首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Secondary culture of nontransformed bile duct epithelium has been difficult to achieve. STO feeder cell-dependent secondary cultures of adult pig bile duct cells were established from primary cultures of adult pig liver cells. Adult pig hepatocytes exhibited limited or no replication and were lost from the secondary culture at Passage 3 or 4. In contrast, adult pig bile duct cells replicated and were carried for 4–8 passages in secondary culture. A simple method to produce nearly pure pig intrahepatic bile duct cultures was first to freeze a relatively crude liver cell preparation. Upon subsequent thawing, all hepatocytes and most macrophages were lysed. Bile duct cells composed 95% of the surviving cells after the freeze/thaw, and they grew out rapidly. The bile duct cells grew on top of the STO feeder cells as closely knit epithelial, colonial outgrowths. Histocytochemical and biochemical analyses demonstrated high levels of gamma-glutamyltranspeptidase activity and low levels of P450 activity in the bile duct cultures. The bile duct cells spontaneously adopted a multicellular ductal morphology after 7–10 d in static culture which was similar to that found in in vivo pig liver. Transmission electron microscopic examination revealed complex junctions and desmosomes typical of epithelium, and lumenally projecting cilia typical of in vivo intrahepatic bile ductules. This simple method for the coculture of pig intrahepatic bile duct cells which adopt in vivo-like structure may facilitate biological studies of this important, but difficult to culture, cell type.  相似文献   

2.
DNA synthesis of adult rat parenchymal hepatocytes alone in primary culture can be stimulated only by the addition of humoral growth factors to the culture medium. However, when parenchymal hepatocytes were cocultured with nonparenchymal liver cells from adult rats, their DNA synthesis was markedly stimulated in the absence of added growth factors or calf serum. DNA synthesis of parenchymal hepatocytes was not stimulated by conditioned medium from nonparenchymal liver cells and was greatest when the parenchymal cells were plated on 24-h cultures of nonparenchymal liver cells. A dead feeder layer of nonparenchymal cells was almost as effective as a feeder layer of viable nonparenchymal cells. These results suggest that the stimulation of DNA synthesis in parenchymal hepatocytes was not due to some soluble factors secreted by nonparenchymal liver cells but to an insoluble material(s) produced by the nonparenchymal liver cells. This insoluble material(s) was collagenase- and acid-sensitive, suggesting that it was a protein containing collagen. The effect of nonparenchymal liver cells was specific: coculture with hepatoma cells, liver epithelial cells, or Swiss 3T3 cells did not stimulate DNA synthesis in parenchymal hepatocytes. Added insulin and epidermal growth factor showed additive effects with nonparenchymal cells in the cocultures. These results suggest that DNA synthesis in parenchymal hepatocytes is stimulated not only by various humoral growth factors but also by cell-cell interaction between parenchymal and nonparenchymal hepatocytes, possibly endothelial cells. This cell-cell interaction may be important in repair of liver damage and liver regeneration.  相似文献   

3.
The PICM-19 pig liver stem cell line was cultured in space for nearly 16 d on the STS-126 mission to assess the effects of spaceflight on the liver’s parenchymal cells—PICM-19 cells to differentiate into either monolayers of fetal hepatocytes or 3-dimensional bile ductules (cholangiocytes). Semi-quantitative data included light microscopic assessments of final cell density, cell morphology, and response to glucagon stimulation and electron microscopic assessment of the cells’ ultrastructural features and cell-to-cell connections and physical relationships. Quantitative assessments included assays of hepatocyte detoxification functions, i.e., inducible P450 activities and urea production and quantitation of the mRNA levels of several liver-related genes. Three post-passage age groups were included: 4-d-, 10-d-, and 14-d-old cultures. In comparing flight vs. ground-control cultures 17 h after the space shuttle’s return to earth, no differences were found between the cultures with the exception being that some genes were differentially expressed. By light microscopy both young and older cultures, flight and ground, had grown and differentiated normally in the Opticell culture vessels. The PICM-19 cells had grown to approximately 75% confluency, had few signs of apoptosis or necrosis, and had either differentiated into monolayer patches of hepatocytes with biliary canaliculi visible between the cells or into 3-dimensional bile ductules with well-defined lumens. Ultrastructural features between flight and ground were similar with the PICM-19 cells displaying numerous mitochondria, Golgi apparatus, smooth and rough endoplasmic reticulum, vesicular bodies, and occasional lipid vacuoles. Cell-to-cell arrangements were typical in both flight and ground-control samples; biliary canaliculi were well-formed between the PICM-19 cells, and the cells were sandwiched between the STO feeder cells. PICM-19 cells displayed inducible P450 activities. They produced urea in a glutamine-free medium and produced more urea in response to ammonia. The experiment’s aim to gather preliminary data on the PICM-19 cell line’s suitability as an in vitro model for assessments of liver function in microgravity was demonstrated, and differences between flight and ground-control cultures were minor.  相似文献   

4.
Summary Continuous cultures of pluripotent parenchymal hepatocytes were derived from the epiblasts of 8-day-old pig blastocysts. The cells were polygonal and had phase-contrast dark, granular cytoplasm with prominent nuclei and nucleoli. These feeder-dependent cell cultures differentiated into large, multicellular, secretory, duct-like structures or formed small canaliculi between individual cells. Alternatively, the cells accumulated droplets that stained intensely with Oil Red O, a lipid-specific stain. Alpha-fetoprotein (AFP), albumin, and β-fibrinogen mRNAs were expressed as the cells differentiated in culture. Serum-free medium that was conditioned by the cells contained transferrin, AFP, and albumin. The growth and viability of the cells were inhibited by transforming growth factor β1 (TGFβ1) at concentrations ≥1 ng/ml. The cell cultures grew slowly with doubling times of 2 to 3 d. One of the cultures, pig inner cell mass-19 (PICM-19), was passaged continuously for over 2 yr [>100 population doublings (PD)] and appears to be an infinitely self-renewing cell population. The stem cell characteristics of the epiblast-derived fetal hepatocytes indicate that the cells may be unique for investigations of liver differentiation and organogenesis.  相似文献   

5.
In this work we have studied the isolation and culture of mature bovine hepatocytes on plastic dishes without exogenous matrix. The liver has been disaggregated in a collagenase solution instead of undergoing a perfusion step. After a few days in culture, the plates showed several clusters of different cell types. Although the average yield was 1.60±0.57×108 viable liver cells per gram of tissue, these cultures were formed by non-parenchymal cells and only very few or none by parenchymal cells. In these cultures, actin structures used as a marker for Stellate (Ito) cells have been visualized by immunocytochemical techniques. In order to increase the proportion of parenchymal cells a centrifugation on Percoll, which separates cell sub-populations, has been introduced. Though the yield was lower than in the previous method, these pre-purified cultures were only composed of hepatocytes. It has been shown that these cells exhibited albumin synthesis, which is a specific hepatocytes function. In addition, these cultures were capable of producing metabolites of 7-ethoxycoumarin at a higher rate than non purified cell cultures. Therefore this simplified procedure for the isolation and culture of functional and viable hepatocytes may be applied for in vitro studies in bovine.  相似文献   

6.
It is difficult to induce the maturation of embryonic stem (ES) cells into hepatocytes in vitro. We previously reported that Thy1-positive mesenchymal cells derived from the mouse fetal liver promote the maturation of hepatic progenitor cells. Here, we isolated alpha-fetoprotein (AFP)-producing cells from mouse ES cells for subsequent differentiation into hepatocytes in vitro by coculture with Thy1-positive cells. ES cells expressing green fluorescent protein (GFP) under the control of an AFP promoter were cultured under serum- and feeder layer-free culture conditions. The proportion of GFP-positive cells plateaued at 41.6 +/- 12.2% (means +/- SD) by day 7. GFP-positive cells, isolated by flow cytometry, were cultured in the presence or absence of Thy1-positive cells as a feeder layer. Isolated GFP-positive cells were stained for AFP, Foxa2, and albumin. The expression of mRNAs encoding tyrosine amino transferase, tryptophan 2,3-dioxygenase, and glucose-6-phosphatase were only detected following coculture with Thy1-positive cells. Following coculture with Thy1-positive cells, the isolated cells produced and stored glycogen. Ammonia clearance activity was also enhanced following coculture. Electron microscopic analysis indicated that the cocultured cells exhibited the morphologic features of mature hepatocytes. In conclusion, coculture with Thy1-positive cells in vitro induced the maturation of AFP-producing cells isolated from ES cell cultures into hepatocytes.  相似文献   

7.
Changes in the expression of two isoenzymic forms of pyruvate kinase in fetal hepatocyte cultures derived from 15- and 19-day gestation rats are studied by immunocytochemical localization of the respective antigens. Initially, in cultures established from 15-day gestation rats only the ‘embryonic’ form of the enzyme (M2-PK) is detected in all cells. Cells which stain positively for the liver specific form of the enzyme (L-PK) are not observed. After 2 days' culture, a significant number of cells have become positive for L-PK. All the positive cells have a morphology which is typical of liver parenchymal cells. However, the majority of parenchymal cells remain negative for L-PK while retaining M2-PK. In contrast, all cells which display a fibroblastic morphology, as well as clear epithelial cells are M2-PK positive, but L-PK negative. In 5-day-old cultures, all hepatocytes have become L-PK positive. Hepatocytes derived from 19-day gestation rat liver stain positively for L-PK on day 1 of culture in agreement with previously published biochemical data. A minor population of negative cells is non-parenchymal in appearance. All parenchymal cells are negative when the culture is stained with M2-PK specific antibody. Five days after the culture is established, many non-parenchymal cells are present. Such cells are L-PK negative and M2-PK positive and their presence in cultures derived from both 15- and 19-day gestation rats explains the persistence of M2-PK. This study reveals that during enzymic differentiation of fetal hepatocytes, all immature hepatocytes are initially capable of expressing M2-PK while they do not produce L-PK. During culture, a sub-population of these cells initiates synthesis of L-PK, indicating that only a fraction of the cells differentiate. At the same time, hepatocytes which do not stain for M2-PK appear, which suggests that cells which initiate L-PK synthesis have ceased to make M2-PK. Eventually all hepatocytes are L-PK positive and M2-PK negative, indicating that a switchover in expression of the pyruvate kinase isoenzymes has occurred.  相似文献   

8.
A procedure is described for maintaining primary cultures of adult rat hepatocytes for prolonged periods of time on layer of irradiated mouse fibroblast cell line (C3H/1OT1/2) and on a secondary lung fibroblasts obtained from Sprague Dawley rats. Morphologically and ultrastructurally the cocultivated hepatocytes retained many characteristics of hepatocytes in vivo. Within 24 hours after seeding, the individual cells were attached on the feeder cell layer and the in vivo polarity of the liver cells reappeared. Electron microscope studies demonstrated the appearance of newly developed bile ducts and junctions between hepatocytes as well as between hepatocytes and feeder cells. Histochemically, these cells were positive for glucose-6-phosphatase and for glycogen. After 14 days in culture the hepatocytes could be reseeded onto fresh C3H1OT1/2 cells. In contrast, hepatocytes maintained on plastic substrate lost their glycogen content and the epithelial character of the liver cells after 5 days in culture, and by day 10 this culture became predominantly fibroblastic. It is suggested that hepatocytes maintained on an irradiated fibroblast feeder layer provide a valuable approach for studying the morphogenesis, cytotoxicity, or the metabolism of different chemicals in vitro.  相似文献   

9.
A serum-free, feeder cell-dependent, selective culture system for the long-term culture of porcine hepatocytes or cholangiocytes was developed. Liver cells were isolated from 1-wk-old pigs or young adult pigs (25 and 63 kg live weight) and were placed in primary culture on feeder cell layers of mitotically blocked mouse fibroblasts. In serum-free medium containing 1% DMSO and 1 μM dexamethasone, confluent monolayers of hepatocytes formed and could be maintained for several wk. Light and electron microscopic analysis showed hepatocytes with in vivo-like morphology, and many hepatocytes were sandwiched between the feeder cells. When isolated liver cells were cultured in medium without dexamethasone but with 0.5% DMSO, monolayers of cholangioctyes formed that subsequently self-organized into networks of multicellular ductal structures, and whose cells had monocilia projecting into the lumen of the duct. Gamma-glutamyl transpeptidase (GGT) was expressed by the cholangiocytes at their apical membranes, i.e., at the inner surface of the ducts. Cellular GGT activity increased concomitantly with the development of ductal structures. Cytochrome P-450 was determined in microsomes following addition of metyrapone to the cultures. In vivo-like levels of P-450s were found in hepatocyte monolayers while levels of P-450 were markedly reduced in cholangiocyte monolayers. Serum protein secretion in conditioned media was analyzed by Western blot and indicated that albumin, transferrin, and haptoglobin levels were maintained in hepatocytes while albumin and haptoglobin declined over time in cholangiocytes. Quantitative RT-PCR analysis showed that serum protein mRNA levels were significantly elevated in the hepatocytes monolayers in comparison to the bile ductule-containing monolayers. Further, mRNAs specific to cholangiocyte differentiation and function were significantly elevated in bile ductule monolayers in comparison to hepatocyte monolayers. The results demonstrate an in vitro model for the study of either porcine hepatocytes or cholangiocytes with in vivo-like morphology and function.  相似文献   

10.
A culture system was devised to study the differentiation of bovine blastomeres. Blastomeres (2–13 per well) from embryos produced by in vitro maturation, fertilization, and culture of oocytes obtained from slaughterhouse ovaries were cultured for 10 days in 24-well culture plates on feeder layers in blastomere culture medium (BCM: equal parts tissue culture medium 199 and low-glucose Dulbecco's modified Eagle's medium with 10% fetal bovine serum). Ovine embryonic fibroblasts and STO cells were superior to bovine and mouse embryonic fibroblasts as mitotically inactivated feeder cells. Over five studies in which four blastomeres from an embryo were added to each culture well, an average of one colony per well formed from the blastomeres. The colonies continued to grow throughout the culture period, and most colonies resembled trophectoderm in their cellular characteristics, although some cultures contained a mixture of trophectoderm and endoderm. When the number of blastomeres cultured in each well was varied from 2–8, the number of colonies formed was proportional to the number of blastomeres added. Blastomeres from day 5 and day 6 embryos produced fewer colonies than did those from day 4 embryos, perhaps as a result of differentiation and tighter blastomere adhesion resulting in damage during their separation. The absence of serum did not alter the number of colonies formed. A number of growth factors, including LIF, OM, PDGFα, and FGF4, had no effect on the number of colonies, the size of colonies, or their alkaline phosphatase staining score beyond that provided by the feeder layer or serum when present. Blastomeres did not form colonies in the absence of feeder layers. Mol. Reprod. Dev. 48:238–245, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Rhodamine-conjugated antibodies specific for phenylalanine hydroxylase and serum albumin were employed as cytochemical probes to identify these two proteins in H4 hepatoma cells and in isolated rat hepatocytes. Each fluorescent antibody stained the cells specifically and in a distinctive manner. In both cell types, albumin staining was discretely localized in cytoplasmic and in H4 cultures varied somewhat from cell to cell. Evidence from cultures of REB15 cells, a strain derived by cloning H4 cells in tyrosine-free medium, suggested that the staining variability of H4 cells could reflect a variability in phenylalanine hydroxylase content. Hydrocortisone-treated H4 cells and REB15 cultures contain increased amounts of phenylalanine hydroxylase; and all cells in the culture appear to be induced by the hormone. Evidence was presented to show that the albumin visualized within the isolated hepatocytes had been synthesized by these cells, and, furthermore, that quantitatively nearly all intracellular albumin in the isolated rat hepatocytes appeared to be entrained in the secretion pathway (analogous data already exist for H4 cells [Baker, R.E., and R. Shiman. 1979. J. Biol. Chem. 254:9633-9639]). By scoring specific fluorescence, 86 and 98% of the H4 cells and 89 and 98% of the isolated hepatocytes were found to contain phenylalanine hydroxylase and albumin, respectively. Therefore, almost all cells in each population appeared to synthesize both proteins. An implication of these findings is that in rat virtually all liver parenchymal cells must synthesize both phenylalanine hydroxylase and albumin.  相似文献   

12.
Cell suspensions were prepared from normal and regenerating liver of adult rats by perfusion with a calcium-chelating agent (EGTA), collagenase and hyaluronidase, and the cells were incubated in culture medium. In cultures prepared from regenerating liver at 20 h after partial hepatectomy, 23 ± 4% of parenchymal cells initially incorporated [3H]TdR. This incorporation was shown to reflect semiconservative DNA replication. At least some parenchymal cells were able to complete their DNA synthesis and to progress through G2 and mitosis. Numbers of hepatocytes in mitosis increased up to 12 h of culture. On the other hand, no entry of hepatocytes into the S period was detectable in cultures prepared from normal or regenerating liver.  相似文献   

13.
D Acosta  D C Anuforo  R V Smith 《In vitro》1978,14(5):428-436
Monolayers of liver cells cultured from postnatal rats were grown in two types of media. One set of cultures was grown in selective medium which contained ornithine but was deficient in arginine; the other set was grown in nonselective medium which contained arginine but no ornithine. The cultures that were grown in the nonselective medium contained primarily a mixture of two cell types found in the liver: parenchymal hepatocytes and fibroblast-like cells. The fibroblast cells tended to overgrow the hepatocytes after several days in culture. In contrast, fibroblast overgrowth was inhibited in cultures grown in the selective, arginine-deficient medium, thereby resulting in relatively pure cultures of functional parenchymal hepatocytes. Comparative studies of sulfobromophthalein (BSP) uptake showed that the cultures grown in selective medium continued to be active much longer than the cultures grown in the nonselective medium. Pyruvate kinase assays revealed that the cultures grown in selective medium contained primarily the L-isoenzyme type which is characteristic of parenchymal hepatocytes. Cultures grown in nonselective medium contained a mixture of L- and M-isoenzymes which is indicative of nonparenchymal liver cells. The reported results indicate that selective, arginine-deficient medium permits primarily the growth of parenchymal hepatocytes found in neonatal rat liver.  相似文献   

14.
Effect of sodium butyrate on primary cultures of adult rat hepatocytes   总被引:2,自引:0,他引:2  
Summary Sodium butyrate, at millimolar concentrations, seems to mediate or initiate multiple effects on many mammalian cells in culture. Although many transformed cell lines respond to butyrate treatment with acquisition of normal cellular characteristics, the effect of butyrate on a normal cell type, the parenchymal hepatocyte, has not been studied. Serum-free primary cultures of adult rat hepatocytes maintain many adult characteristics, yet after several days in culture a loss of adult characteristics occurs while fetal characteristics are often reexpressed. Therefore, we investigated whether butyrate treatment would improve the morphologic and biochemical characteristics of cultured hepatocytes. Exposure to 5 mM butyrate for 3 d did not affect hepatocyte viability or morphology but retarded the progressive decline in cytochrome P-450 levels and 5′-nucleotidase activity. The spontaneous increase in alkaline phosphatase activity was reduced and the induction of tyrosine aminotransferase was inhibited after 3 d in culture. The fetal liver characteristic, gamma glutamyltranspeptidase, was not affected by butyrate treatment. Results of this study suggest that butyrate represents a nontoxic compound capable of improving the maintenance of cell culture characteristics of adult rat hepatocytes.  相似文献   

15.
Fetal hepatocytes cultured in medium supplemented with fetal calf serum (FCS) or Ultroser SF do not maintain production of albumin or transferrin beyond one week of culture. When dexamethasone (10(-7) M) is present, secretion of albumin and transferrin can be extended to two weeks, however, levels are extremely low. By three weeks, neither plasma protein can be detected in the culture medium in either conditions of culture. In contrast, hepatocytes maintained in medium supplemented with Ultroser G continue to produce albumin and transferrin at high levels for the entire three week period of this study. The morphology of the cultures are different. In FCS and Ultroser SF supplemented medium there are many more fibroblast and epithelial-like cells and relatively fewer cells which are distinctly hepatocytes when compared with Ultroser G supplemented medium. The level of tyrosine aminotransferase, which is a dexamethasone inducible enzyme, is found to be much higher in Ultroser G cultures, with no further increase demonstrable by addition of dexamethasone. In contrast, dexamethasone induces the enzyme by about eight-fold in cultures maintained in FCS supplemented medium. Therefore it appears that Ultroser G already contains sufficient steroid activity to maximize the level of tyrosine aminotransferase. A comparison between Ultroser C and SF (steroid-free) suggests that the mixture of steroid and steroid derivatives in the G formulation must be important in the maintenance of differentiated functions of hepatocytes in culture. However, supplementation of FCS cultures with dexamethasone, which is known to be present in Ultroser G, does not allow hepatocytes to retain their differentiated functions over an extended period. Therefore it is concluded that other components besides dexamethasone must be important.  相似文献   

16.
Human embryonic stem (hES) cells have been successfully maintained using human-cell feeder systems or feeder-free systems. However, despite advances in culture techniques, hES cells require supplementation with fibroblast growth factor 2 (FGF-2), an exogenous stemness factor, which is needed to sustain the authentic undifferentiated status. We developed a new culture system for hES cells; this system does not require supplementation with FGF-2 to obtain hES cells that are suitable for tissue engineering and regenerative medicine. This culture system employed mesenchymal stem cells derived from hES cells (hESC-MSCs) as autologous human feeder cells in the absence of FGF-2. The hES cell line SNUhES3 cultured in this new autologous feeder culture system maintained the typical morphology of hES cells and expression of pluripotency-related proteins, SSEA-4, TRA-1-60, OCT4, and alkaline phosphatase, without development of abnormal karyotypes after more than 30 passages. RNA expression of the pluripotency-related genes OCT4 and NANOG was similar to the expression in SNUhES3 cells maintained on xenofeeder STO cells. To identify the mechanism that enables the cells to be maintained without exogenous FGF-2, we checked the secretion of FGF-2 from the mitomycin-C treated autofeeder hESC-MSCs versus xenofeeder STO cells, and confirmed that hESC-MSCs secreted FGF-2 whereas STO cells did not. The level of FGF-2 in the media from the autofeeder system without exogenous FGF-2 was comparable to that from the xenofeeder system with addition of FGF-2. In conclusion, our new culture system for hES cells, which employs a feeder layer of autologous hESC-MSCs, supplies sufficient amounts of secreted FGF-2 to eliminate the requirement for exogenous FGF-2.  相似文献   

17.
J Deschenes  J P Valet  N Marceau 《In vitro》1980,16(8):722-730
The two-step collagenase perfusion method originally developed for the high yield isolation of parenchymal cells from adult rat livers has been adapted to rats of 1 day, 1 week, and 2 weeks of age. The use of this method to isolate hepatocytes from five or six rats of the respective ages demonstrated its reliability in terms of cell yield, percentage of single cells, and cell viability. In all cases, hepatocytes attach with high efficiency to fibronectin precoated dishes using serum-free culture medium. The dynamics of spreading is faster for newborn hepatocytes than adult ones. The functional integrity of these parenchymal liver cells was assessed by their capacity to secrete albumin and alpha-fetoprotein in serum-free medium and to express lactate dehydrogenase activity over a 24-hr period in primary culture.  相似文献   

18.
19.
Summary The two-step collagenase perfusion method originally developed for the high yield isolation of parenchymal cells from adult rat livers has been adapted to rats of 1 day, 1 week, and 3 weeks of age. The use of this method to isolate hepatocytes from five or six rats of the respective ages demonstrated its reliability in terms of cell yield, percentage of single cells, and cell viability. In all cases, hepatocytes attach with high efficiency to fibronectin precoated dishes using serum-free culture medium. The dynamics of spreading is faster for newborn hepatocytes than adult ones. The functional integrity of these parenchymal liver cells was assessed by their capacity to secrete albumin and α-fetoprotein in serum-free medium and to express lactate dehydrogenase activity over a 24-hr period in primary culture. Part of this work was presented at the 30th Annual Meeting of the Tissue Culture Association, Seattle, June, 1979.  相似文献   

20.
A bovine trophectoderm cell line was established from a parthenogenetic in vitro-produced blastocyst. To initiate the cell line, 8-day parthenogenetic blastocysts were attached to a feeder layer of STO fibroblasts and primary outgrowths occurred that consisted of trophectoderm, endoderm, and very occasionally epiblast tissue. Any endoderm and epiblast outgrowths were removed from the primary cultures within the first 10 days of culture by dissection. One of the primary trophectoderm cell cultures was chosen for further propagation and was passaged by physical dissociation and replating on STO feeder cells. The cell culture, designated BPT-1, was maintained in T25 flasks and passaged at a 1:3 split ratio for the first 15 passages approximately once every 2 weeks. Thereafter, the cell culture was passaged at 1:10-1:40 split ratios. Transmission electron microscopic examination showed the cells to be a polarized epithelium with apical microvilli, a thin basal lamina, and lateral junctions consisting of tight junctions and desmosomes. Lipid vacuoles and digestive vacuoles were also prominent features of the BPT-1 cells. Metaphase spread analysis at passage 59 indicated a near diploid cell population (2n = 60) with a mode and median of 60 and a mean of 64. BPT-1 cells secreted interferon-tau into the medium as measured by anti-viral assay and Western blot analysis. The cell line provides an in vitro model of parthenogenote trophectoderm whose biological characteristics can be compared to trophectoderm cell lines derived from bovine embryos produced by normal fertilization or nuclear transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号