首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Liu JD  Tsai SH  Lin SY  Ho YS  Hung LF  Pan S  Ho FM  Lin CM  Liang YC 《Life sciences》2004,74(19):2451-2463
Heme oxygenase-1 (HO-1) is induced as a beneficial and adaptive response in cells and tissues exposed to oxidative stress. Herein we examined how various eicosanoids affect the induction of HO-1, and the possible mechanism underlying 15-deoxy-Delta(12,14)- prostaglandin J(2) (15d-PGJ(2))-induced HO-1 expression. PGH(2), PGD(2) and its metabolites of the PGJ(2) series, and PGA(1) markedly induced the protein expression of HO-1. Arachidonic acid (AA), docosahexaenoic acid (DHA), PGE(2), PGF(2 alpha), and thromboxane B(2) (TXB(2)) were shown to have no effect on the induction of HO-1. 15d-PGJ(2) was the most potent activator achieving significance at 5 microM. Although 15d-PGJ(2) significantly activated the MAPKs of JNK and ERK, the activation of JNK and ERK did not contribute to the induction of HO-1 as determined using transfection of dominant-negative plasmids and MAPKs inhibitors. Additional experiment indicated that 15d-PGJ(2) induced HO-1 expression through peroxisome proliferator-activated receptor (PPAR)-independent pathway. 15d-PGJ(2) significantly decreased the intracellular level of reduced glutathione; and the thiol antioxidant, N-acetyl-L-cysteine (NAC), and the thiol-reducing agent, dithiothreitol (DTT), inhibited the induction of HO-1 by 15d-PGJ(2). Finally, NAC and DTT exhibited significant inhibition of HO-1 mRNA and HO-1 promoter reporter activity induced by 15d-PGJ(2). These results suggest that thiol antioxidant and reducing agents attenuate the expression of HO-1 induced by 15d-PGJ(2), and that the cellular thiol-disulfide redox status may be linked to HO-1 activation.  相似文献   

6.
7.
Glutamine (GLN) has been shown to protect cells, tissues, and whole organisms from stress and injury. Enhanced expression of heat shock protein (HSP) has been hypothesized to be responsible for this protection. To date, there are no clear mechanistic data confirming this relationship. This study tested the hypothesis that GLN-mediated activation of the HSP pathway via heat shock factor-1 (HSF-1) is responsible for cellular protection. Wild-type HSF-1 (HSF-1+/+) and knockout (HSF-1–/–) mouse fibroblasts were used in all experiments. Cells were treated with GLN concentrations ranging from 0 to 16 mM and exposed to heat stress injury in a concurrent treatment model. Cell viability was assayed with phenazine methosulfate plus tetrazolium salt, HSP-70, HSP-25, and nuclear HSF-1 expression via Western blot analysis, and HSF-1/heat shock element (HSE) binding via EMSA. GLN significantly attenuated heat-stress induced cell death in HSF-1+/+ cells in a dose-dependent manner; however, the survival benefit of GLN was lost in HSF-1–/– cells. GLN led to a dose-dependent increase in HSP-70 and HSP-25 expression after heat stress. No inducible HSP expression was observed in HSF-1–/– cells. GLN increased unphosphorylated HSF-1 in the nucleus before heat stress. This was accompanied by a GLN-mediated increase in HSF-1/HSE binding and nuclear content of phosphorylated HSF-1 after heat stress. This is the first demonstration that GLN-mediated cellular protection after heat-stress injury is related to HSF-1 expression and cellular capacity to activate an HSP response. Furthermore, the mechanism of GLN-mediated protection against injury appears to involve an increase in nuclear HSF-1 content before stress and increased HSF-1 promoter binding and phosphorylation. knockout cells; amino acid; heat stress mechanism  相似文献   

8.
The vascular endothelial growth factor (VEGF) is produced in response to hypoxia or inflammatory cytokines. In normoxia VEGF synthesis is upregulated by 15-deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)) via induction of heme oxygenase-1 (HO-1). Here we compared the influence of 15d-PGJ(2) on VEGF expression in human microvascular endothelial cells in normoxia (approximately 20% O(2)) and hypoxia ( approximately 2% O(2)). Regardless of the oxygen concentration, 15d-PGJ(2) inhibited activity of hypoxia inducible factor-1 (HIF-1), the major hypoxic regulator of VEGF. However, in normoxic conditions 15d-PGJ(2) (1-10microM) activated the VEGF promoter and increased synthesis of the VEGF protein. Concomitantly, it strongly induced expression of HO-1. In contrast, in hypoxia, 15d-PGJ(2) decreased VEGF promoter activity and reduced VEGF release by 50%. Inhibition of HO-1 activity additionally attenuated VEGF synthesis in hypoxia. We conclude that induction of HO-1 by 15d-PGJ(2) results in augmentation of VEGF synthesis in normoxia. In hypoxia, however, the stimulatory effect of HO-1 is outweighed by 15d-PGJ(2)-mediated inhibition of the HIF-1 pathway.  相似文献   

9.
10.
11.
12.
The D-group cyclins play a key role in the progression of cells through the G(1) phase of the cell cycle. Treatment of MCF-7 breast cancer cells with the cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) results in rapid down-regulation of cyclin D1 protein expression and growth arrest in the G(0)/G(1) phase of the cell cycle. 15d-PGJ(2) also down-regulates the expression of cyclin D1 mRNA; however, this effect is delayed relative to the effect on cyclin D1 protein levels, suggesting that the regulation of cyclin D1 occurs at least partly at the level of translation or protein turnover. Treatment of MCF-7 cells with 15d-PGJ(2) leads to a rapid increase in the phosphorylation of protein synthesis initiation factor eukaryotic initiation factor 2alpha (eIF-2alpha) and a shift of cyclin D1 mRNA from the polysome-associated to free mRNA fraction, indicating that 15d-PGJ(2) inhibits the initiation of cyclin D1 mRNA translation. The selective rapid decrease in cyclin D1 protein accumulation is facilitated by its rapid turnover (t(1/2) = 34 min) after inhibition of cyclin D1 protein synthesis. The half-life of cyclin D1 protein is not significantly altered in cells treated with 15d-PGJ(2). Treatment of cells with 15d-PGJ(2) results in strong induction of heat shock protein 70 (HSP70) gene expression, suggesting that 15d-PGJ(2) might activate protein kinase R (PKR), an eIF-2alpha kinase shown previously to be responsive to agents that induce stress. 15d-PGJ(2) strongly stimulates eIF-2alpha phosphorylation and down-regulates cyclin D1 expression in a cell line derived from wild-type mouse embryo fibroblasts but has an attenuated effect in PKR-null cells, providing evidence that PKR is involved in mediating the effect of 15d-PGJ(2) on eIF-2alpha phosphorylation and cyclin D1 expression. In summary, treatment of MCF-7 cells with 15d-PGJ(2) results in increased phosphorylation of eIF-2alpha and inhibition of cyclin D1 mRNA translation initiation. At later time points, repression of cyclin D1 mRNA expression may also contribute to the decrease in cyclin D1 protein.  相似文献   

13.
14.
The SSA1 gene, one of the heat-inducible HSP70 genes in the yeast Saccharomyces cerevisiae, also displays a basal level of expression during logarithmic growth. Multiple sites related to the heat shock element (HSE) consensus sequence are present in the SSA1 promoter region (Slater and Craig, Mol. Cell. Biol. 7:1906-1916, 1987). One of the HSEs, HSE2, is important in the basal expression of SSA1 as well as in heat-inducible expression. A promoter containing a mutant HSE2 showed a fivefold-lower level of basal expression and altered kinetics of expression after heat shock. A series of deletion and point mutations led to identification of an upstream repression sequence (URS) which overlapped HSE2. A promoter containing a mutation in the URS showed an increased level of basal expression. A URS-binding activity was detected in yeast whole-cell extracts by a gel electrophoresis DNA-binding assay. The results reported in this paper indicate that basal expression of the SSA1 promoter is determined by both positive and negative elements and imply that the positively acting yeast heat shock factor HSF is responsible, at least in part, for the basal level of expression of SSA1.  相似文献   

15.
16.
Ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), such as 15-deoxy-Delta(12,14)PGJ2 (15d-PGJ2) have been proposed as a new class of antiinflammatory compounds with possible clinical applications. As there is some controversy over the inhibitory effects of 15d-PGJ2 on chemokine gene expression, we investigated whether 15d-PGJ2 itself affected chemokine gene expression in human monocytes/macrophages and two monocytic cell lines. Here we demonstrate that the 15d-PGJ2 can induce IL-8 gene expression. In contrast, monocyte chemoattractant protein-1 gene expression was suppressed by 15d-PGJ2, while the expression of RANTES was unaltered. Furthermore, concomitant treatment of monocytes/macrophages with 15d-PGJ2 (2.5 x 10(-6) M) potentiated LPS-induced gene expression of IL-8 mRNA, but suppressed PMA-induction of IL-8 mRNA. In addition, treatment of U937 and THP-1 cells with 15d-PGJ2 also resulted in induction of IL-8 gene expression. Further studies demonstrated that 15d-PGJ2 regulated IL-8 gene expression via a ligand-specific and PPARgamma-dependent pathway. Our observations revealed a previous unappreciated function and mechanism of 15d-PGJ2-mediated regulation of cytokine gene expression in monocytes/macrophages.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号