首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All free-living animals must make choices regarding which foods to eat, with the choices influencing their health and fitness. An important goal in nutritional ecology is therefore to understand what governs animals’ diet selection. Despite large variation in the availability of different food items, Peruvian spider monkeys (Ateles chamek) maintain a relatively stable daily protein intake, but allow total energy intake to vary as a function of the composition of available food items. This is referred to as protein-dominated macronutrient balancing. Here we assess the influence of this nutritional strategy on daily and seasonal nutritional intakes, estimate the nutritional value of different foods, and interpret unusual food choices. We conducted continuous all-day observations of focal spider monkeys inhabiting a semideciduous forest in Bolivia. We recorded feeding events, collected foods, and analyzed their nutrient content. By using the Geometric Framework for nutrition, we show that individuals reached their daily end-point in nutrient space —balance between protein and nonprotein energy intake— by consuming nutritionally balanced foods or by alternating between nutritionally complementary foods. The macronutritionally balanced figs of Ficus boliviana were their primary staple food and therefore dominated their overall nutritional intake. Our results also demonstrate that spider monkeys consumed a diverse array of ripe fruits to overcome periods of fig scarcity rather than vice versa; they could obtain sufficient protein on a diet of pure fruit; and unripe figs constituted a nutritionally rewarding and reliable food resource. We hope that the approaches taken and the conclusions reached in this study will catalyze further inquiries into the nutritional ecology of frugivorous primates.  相似文献   

2.
Nutrient requirements by male and female insects are likely to differ, but relatively little is known regarding how sexes differ in their regulation of macronutrient acquisition. The present study reports the results from a laboratory experiment in which behavioural and physiological components of nutrient regulation were compared between male and female caterpillars of Spodoptera litura (Fabricius). When provided with choices between two nutritionally complementary foods (one is a protein-biased diet and the other a carbohydrate-biased diet), both males and females adjusted their food selection to defend an intake target. However, the composition of diet preferred by the two differed, with females selecting significantly more protein than males with no difference in carbohydrate intake between the two. When confined to single diets with varying mixtures of protein and carbohydrate [P:C ratios, expressed as the percentage of diet by dry mass: protein 42%:carbohydrate 0% (p42:c0), p35:c7, p28:c14, p21:c21, p14:c28, p7:c35], females consumed more macronutrients than did males across on all P:C diets except the extremely carbohydrate-biased diet (p7:c35). Under both choice and no-choice feeding condition, such sex differences in nutrient intake were not expressed until late in the feeding stage of the final stadium. Sexes also differed in post-ingestive utilization of ingested nutrients. Females utilized ingested protein for body growth with greater efficiency compared to males, presumably reflecting provisioning their adult needs for protein to develop eggs, whereas males were more efficient at depositing lipids from carbohydrate intake than females.  相似文献   

3.
Animals grow and optimize performance when they collect foods in amounts and ratios that best meet their species-specific nutritional requirements. For eusocial organisms like ants, where only a small fraction of the colony members collect food, increasing evidence demonstrates that strong macronutrient regulation occurs at the colony level. Here, we explored regulation of protein and carbohydrate (p:c) intake in the Rasberry crazy ant, Nylanderia sp. nr. puben. We did this using dry artificial foods (14–42% total macronutrient content) having a range of fixed p:c ratios in a series of choice and no-choice laboratory experiments and used worker mortality to gauge colony-level costs associated with active nutrient regulation. Choice experiments revealed that colonies preferred carbohydrate-rich foods and self-selected a diet having a p:c ratio ~1:2. No-choice experiments demonstrated that food p:c ratio only moderately affected worker food collection behavior, likely because colonies regulated the intake of only the non-limiting nutrients. Absolute worker mortality was generally high, but lowest in colonies feeding on the food having a p:c ratio of 1:2 (the p:c ratio ants self-selected in the choice experiment), although mortality was not significantly affected by food p:c ratio. The self-selected p:c ratio in our study is consistent with that observed in other recent ant nutrient regulation studies. Taken together, the results from these combined studies reveal emerging commonalities among ants in macronutrient regulation strategies, and similarities in foraging behaviors and costs associated with macronutrient regulation. Finally, from a methodological perspective, the high mortality observed in our study, when compared with other recent studies, suggests that ant nutrient regulation studies should be conducted using foods having high moisture and total macronutrient content.  相似文献   

4.
Animals experience spatial and temporal variation in food and nutrient supply, which may cause deviations from optimal nutrient intakes in both absolute amounts (meeting nutrient requirements) and proportions (nutrient balancing). Recent research has used the geometric framework for nutrition to obtain an improved understanding of how animals respond to these nutritional constraints, among them free-ranging primates including spider monkeys and gorillas. We used this framework to examine macronutrient intakes and nutrient balancing in sifakas (Propithecus diadema) at Tsinjoarivo, Madagascar, in order to quantify how these vary across seasons and across habitats with varying degrees of anthropogenic disturbance. Groups in intact habitat experience lean season decreases in frugivory, amounts of food ingested, and nutrient intakes, yet preserve remarkably constant proportions of dietary macronutrients, with the proportional contribution of protein to the diet being highly consistent. Sifakas in disturbed habitat resemble intact forest groups in the relative contribution of dietary macronutrients, but experience less seasonality: all groups’ diets converge in the lean season, but disturbed forest groups largely fail to experience abundant season improvements in food intake or nutritional outcomes. These results suggest that: (1) lemurs experience seasonality by maintaining nutrient balance at the expense of calories ingested, which contrasts with earlier studies of spider monkeys and gorillas, (2) abundant season foods should be the target of habitat management, even though mortality might be concentrated in the lean season, and (3) primates’ within-group competitive landscapes, which contribute to variation in social organization, may vary in complex ways across habitats and seasons.  相似文献   

5.
Dietary restriction (DR) is one of the main experimental paradigms to investigate the mechanisms that determine lifespan and aging. Yet, the exact nutritional parameters responsible for DR remain unclear. Recently, the advent of the geometric framework of nutrition (GF) has refocussed interest from calories to dietary macronutrients. However, GF experiments focus on invertebrates, with the importance of macronutrients in vertebrates still widely debated. This has led to the suggestion of a fundamental difference in the mode of action of DR between vertebrates and invertebrates, questioning the suggestion of an evolutionarily conserved mechanism. The use of dietary dilution rather than restriction in GF studies makes comparison with traditional DR studies difficult. Here, using a novel nonmodel vertebrate system (the stickleback fish, Gasterosteus aculeatus), we test the effect of macronutrient versus calorie intake on key fitness‐related traits, both using the GF and avoiding dietary dilution. We find that the intake of macronutrients rather than calories determines both mortality risk and reproduction. Male mortality risk was lowest on intermediate lipid intakes, and female risk was generally reduced by low protein intakes. The effect of macronutrient intake on reproduction was similar between the sexes, with high protein intakes maximizing reproduction. Our results provide, to our knowledge, the first evidence that macronutrient, not caloric, intake predicts changes in mortality and reproduction in the absence of dietary dilution. This supports the suggestion of evolutionary conservation in the effect of diet on lifespan, but via variation in macronutrient intake rather than calories.  相似文献   

6.
We used a strain of diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), that had been reared for approximately 350 generations in a precisely characterised environment to test hypotheses regarding the influence of nutritional heterogeneity on the evolution of nutrient regulatory responses. Caterpillars were maintained with ad libitum access to a diet that emulated that of an extreme nutritional specialist, comprising a homogeneous food of fixed nutrient composition. We measured performance (survival, development rate, and pupal mass), as well as the protein and carbohydrate intake of individual caterpillars confined to one of a range of single foods differing in their protein, carbohydrate, and water content. In a separate experiment, we measured the amount and balance of protein and carbohydrate self-selected by caterpillars presented with nutritionally complementary foods. Results showed a close fit with three of four predictions about the nutritional responses of 'nutrient specialist' feeders: (1) survival, development rate, and pupal mass were highest for animals given diets with the protein:carbohydrate composition of the ancestral culture diet, and dropped off sharply with higher and lower protein:carbohydrate balance, (2) caterpillars coped poorly with dietary dilution by water, irrespective of the macronutrient balance, and (3) the self-selected intake point corresponded with the macronutrient balance that gave peak performance (i.e., that of the ancestral culture diet). The fourth prediction, that caterpillars would be disinclined to over-ingest nutrients on imbalanced diets, was at best weakly met. We hypothesise that the evolution and maintenance of the specialist strategy might, paradoxically, require some degree of environmental heterogeneity.  相似文献   

7.
At northern latitudes, large spatial and temporal variation in the nutritional composition of available foods poses challenges to wild herbivores trying to satisfy their nutrient requirements. Studies conducted in mostly captive settings have shown that animals from a variety of taxonomic groups deal with this challenge by adjusting the amounts and proportions of available food combinations to achieve a target nutrient balance. In this study, we used proportions‐based nutritional geometry to analyze the nutritional composition of rumen samples collected in winter from 481 moose (Alces alces) in southern Sweden and examine whether free‐ranging moose show comparable patterns of nutrient balancing. Our main hypothesis was that wild moose actively regulate their rumen nutrient composition to offset ecologically imposed variation in the nutritional composition of available foods. To test this, we assessed the macronutritional composition (protein, carbohydrates, and lipids) of rumen contents and commonly eaten foods, including supplementary feed, across populations with contrasting winter diets, spanning an area of approximately 10,000 km2. Our results suggest that moose balanced the macronutrient composition of their rumen, with the rumen contents having consistently similar proportional relationship between protein and nonstructural carbohydrates, despite differences in available (and eaten) foods. Furthermore, we found that rumen macronutrient balance was tightly related to ingested levels of dietary fiber (cellulose and hemicellulose), such that the greater the fiber content, the less protein was present in the rumen compared with nonstructural carbohydrates. Our results also suggest that moose benefit from access to a greater variety of trees, shrubs, herbs, and grasses, which provides them with a larger nutritional space to maneuver within. Our findings provide novel theoretical insights into a model species for ungulate nutritional ecology, while also generating data of direct relevance to wildlife and forest management, such as silvicultural or supplementary feeding practices.  相似文献   

8.
9.
Carnivorous animals are known to balance their consumption of lipid and protein, and recent studies indicate that some mammalian carnivores also regulate their intake of carbohydrate. We investigated macronutrient balancing and lipid restoration following hibernation in the ground beetle Anchomenus dorsalis, hypothesizing that carbohydrates might be important energy sources upon hibernation when predator lipid stores are exhausted and prey are equally lean. We recorded the consumption of lipid, protein, and carbohydrate over nine days following hibernation, as the beetles foraged to refill their lipid stores. Each beetle was given the opportunity to regulate consumption from two semi-artificial foods differing in the proportion of two of the three macronutrients, while the third macronutrient was kept constant. When analyzing consumption of the three macronutrients on an energetic basis, it became apparent that the beetles regulated lipid and carbohydrate energy interchangeably and balanced the combined energy intake from the two macronutrients against protein intake. Restoration of lipid stores was independent of the availability of any specific macronutrient. However, the energetic consumption required to refill lipid stores was higher when a low proportion of lipids was ingested, suggesting that lipids were readily converted into lipid stores while there were energetic costs associated with converting carbohydrate and protein into stored lipids. Our experiment demonstrates that carbohydrates are consumed and regulated as a non-protein energy source by A. dorsalis despite an expectedly low occurrence of carbohydrates in their natural diet. Perhaps carbohydrates are in fact an overlooked supplementary energy source in the diet of carnivorous arthropods.  相似文献   

10.
People provide wild ungulates with large quantities of supplementary feed to improve their health and survival and reduce forest damage. Whereas supplementary feeding can positively affect the winter survival of ungulates and short-term hunting success, some of the feeds provided may actually reduce ungulate health and increase forest damage. Here, we highlight how recent advances in ungulate nutritional ecology can help explain why supplementary feeding can lead to undesirable outcomes. Using Europe’s largest cervid, the moose (Alces alces), as a model species, and Sweden, as the socio-ecological context, we explain the concept of nutritional balancing and its relevance to supplementary feeding. Nutritional balancing refers to how animals alter their food intake to achieve a specific nutritional target balance in their diet, by selecting balanced food items or by combining items with nutritional compositions that are complimentary. As the most common supplementary feeds used contain higher concentrations of non-structural carbohydrates than the ungulates’ normal winter diet, the consumption of such feeds may cause animals to increase their intake of woody browse, and thereby exacerbate forest damage. We also explain how animal health may be negatively affected by large intakes of such feed if complementary browse items are not available. We therefore suggest that the use of inappropriate feed is an additional means by which supplementary feeding may result in negative outcomes for hunters, forest owners, and wild animals.  相似文献   

11.
Predators are often food limited in their habitat, and some are limited by specific macronutrients (protein, lipid or carbohydrate). It is unresolved, however, to what extent and in what way food and macronutrient limitation are connected. Using a carabid beetle (Nebria brevicollis), we compared macronutrient self-selection of the animals three times: immediately after collection in the field, after being fed to satiation and nutritional balance and after a subsequent period of starvation. Both sexes were food and females lipid limited in the field; after 7–21 days of starvation both sexes increased proportional carbohydrate intake significantly. Thus, starvation created a nutrient deficit that was different from what the animals had experienced in the field. We conclude that while macronutrient limitation in nature may be influenced by hunger due to food limitation, this is not its main determinant. A nutritional imbalance of available food may override this effect.  相似文献   

12.
1. Omnivores by definition eat both plants and animals. However, little is known about how diet macronutrient content affects omnivore performance, or the extent to which they can regulate macronutrient intake. We assessed these questions using the salt marsh katydid, Conocephalus spartinae Fox (Tettigoniidae). 2. In our first experiment we used artificial diets with different protein–carbohydrate ratios to assess the effects of diet quality on survival, growth, and lipid accumulation. We found that diets with a high protein–carbohydrate ratio negatively affected Conocephalus survival. Among surviving individuals growth was not significantly different across the treatments, but lipid content decreased significantly as the protein–carbohydrate ratio of diets increased. 3. In a second experiment we explored the ability of Conocephalus to regulate their protein–carbohydrate intake. Results revealed that Conocephalus did not feed randomly when presented with two nutritionally complementary foods. A detailed analysis of their protein–carbohydrate intake revealed selection for a protein‐biased diet, but a lack of tight regulate of protein–carbohydrate intake. 4. We discuss how key macronutrients can limit omnivores, and how nutritional flexibility may enable omnivores to persist in nutritionally heterogeneous environments.  相似文献   

13.
To meet nutritional needs, primates adjust their diets in response to local habitat differences, though whether these dietary modifications translate to changes in dietary nutrient intake is unknown. A previous study of two populations of the mountain gorilla (MG: Gorilla beringei) found no evidence for intraspecific variation in the nutrient composition of their diets, despite ecological and dietary differences between sites. One potential explanation is that nutritional variability in primate diets requires greater ecological divergence than what was captured between MG sites, underpinning environmental differences in the nutrient quality of plant foods. To test whether Gorilla exhibits interspecific variation in dietary composition and nutrient intake, we studied the composition and macronutrients of the western gorilla (WG: Gorilla gorilla) staple diets and compared them with published data from the two MG populations. We recorded feeding time and food intake of four adult female WGs from one habituated group over a period of 11 months (December 2004–October 2005) at the Mondika Research Center, Republic of Congo, allowing for assessment of seasonal patterns of nutrient intake. Staple diets of WGs and MGs diverged in their dietary and macronutrient composition. Compared to MGs, the staple diet of WGs (by intake) contained higher proportions of fruit (43%) and leaf (12%) and a lower proportion of herb (39%), resulting in a higher intake of total nonstructural carbohydrate and fiber and a lower intake of crude protein. Staple gorilla fruits and herbs differed in nutrient quality between sites. Gorillas exhibit nutritional flexibility that reflects ecological variation in the nutrient quality of plant foods. Since dietary quality typically affects rates of growth and reproduction in primates, our results suggest that interspecific differences in nutrient intake and food quality may shape differences in gorilla nutrient balancing and female life history strategies.  相似文献   

14.
Nutrient balance is a strong determinant of animal fitness and demography. It is therefore important to understand how the compositions of available foods relate to required balance of nutrients and habitat suitability for animals in the wild. These relationships are, however, complex, particularly for omnivores that often need to compose balanced diets by combining their intake from diverse nutritionally complementary foods. Here we apply geometric models to understand how the nutritional compositions of foods available to an omnivorous member of the order Carnivora, the grizzly bear (Ursus arctos L.), relate to optimal macronutrient intake, and assess the seasonal nutritional constraints on the study population in west-central Alberta, Canada. The models examined the proportion of macronutrients that bears could consume by mixing their diet from food available in each season, and assessed the extent to which bears could consume the ratio of protein to non-protein energy previously demonstrated using captive bears to optimize mass gain. We found that non-selective feeding on ungulate carcasses provided a non-optimal macronutrient balance with surplus protein relative to fat and carbohydrate, reflecting adaptation to an omnivorous lifestyle, and that optimization through feeding selectively on different tissues of ungulate carcasses is unlikely. Bears were, however, able to dilute protein intake to an optimal ratio by mixing their otherwise high-protein diet with carbohydrate-rich fruit. Some individual food items were close to optimally balanced in protein to non-protein energy (e.g. Hedysarum alpinum roots), which may help explain their dietary prevalence. Ants may be consumed particularly as a source of lipids. Overall, our analysis showed that most food available to bears in the study area were high in protein relative to lipid or carbohydrate, suggesting the lack of non-protein energy limits the fitness (e.g. body size and reproduction) and population density of grizzly bears in this ecosystem.  相似文献   

15.
Despite decades of intense research, it remains largely unsolved which nutritional factors underpin food selection by large herbivores in the wild. We measured nutritional composition of birch foliage (Betula pubescens) available to, and used by, moose (Alces alces) in natural settings in two neighboring regions with contrasting animal body mass. This readily available food source is a staple food item in the diet of moose in the high‐fitness region, but apparently underutilized by moose in the low‐fitness region. Available birch foliage in the two regions had similar concentrations of macronutrients (crude protein [CP], fiber fractions, and water‐soluble carbohydrates [WSC]), although a notably lower variation of WSC in the low‐fitness region. For minerals, there were several area differences: available birch foliage in the low‐fitness region had less Mg (depending on year) and P, but more Ca, Zn, Cu, and Mn. It also had higher concentrations of some plant secondary metabolites: chlorogenic acids, quercetins, and especially MeOH‐soluble condensed tannins. Despite the area differences in available foliage, we found the same nutritional composition of birch foliage used in the two regions. Compared to available birch foliage, moose consistently used birch foliage with more CP, more structural fiber (mainly hemicellulose), less WSC, higher concentrations of several minerals (Ca, Zn, K, Mn, Cu), and lower concentrations of some secondary metabolites (most importantly, MeOH‐soluble condensed tannins). Our study conceptually supports the nutrient‐balancing hypothesis for a large herbivore: within a given temporal frame, moose select for plant material that matches a specific nutritional composition. As our data illustrate, different moose populations may select for the same composition even when the nutritional composition available in a given food source varies between their living areas. Such fastidiousness limits the proportion of available food that is acceptable to the animal and has bearings on our understanding and application of the concept of carrying capacity.  相似文献   

16.
Patch use theory predicts that herbivores perceive food as patches and spend more time in high quality patches, i.e. feeding sites providing a high net rate of intake of energy and/or limiting nutrients. The herbivores should accordingly not discriminate among food items in such high quality patches, and food items should thus be eaten in proportion to availability. In contrast, classical diet theory assumes food selection to take place at the level of individual plants, and predicts that the forager should concentrate on the most profitable item until availability drops below some critical threshold.
Here we address how the spatial distribution of European aspen Populus tremula , a highly preferred browse species, affects the selectivity by moose Alces alces at the patch and the tree level. The study was performed in a managed boreal forest landscape in coastal northern Sweden, where aspen occurs highly aggregated almost exclusively in discrete patches. We compared moose' selectivity for aspen and browsing intensity on aspen ramets and other browse species in aspen patches versus at randomly located sites.
Random sites and aspen stands were utilised equally by moose in terms of overall use of forage. There was no difference in total coverage of forage species and relative moose density. Selectivity for aspen was stronger at random sites than at aspen sites, and the browsing intensity on aspen was similar. We conclude that moose did not perceive aspen stands as discrete patches, and used aspen ramets more in accordance with diet theory. These findings agree with the idea that large generalist herbivores strive to maintain a mixed and balanced diet, causing rare species to be over-utilised (negative frequency-dependent food selection). By such selective feeding, moose may reinforce the aggregated distribution of aspen in the managed boreal forest landscape.  相似文献   

17.
Carbohydrates and protein comprise two of the major macronutrients and many animals regulate their dietary intake of both. In the field, the carbohydrate (C) to protein (P) intake of Mormon crickets Anabrus simplex Haldeman (Orthoptera: Tettigoniidae) is indicative of a nutritional imbalance affecting both migration and immunity. In the present study, dietary choice experiments in the laboratory are used to investigate the preferences of Mormon cricket nymphs and adults for C and P. Diets of differing C : P ratios and amounts are presented in pairs to permit Mormon crickets to reach an intake target of C : P from four unique starting points. After the last pair of diets is removed, phenoloxidase (PO) and anti‐bacterial activity are assayed. Both males and females at the adult and nymphal stages show a strong preference for the diet richest in macronutrients, with an equal preference for C or P. When given a choice between a high C diet or a high P diet, Mormon crickets select both at random, balancing their daily intake of C and P. Weight gain is dependent on the mass of P consumed, with a conversion factor greater than four times that of C consumed. As predicted, Mormon cricket nymphs and adults that consume more P have higher titres of total phenoloxidase and, in addition, lysozyme‐like anti‐bacterial activity is independent of dietary treatment. In nature, omnivores might consume an excess of one macronutrient because they often find the other through active searching of their local habitat. However, environmental change and interspecific or intraspecific competition can challenge the ability of an organism to encounter the required nutrients on a local scale, contributing to long‐distance migratory behaviours.  相似文献   

18.
Leptin reduces body fat selectively, sparing body protein. Accordingly, during chronic leptin administration, food intake is suppressed, and body weight is reduced until body fat is depleted. Body weight then stabilizes at this fat-depleted nadir, while food intake returns to normal caloric levels, presumably in defense of energy and nutritional homeostasis. This model of leptin treatment offers the opportunity to examine controls of food intake that are independent of leptin's actions, and provides a window for examining the nature of feeding controls in a "fatless" animal. Here we evaluate macronutrient selection during this fat-depleted phase of leptin treatment. Adult, male Sprague-Dawley rats were maintained on standard pelleted rodent chow and given daily lateral ventricular injections of leptin or vehicle solution until body weight reached the nadir point and food intake returned to normal levels. Injections were then continued for 8 days, during which rats self-selected their daily diet from separate sources of carbohydrate, protein, and fat. Macronutrient choice differed profoundly in leptin and control rats. Leptin rats exhibited a dramatic increase in protein intake, whereas controls exhibited a strong carbohydrate preference. Fat intake did not differ between groups at any time during the 8-day test. Despite these dramatic differences in macronutrient selection, total daily caloric intake did not differ between groups except on day 2. Thus controls of food intake related to ongoing metabolic and nutritional requirements may supersede the negative feedback signals related to body fat stores.  相似文献   

19.
The effects of macronutrient balance on nutrient intake and utilization were examined in Manduca sexta larvae parasitized by Cotesia congregata. Insects fed an artificial diet having constant total macronutrient, but with varied ratios of protein and carbohydrate, with altered diet consumption in response to excesses and deficiencies of the individual macronutrients. Bivariate plots of protein and carbohydrate consumption for non-parasitized larvae demonstrated a curvilinear relationship between points of nutrient intake for the various diets, and the larvae grew best on carbohydrate-biased diets. The relationship was linear for parasitized larvae with the growth uniform across diets. On protein-biased diets, the larvae regulated the nitrogen content, containing similar amounts of nitrogen regardless of consumption. Efficiency of nitrogen conversion in non-parasitized larvae was greatest on carbohydrate-biased diets, while nitrogen conversion by parasitized larvae was greatest with intermediate nutrient ratios. Accounting for carbohydrate consumption, the lipid content decreased as dietary carbohydrate increased, but parasitized larvae contained significantly less lipid. The total biomass of parasites developing in individual host larvae was positively correlated with host protein consumption, but the individual parasites were similar in size. Parasitism influences host nutrient consumption in a manner that achieves uniform host growth under diverse nutritional regimes, thereby constraining blood nutrient concentrations within limits suitable for parasite growth and development.  相似文献   

20.
Penned moose Alces alces (L.) offered birch and rowan trees in various proportions in experimental tests showed a clear preference for birch both in terms of selection and use of trees. Both tree selection and tree use was frequency-independent, i.e. the preference for birches did not vary with either the number of birches, or total birch biomass available. The preference for birch was not absolute, i.e. rowans were also present in the diet. Birch were more profitable than rowans in terms of biomass intake rate, whereas rowans were more "nutritious" than birches. The results are consistent with both the optimal diet theory and the "nutrient mixture" hypothesis, although neither of the hypotheses are unambiguous regarding frequency-dependent food selection. It is argued, however, that tree selection and use by moose rather should be considered as a patch use problem and that trees should not be regarded as particulate food items as in most foraging models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号