concentration (Spearman rank correlation = 0.30; p = 0.22). Hypolimnetic DOC concentrations declined in 19 of 21 lakes during the stratified period at rates that ranged from 0.06 to 53.9 mmol m–2 d–1. The hypolimnetic accumulation of DIC + CH4 was positively correlated with, and, in most cases of comparable magnitude to, this DOC decline suggesting that DOC was an important substrate for hypolimnetic metabolism. The percentage of surface irradiance reaching the thermocline was lower in high DOC lakes (0.3%) than in low DOC lakes (6%), reducing hypolimnetic photosynthesis (as measured by the depth and magnitude of the deep dissolved oxygen maxima) in the high DOC lakes. In June, the hypolimnia of lakes with < 400 mol L–1 DOC had high concentrations of dissolved oxygen and no CH4, while the hypolimnia of lakes with DOC > 800 mol L–1 were completely anoxic and often had high CH4 concentrations. Thus, DOC affects hypolimnetic metabolism via multiple pathways: DOC was significant in supporting hypolimnetic metabolism; and at high concentrations depressed photosynthesis (and therefore oxygen production and DIC consumption) in the hypolimnion.  相似文献   

5.
Bacterioplankton abundance and production were followed during one decade (1991–2001) in the hypertrophic and steeply stratified small Lake Verevi (Estonia). The lake is generally dimictic. However, a partly meromictic status could be formed in specific meteorological conditions as occurred in springs of 2000 and 2001. The abundance of bacteria in Lake Verevi is highly variable (0.70 to 22 × 106 cells ml−1) and generally the highest in anoxic hypolimnetic water. In 2000–2001, the bacterial abundance in the hypolimnion increased probably due to meromixis. During a productive season, heterotrophic bacteria were able to consume about 10–40% of primary production in the epilimnion. Our study showed that bacterioplankton in the epilimnion was top-down controlled by predators, while in metalimnion bacteria were dependent on energy and carbon sources (bottom-up regulated). Below the thermocline hypolimnetic bacteria mineralized organic matter what led to the depletion of oxygen and created anoxic hypolimnion where rich mineral nutrient and sulphide concentrations coexisted with high bacterial numbers.  相似文献   

6.
Productivity of clear and humic lakes: nutrients,phytoplankton, bacteria   总被引:1,自引:1,他引:0  
Nürnberg  Gertrud K.  Shaw  Margo 《Hydrobiologia》1998,382(1-3):97-112
The relationships between long-term surface average concentrations of humic acids measured as water colour, dissolved organic carbon (DOC) or Secchi disk transparency and trophic state variables were studied with literature data from more than 600 freshwater lakes. The geometric means of summer surface average nutrient (phosphorus and nitrogen) concentration, phytoplankton biomass (chlorophyll concentration), and hypolimnetic anoxia (anoxic factor) were significantly higher in coloured than in clear lakes. The regressions of colour or DOC on these trophic state variables were positive and significant throughout a range of three orders of magnitude. Phytoplankton or primary productivity was higher in coloured lakes, when expressed per volume of epilimnion. Annual integral primary productivity expressed on an areal basis was smaller in coloured lakes, probably a reflection of shallower phototrophic depths in these lakes. There is evidence that annual integral bacteria productivity is much higher in coloured lakes for two reasons: first, epilimnetic bacteria production was ca. four times higher in coloured lakes, second, other studies have shown that hypolimnetic bacteria production is commonly higher than epilimnetic production, especially in anoxic hypolimnia that are frequent in coloured lakes. All volumetrically expressed variables indicated higher productivity in coloured lakes. In addition, high bacteria productivity reflects a different food chain involving mixotrophs, possibly compensating for low light conditions. Our analyses indicate that primary and secondary productivity is as high as or higher than in clear lakes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
T. Frisk 《Hydrobiologia》1982,86(1-2):133-139
A simple water quality model for Lake Haukivesi, heavily loaded by pulp and paper mill effluents, has been developed. The main purpose of the model is to predict the concentration of dissolved oxygen in the hypolimnion. The lake is divided into seven sub-basins, and also into epilimnion and hypolimnion. Transfers between sub-basins are calculated using water balance equations. The state variables of the model are dissolved oxygen concentration, biochemical oxygen demand, phytoplankton biomass, and total phosphorus concentration. The effect of temperature on reaction rate coefficients has been taken into account. Temperature is calculated in the model using a second degree polynomial function. The processes affecting hypolimnetic oxygen consumption are BOD decay, decomposition of phytoplankton, benthic oxygen demand, and decomposition of slowly decaying organic matter.  相似文献   

8.
Cimbleris  André C. P.  Kalff  Jacob 《Hydrobiologia》2003,500(1-3):193-202
Epilimnetic and hypolimnetic bacterial production (BP) were measured once in summer, by the incorporation of [3H] - Leucine in each of 14 Quebec (Canada) lakes varying in nutrient content and morphometry. The epilimnetic and hypolimnetic BP were evaluated at two scales: the common per unit volume and areal (m–2) scale. The per unit volume scale epilimnetic BP was best predicted by total phosphorus (TP, r 2=0.63), and by water residence time (WRT r 2=0.57), with WRT serving as a surrogate for the nutrient and organic matter supply from the catchments. Total phosphorus and lake mean depth (Z m) together explained 79% of the variation in epilimnetic BP (l–1). In contrast, hypolimnetic BP (l–1) was neither linked to nutrients (TP or TN) or dissolved organic carbon (DOC) but only to measures of lake morphometry and best of all to hypolimnetic thickness (Zh; r 2=0.74). With increased Zh, there is an increased dilution of settling organic particles and their nutrients, resulting in a decrease in BP per litre. Conversely, when BP is expressed in areal units (m–2), hypolimnetic production increases with increasing hypolimnetic thickness. Water column thickness is a master variable, which together with Chl a (abundance of particles) determines hypolimnetic BP at the whole system scale even though the trophic status is the best single indicator of epilimnetic BP on a volumetric scale. Conclusions drawn invariably change with the scale of investigation. Moreover, it is clear that lake morphometry has a major impact on BP. A comparison of whole water column integrated BP with literature derived estimates of the equivalent sediment production (m–2) below suggests that if the estimated sediment rates are not complete technique artefacts, they are likely to be an order of magnitude higher than the water column rates (m–2) at the maximum depth sampling sites. The relative importance of the sediments could be expected to rise with a decline in the maximum depth of lakes, characterized by progressively thinner hypolimnia. The present findings point to both a primarily allocthonous fuelling of sediment production and an uncoupling of water and sediment BP.  相似文献   

9.
Low dissolved oxygen concentration in bottom layers of lakes and reservoirs usually indicates low water quality. In lakes, empirical models predicting anoxia are almost entirely based on the decay of plankton biomass, while in reservoirs recent findings suggest a prominent role of streamflow and load of organic carbon. This suggests a potential link between water quality in reservoirs and climate processes affecting streamflow. Here we support this hypothesis presenting evidence that both interannual climate variability and recent climate change, mainly consisting in a significant increase in potential evapotranspiration in the upstream basin, affected the oxygen content in a Mediterranean reservoir (Sau Reservoir, Spain). Using a 44‐year monthly record, we found strong and consistent signatures of El Niño Southern Oscillation in the inflow and reservoir oxygen content. Spectral and wavelet techniques showed that the El Niño, streamflow, and reservoir oxygen content series oscillated in common periods, which coincided with the main El Niño variability modes. An empirical model explaining the annual oxygen content in the reservoir suggested that a decreasing streamflow trend reduced the oxygen content of the reservoir by about 20%, counteracting remediation measures implemented at the basin upstream the reservoir. Our results provide the first quantitative evidence of climate change effects on reservoir water quality using long‐term instrumental data, and indicate that streamflow should be considered as a key variable in assessing climate change impact on reservoir water quality. These results are especially relevant in regions of the world where reservoirs are abundant and most climate models predict a decrease in runoff during the next decades. Both the expected trends and the sensitivity of reservoir water quality to global interannual climate variability should be considered for a correct management of water resources in the present and to design adaptation policies in the future.  相似文献   

10.
Impoundment behavior was determined for alkalinity, temperature, dissolved oxygen, and conductivity from stations located along the length of a bottom-draining, oligo-mesotrophic, hardwater, deep-storage reservoir located in central Texas. The epilimnion deepened the length of the reservoir throughout the summer as a result of drawdown. Bicarbonate alkalinity and conductivity exhibited both longitudinal and vertical stratification. Alkalinity and conductivity in the epilimnion decreased from the riverine reach downreservoir to the dam. This longitudinal progression was attributed to inflow and photosynthetically induced epilimnetic decalcification.Hypolimnetic anoxic conditions first occurred in the sedimentation zone in the upreservoir and riverine reaches and then developed in a downreservoir pattern as summer progressed as a result of drawdown. Alkalinity and conductivity in the hypolimnion increased during anoxic conditions and consequently increased in a downreservoir progression.  相似文献   

11.
Eau Galle Reservoir, Wisconsin, was treated with a hypolimnetic dose of aluminum sulfate (alum) in 1986 to diminish excessive phytoplankton production associated with high phosphorus loading from anoxic, profundal sediments. Prior to treatment, internal total phosphorus (TP) loading was 3 to 6 times greater than external TP loading during summer stratification. Periodic increases in epilimnetic TP mass and chlorophylla concentrations closely corresponded with elevated internal TP loading. For one year following treatment, internal TP loading and concentrations of soluble reactive phosphorus (SRP) in the hypolimnion were substantially reduced. However, abnormally high external TP loading during the stratified period of 1986 resulted in high TP mass and chlorophylla in the epilimnion. During the summers of 1987 and 1988, effects of alum treatment on internal TP loading were essentially negated, and epilimnetic TP mass and chlorophylla remained unchanged from pretreatment years. Multiple potential sources of P input to this reservoir make it difficult to reduce epilimnetic P and phytoplankton growth.  相似文献   

12.
The differential impact of microbial sulfate reduction and methanogenesis on the mineralization of particulate organic carbon (POC) in warm monomictic Lake Kinneret (LK), Israel was studied during three consecutive lake cycles. The hypolimnetic accumulation of total sulfide and dissolved methane was examined in relation to the physical forcing of the water column and the settling flux of particulate matter. With the on-set of thermal stratification in spring, both solutes increased concomitantly with the depletion of oxygen, first in the benthic boundary layer, followed by the upper hypolimnion. Methane production was restricted to the sediments as emphasized by the persistently linear concentration gradient in the hypolimnion. Sulfate reduction occurred both in the sediments and the water column as revealed by the hypolimnetic distribution of sulfide and recurring metalimnetic sulfide peaks. Annual differences in the accumulation pattern of both solutes appeared to be primarily linked to the settling flux of POC and the length of the stratified season. Relatively lower hypolimnetic concentrations of dissolved methane during the stratified season of 2000 coincided with increased ebullition of gaseous methane, likely as the result of a nearly a 2 m drop in the lake level. Overall, sulfate reduction accounted for more than 60% of the POC settling flux, a finding that differs from similar studies made in temperate lakes where methanogenesis was shown to be the primary mode of terminal carbon mineralization. Intensive organic carbon turnover at the sediment water interface and comparatively high sulfate concentrations in LK are the most likely reason.  相似文献   

13.
Lakes have a central role in the carbon cycle of the boreal landscape. These systems typically stratify in summer and their hypolimnetic microbial communities influence burial of biogenic organic matter in sediments. The composition of bacterial communities in these suboxic habitats was studied by pyrosequencing of 16S rRNA amplicons from five lakes with variable dissolved organic carbon (DOC) concentrations. Bacterioplankton communities in the hypolimnetic waters were clearly different from the surface layer with candidate division OD1, Chlorobi and Bacteroidetes as dominant community members. Several operational taxonomic units (OTUs) affiliated with candidate division OD1 were abundant and consistently present in the suboxic hypolimnion in these boreal lakes. The overall representation of this group was positively correlated with DOC and methane concentrations. Network analysis of time-series data revealed contrasting temporal patterns but suggested similar ecological roles among the abundant OTUs affiliated with candidate division OD1. Together, stable isotope data and taxonomic classification point to methane oxidation and autotrophic denitrification as important processes in the suboxic zone of boreal lakes. Our data revealed that while hypolimnetic bacterial communities are less dynamic, they appear to be more diverse than communities from the oxic surface layer. An appreciable proportion of the hypolimnetic bacteria belong to poorly described phyla.  相似文献   

14.
The dynamics of the nutrient pools and their stoichiometry as well as their control by ecosystem metabolism (benthic and planktonic) and benthic–pelagic exchanges (sedimentation rates and sediment waterfluxes) were examined in the Mediterranean littoral (Blanes Bay, NE Spain). Dissolved organic nitrogen comprised about half of the nitrogen present in the water column and the carbon pool was dominated by the inorganic pool (95% of the carbon present in the water column). The dissolved and particulate organic pools were deficient in P relative to C and N, indicating a rapid recycling of P from organic matter. The pelagic compartment was heterotrophic, supported by significant allochthonous inputs of land material, which also contributed greatly to the sedimentary inputs (37% of total sedimenting carbon). In contrast, the benthic compartment was autotrophic, with the excess net benthic community production balancing the deficit in pelagic community production, leading to metabolic equilibrium at the station studied. Sedimentary inputs of nitrogen, phosphorus and silicon exceeded the benthic release, indicating that the benthic compartment acted as a sink for nutrients, consistent with its autotrophic nature. Carbon inputs to the benthic compartment also exceeded requirements, due to the allochthonous subsidies to the system, so that the benthic compartment stored or exported organic carbon. An erratum to this article can be found at .  相似文献   

15.
Mining of pyrite minerals is a major environmental issue involving both biological and geochemical processes. Here we present a study of an artificial lake of a former uranium open pit mine with the aim to connect the chemistry and bacterial community composition (454-pyrosequencing of 16S rRNA genes) in the stratified water column. A shift in the water chemistry from oxic conditions in the epilimnion to anoxic, alkaline, and metal and sulfide-rich conditions in the hypolimnion was corresponded by a strong shift in the bacterial community, with few shared operational taxonomic units (OTU) between the water layers. The epilimnetic bacterial community of the lake (~20?years old) showed similarities to other temperate freshwater lakes, while the hypolimnetic bacterial community showed similarity to extreme chemical environments. The epilimnetic bacterial community had dominance of Actinobacteria and Betaproteobacteria. The hypolimnion displayed a higher bacterial diversity and was dominated by the phototrophic green sulphur bacterium of the genus Chlorobium (ca. 40?% of the total community). Deltaproteobacteria were only represented in the hypolimnion and the most abundant OTUs were affiliated with ferric iron and sulfate reducers of the genus Geobacter and Desulfobulbus, respectively. The chemistry is clearly controlling, especially the hypolimnetic, bacterial community but the community composition also indicates that the bacteria are involved in metal cycling in the lake.  相似文献   

16.
Vrede K 《Microbial ecology》2005,49(2):245-256
Limitation of bacterioplankton production by nutrients and temperature was investigated in eight temperate lakes in summer. Six of the lakes were resampled in autumn. The lakes differ in nutrient content, water color, and concentration of dissolved organic carbon. Nutrients (phosphorus, nitrogen, and organic carbon) were added alone and in all possible combinations to filtered lake water inoculated with bacteria from the lake. After incubation for 36–40 h at in situ temperatures (ranging from 7 to 20°C), the response in bacterioplankton production was determined. The effect of increased temperature on bacterioplankton growth was also tested. Bacterioplankton production was often limited by phosphorus alone, organic carbon alone, or the two in combination. Phosphorus limitation of bacterioplankton production was more common in the summer, whereas limitation by organic carbon was more frequently observed in the autumn. There was a close balance between limitation by phosphorus and organic carbon in the epilimnion in the summer. In the hypolimnion in the summer, bacterioplankton growth was primarily phosphorus-limited. The effect of phosphorus additions decreased with increasing phosphorus concentrations in the lakes. However, there were no correlations between the effect of added organic carbon and water color, dissolved organic carbon concentration, or phosphorus concentration. When temperature was low (in the hypolimnion in the summer, and throughout the water column in the autumn) temperature also limited bacterioplankton production. Thus, temperature and inorganic nutrients or organic compounds can limit bacterioplankton growth both alone and simultaneously. However, at low temperatures, temperature is the most important factor influencing bacterioplankton growth.  相似文献   

17.
Mgazana, a rural southern African mangrove system, was visited monthly from August, 1995 to February, 1997 to collect water samples for nutrient analysis. Surface and bottom samples were taken during spring low tide at seven stations along the estuary and the following physico-chemical parameters measured: river flow, temperature, salinity, oxygen, transparency, ammonia, nitrite, nitrate, phosphate, inorganic carbon (IC), organic carbon (OC), total carbon (TC), soluble nitrogen (SN), particulate nitrogen (PN) and total nitrogen (TN). Using correlation matrix analysis and ANOVA, river flow was found to affect estuarine salinity, transparency and stratification, which influenced nutrient dynamics. Significant seasonal (winter and summer) differences were found for temperature, river flow, nitrate, SN, TN, IC and OC. Most nutrients were significantly correlated with river flow showing gradients down the estuary, indicating allochthonous input from the catchment. OC levels within the estuary were high, probably due to autochthonous mangrove leaf-fall processing by the various in-fauna, but high levels measured at the head of the estuary during high river flow suggested additional allochthonous input from coastal forest litter. Conversely, IC was negatively correlated with river flow suggesting that autochthonous faunal and microbial mineralisation of organic matter occurs within creeks, which is then diluted by increased stream-flow. An N:P ratio of 2.7:1 was obtained for this rural mangrove system, which was low compared with Spartina-based East Cape estuaries subject to urban, industrial and agricultural pollution.  相似文献   

18.
Summary Temperature and dissolved oxygen content measured weekly at various depths during 3 1/2 years in the filling phase of a tropical man-made lake, show that at the dam-site fluctuations of epilimnion values occurred, whereas the hypolimnion remained almost constant in temperature and permanently devoid of oxygen. This confirms previous reports concerning another mid-lake station. Apart from rather steep superficial temperature gradients, classical thermoclines did not occur. It is proposed that the lake could not become fully mixed by wind action because of the great vertical density differences at the prevailing temperatures, and because of the drowning forest still giving shelter by the extending crowns. On the other hand, the stratification was not static. Fluctuations between high and low epilimnion values for temperature, oxygen content and transparency oocurred yearly, but could not be related satisfactorily to the prevailing seasons. The depth of the epilimnion increased each year. It is suggested that the observed kind of stratification was effective though not absolute. Vertical exchange may have been reduced by increasing density differences, but it was not fully eliminated. This explains the varying degree of incorporation of upper hypolimnetic layers in the epilimnion in relation with epilimnetic temperature. Comparison with large African reservoirs accentuates the exceptional limnological development of Lake Brokopondo during ifs filling phase.  相似文献   

19.

Lakes and reservoirs globally are experiencing unprecedented changes in land use and climate, depleting dissolved oxygen (DO) in the bottom waters (hypolimnia) of these ecosystems. Because DO is the most energetically favorable terminal electron acceptor (TEA) for organic carbon mineralization, its availability controls the onset of alternate TEA pathways (for example, denitrification, manganese reduction, iron reduction, sulfate reduction, methanogenesis). Low DO concentrations can trigger organic carbon mineralization via alternate TEA pathways in the water column and sediments, which has important implications for greenhouse gas production [carbon dioxide (CO2) and methane (CH4)]. In this study, we experimentally injected supersaturated DO into the hypolimnion of a eutrophic reservoir and measured concentrations of TEAs and terminal electron products (TEPs) in the experimental reservoir and an upstream reference reservoir. We calculated the electron equivalents yielded from each TEA pathway and estimated the contributions of each TEA pathway to organic carbon processing in both reservoirs. DO additions to the hypolimnion of the experimental reservoir promoted aerobic respiration, suppressing most alternate TEA pathways and resulting in elevated CO2 accumulation. In comparison, organic carbon mineralization in the reference reservoir’s anoxic hypolimnion was dominated by alternate TEA pathways, resulting in both CH4 and CO2 accumulation. Our ecosystem-scale experiments demonstrate that the alternate TEA pathways that succeed aerobic respiration in lakes and reservoirs can be manipulated at the ecosystem scale. Moreover, changes in the DO dynamics of freshwater lakes and reservoirs may result in concomitant changes in the redox reactions in the water column that control organic carbon mineralization and greenhouse gas accumulation.

  相似文献   

20.
The settling flux of seston (dry weight, DW), chlorophyll a (Chl a), particulate organic carbon (POC), particulate organic nitrogen (PON), and particulate phosphorus (PP) was measured monthly in 1981–1983 at 10 different depths in Lake Chuzenji, Japan; an oligotrophic lake with a maximum depth of 163 m. The Ti concentration in entrapped matter was used to separate the sedimentation flux into allochthonous and autochthonous components. Inflow loads of dissolved nutrients (DN: 4.5, DP: 0.48 g m-2a-1) were almost sufficient to supply the autochthonous fluxes at 30 m (PON: 2.9, PP: 0.51 g m-2a-1 ), and this flux of POC (26.6 g m-2a -1) was about one-third of primary production (84 g C M-2a-1). Sedimentation of particulate matter was the main path of losing nutrients from lake water, explaining more than 80% removal of inflow loads (TN, TP). Decomposition rates during sedimentation which were calculated from the vertical difference in the autochthonous flux agreed very closely with the results obtained by laboratory experiments of a 100-day incubation (content ratios from field observations were: POC 0.67, PON 0.65, PP 0.85; and from laboratory experiments they were: POC 0.68, PON 0.70, PP 0.94). These decomposition rates and those near the sediment interface were used to explain dissolved oxygen depletion and nitrate increase in the hypolimnion during stratification. The average sinking velocities were 1.82m d-1 for seston and 1.16 m d-1 for Chl a at 30m, they were influenced by Chl a content of seston.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号