首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Murine double minute 2 (Mdm2) is a critical component of the responses to both ionizing and UV radiation. The level of Mdm2 expression determines the extent to which radiation induces an increase in the activity of the p53 tumor suppressor. Mdm2 acts as a survival factor in many cell types by limiting the apoptotic function of p53. In addition, expression of mdm2 is induced in response to DNA damage, and the resulting high levels of Mdm2 protein are thought to shorten the length of the cell cycle arrest established by p53 in the radiation response. Increased levels of Mdm2 appear to ensure that the activity of p53 returns to its low basal levels in surviving cells. Decreased levels of Mdm2 sensitize cells to ionizing radiation. Thus, Mdm2 is a potential target for therapeutic intervention because its inhibition may radiosensitize the subset of human tumors expressing wild-type p53 such that radiotherapy is more efficacious.  相似文献   

2.
The p53 protein is subject to Mdm2-mediated degradation by the ubiquitin-proteasome pathway. This degradation requires interaction between p53 and Mdm2 and the subsequent ubiquitination and nuclear export of p53. Exposure of cells to DNA damage results in the stabilization of the p53 protein in the nucleus. However, the underlying mechanism of this effect is poorly defined. Here we demonstrate a key role for c-Abl in the nuclear accumulation of endogenous p53 in cells exposed to DNA damage. This effect of c-Abl is achieved by preventing the ubiquitination and nuclear export of p53 by Mdm2, or by human papillomavirus E6. c-Abl null cells fail to accumulate p53 efficiently following DNA damage. Reconstitution of these cells with physiological levels of c-Abl is sufficient to promote the normal response of p53 to DNA damage via nuclear retention. Our results help to explain how p53 is accumulated in the nucleus in response to DNA damage.  相似文献   

3.
4.
5.
6.
The p53 tumor suppressor protein is a major regulator of cell growth arrest and apoptosis in response to DNA damage. Both p53 function and stability are tightly controlled by Mdm2, which binds to the p53 N-terminus and targets p53 for ubiquitin-mediated proteolysis. Previous studies suggest that adrenalectomy-induced neuronal apoptosis is p53-dependent. Here we demonstrate both nuclear accumulation and functional activation of p53 protein in apoptotic hippocampal neurons from adrenalectomized rats. Increased p53 expression occurred despite the accumulation of its negative regulator, Mdm2, and the formation of p53-Mdm2 complexes. The persistence of p53 expression was explained by a striking decrease in free ubiquitin in p53-positive neurons. The addition of exogenous ubiquitin to p53-Mdm2 complexes from apoptotic neurons restored p53 degradation. These findings demonstrate a novel mechanism of p53 stabilization mediated by decreased ubiquitin levels. Regulation of free ubiquitin may therefore be an effective way to modulate p53-dependent apoptosis in certain cell types.  相似文献   

7.
Insulin-like growth factor 1 receptor (IGF-1R) is important in cancer cell growth and survival and has been implicated in cancer pathophysiology and treatment. Here we report a novel function for IGF-1R in p53-dependent apoptotic response. We show that inhibition or loss of IGF-1R activity reduces translational synthesis of p53 and Mdm2 protein. Notably, IGF-1R inhibition increases p53 protein stability by reducing p53 ubiquitination and maintains p53 at low levels by decreasing p53 synthesis, thus rendering p53 insensitive to stabilization after DNA damage. The accumulation and apoptosis of DNA-damage-induced p53 is therefore reduced in Igf-1r(-/-) mouse embryonic fibroblasts or tumor cells treated with the IGF-1R inhibitor. Furthermore, we find that inhibition of IGF-1R reduces p53 and Mdm2 translation through a gene-specific mechanism mediated by the respective 5' untranslated region of p53 and mdm2 messenger RNA. The eukaryotic translation initiation factor 4F complex is also involved in this translational inhibition. These results demonstrate an unexpected role for translational control by IGF-1R in p53-mediated apoptosis.  相似文献   

8.
p53 mediates DNA damage‐induced cell‐cycle arrest, apoptosis, or senescence, and it is controlled by Mdm2, which mainly ubiquitinates p53 in the nucleus and promotes p53 nuclear export and degradation. By searching for the kinases responsible for Mdm2 S163 phosphorylation under genotoxic stress, we identified S6K1 as a multifaceted regulator of Mdm2. DNA damage activates mTOR‐S6K1 through p38α MAPK. The activated S6K1 forms a tighter complex with Mdm2, inhibits Mdm2‐mediated p53 ubiquitination, and promotes p53 induction, in addition to phosphorylating Mdm2 on S163. Deactivation of mTOR‐S6K1 signalling leads to Mdm2 nuclear translocation, which is facilitated by S163 phosphorylation, a reduction in p53 induction, and an alteration in p53‐dependent cell death. These findings thus establish mTOR‐S6K1 as a novel regulator of p53 in DNA damage response and likely in tumorigenesis. S6K1–Mdm2 interaction presents a route for cells to incorporate the metabolic/energy cues into DNA damage response and links the aging‐controlling Mdm2–p53 and mTOR‐S6K pathways.  相似文献   

9.
10.
The deubiquitylation enzyme USP7/HAUSP plays a major role in regulating genome stability and cancer prevention by controlling the key proteins involved in the DNA damage response. Despite this important role in controlling other proteins, USP7 itself has not been recognized as a target for regulation. Here, we report that USP7 regulation plays a central role in DNA damage signal transmission. We find that stabilization of Mdm2, and correspondingly p53 downregulation in unstressed cells, is accomplished by a specific isoform of USP7 (USP7S), which is phosphorylated at serine 18 by the protein kinase CK2. Phosphorylation stabilizes USP7S and thus contributes to Mdm2 stabilization and downregulation of p53. After ionizing radiation, dephosphorylation of USP7S by the ATM-dependent protein phosphatase PPM1G leads to USP7S downregulation, followed by Mdm2 downregulation and accumulation of p53. Our findings provide a quantitative transmission mechanism of the DNA damage signal to coordinate a p53-dependent DNA damage response.  相似文献   

11.
12.
The tumour suppressor p53 induces apoptosis or cell-cycle arrest in response to genotoxic and other stresses. In unstressed cells, the anti-proliferative effects of p53 are restrained by mouse double minute 2 (Mdm2), a ubiquitin ligase (E3) that promotes p53 ubiquitination and degradation. Mdm2 also mediates its own degradation through auto-ubiquitination. It is unclear how the cis- and trans-E3 activities of Mdm2, which have opposing effects on cell fate, are differentially regulated. Here, we show that death domain-associated protein (Daxx) is required for Mdm2 stability. Downregulation of Daxx decreases Mdm2 levels, whereas overexpression of Daxx strongly stabilizes Mdm2. Daxx simultaneously binds to Mdm2 and the deubiquitinase Hausp, and it mediates the stabilizing effect of Hausp on Mdm2. In addition, Daxx enhances the intrinsic E3 activity of Mdm2 towards p53. On DNA damage, Daxx dissociates from Mdm2, which correlates with Mdm2 self-degradation. These findings reveal that Daxx modulates the function of Mdm2 at multiple levels and suggest that the disruption of the Mdm2-Daxx interaction may be important for p53 activation in response to DNA damage.  相似文献   

13.
Homeostatic mechanisms are essential for the protection and adaptation of organisms in a changing and challenging environment. Previously, we have described molecular mechanisms that lead to robust homeostasis/adaptation under inflow or outflow perturbations. Here we report that harmonic oscillations occur in models of such homeostatic controllers and that a close relationship exists between the control of the p53/Mdm2 system and that of a homeostatic inflow controller. This homeostatic control model of the p53 system provides an explanation why large fluctuations in the amplitude of p53/Mdm2 oscillations may arise as part of the homeostatic regulation of p53 by Mdm2 under DNA-damaging conditions. In the presence of DNA damage p53 is upregulated, but is subject to a tight control by Mdm2 and other factors to avoid a premature apoptotic response of the cell at low DNA damage levels. One of the regulatory steps is the Mdm2-mediated degradation of p53 by the proteasome. Oscillations in the p53/Mdm2 system are considered to be part of a mechanism by which a cell decides between cell cycle arrest/DNA repair and apoptosis. In the homeostatic inflow control model, harmonic oscillations in p53/Mdm2 levels arise when the binding strength of p53 to degradation complexes increases. Due to the harmonic character of the oscillations rapid fluctuating noise can lead, as experimentally observed, to large variations in the amplitude of the oscillation but not in their period, a behavior which has been difficult to simulate by deterministic limit-cycle models. In conclusion, the oscillatory response of homeostatic controllers may provide new insights into the origin and role of oscillations observed in homeostatically controlled molecular networks.  相似文献   

14.
Tumor suppressor protein p53 is regulated by two structurally homologous proteins, Mdm2 and MdmX. In contrast to Mdm2, MdmX lacks ubiquitin ligase activity. Although the essential interactions of MdmX are known, it is not clear how they function to regulate p53. The regulation of tumor suppressor p53 by Mdm2 and MdmX in response to DNA damage was investigated by mathematical modeling of a simplified network. The simplified network model was derived from a detailed molecular interaction map (MIM) that exhibited four coherent DNA damage response pathways. The results suggest that MdmX may amplify or stabilize DNA damage-induced p53 responses via non-enzymatic interactions. Transient effects of MdmX are mediated by reservoirs of p53∶MdmX and Mdm2∶MdmX heterodimers, with MdmX buffering the concentrations of p53 and/or Mdm2. A survey of kinetic parameter space disclosed regions of switch-like behavior stemming from such reservoir-based transients. During an early response to DNA damage, MdmX positively or negatively regulated p53 activity, depending on the level of Mdm2; this led to amplification of p53 activity and switch-like response. During a late response to DNA damage, MdmX could dampen oscillations of p53 activity. A possible role of MdmX may be to dampen such oscillations that otherwise could produce erratic cell behavior. Our study suggests how MdmX may participate in the response of p53 to DNA damage either by increasing dependency of p53 on Mdm2 or by dampening oscillations of p53 activity and presents a model for experimental investigation.  相似文献   

15.
Zhang X  Berger FG  Yang J  Lu X 《The EMBO journal》2011,30(11):2177-2189
Tumour suppressor p53 levels in the cell are tightly regulated by controlled degradation through ubiquitin ligases including Mdm2, COP1, Pirh2, and ARF-BP1. The ubiquitination process is reversible via deubiquitinating enzymes, such as ubiquitin-specific peptidases (USPs). In this study, we identified ubiquitin-specific peptidase 4 (USP4) as an important regulator of p53. USP4 interacts directly with and deubiquitinates ARF-BP1, leading to the stabilization of ARF-BP1 and subsequent reduction of p53 levels. Usp4 knockout mice are viable and developmentally normal, but showed enhanced apoptosis in thymus and spleen in response to ionizing radiation. Compared with wild-type mouse embryonic fibroblasts (MEFs), Usp4-/- MEFs exhibited retarded growth, premature cellular senescence, resistance to oncogenic transformation, and hyperactive DNA damage checkpoints, consistent with upregulated levels and activity of p53 in the absence of USP4. Finally, we showed that USP4 is overexpressed in several types of human cancer, suggesting that USP4 is a potential oncogene.  相似文献   

16.
Mdm2 inactivates the tumor suppressor p53 and Akt has been shown to be a major activator of Mdm2 in many cell types. We have investigated the regulation of Mdm2 in hepatocytes. We found that growth factor-induced Ser-166 phosphorylation of Mdm2 was inhibited by the MEK inhibitors U0126 and PD98059 in HepG2 cells and in a rat liver cell line, TRL 1215. Also, bile acids and oxidative stress induced phosphorylation of Mdm2 at Ser-166 by an apparently MEK-ERK-dependent mechanism. In contrast, Ser-166 phosphorylation of Mdm2 in lung cells was mediated by Akt. Further studies revealed that phosphatidylinositol 3-kinase inhibitors LY294002 and wortmannin induced phosphorylated ERK Tyr-204 and pMdm2 Ser-166 phosphorylations in hepatocytes in culture and in rat hepatocytes in vivo. In HepG2 cells, this effect was inhibited by U0126 and PD98059. LY294002 also reduced the level of pRaf Ser-259. Furthermore, we have shown that myr-Akt-induced overexpression of pAkt suppressed the levels of pMdm2 Ser-166 in hepatocytes. These data indicate a reversed relationship between Akt and Mdm2 in hepatocytes and suggest that Akt is a negative regulator of Raf-MEK-ERK-Mdm2 in this cell type. Ser-166 phosphorylation of Mdm2 has been shown to increase its ubiquitin ligase activity and increase p53 degradation, and our data indicated an attenuated p53 response to DNA damage in hepatocytes exhibiting high levels of pMdm2 Ser-166. Taken together, our data indicate that Mdm2 phosphorylation is regulated via MEK-ERK in hepatocytes. This Mdm2 signaling might be important for the regeneration of hepatocytes after centrilobular cell death.  相似文献   

17.
The p53 protein acts a tumor suppressor by inducing cell cycle arrest and apoptosis in response to DNA damage or oncogene activation. Recently, it has been proposed that phosphorylation of serine 15 in human p53 by ATM (mutated in ataxia telangiectasia) kinase induces p53 activity by interfering with the Mdm2-p53 complex formation and inhibiting Mdm2-mediated destabilization of p53. Serine 18 in murine p53 has been implicated in mediating an ATM- and ataxia telangiectasia-related kinase-dependent growth arrest. To explore further the physiological significance of phosphorylation of p53 on Ser18, we generated mice bearing a serine-to-alanine mutation in p53. Analysis of apoptosis in thymocytes and splenocytes following DNA damage revealed that phosphorylation of serine 18 was required for robust p53-mediated apoptosis. Surprisingly, p53Ser18 phosphorylation did not alter the proliferation rate of embryonic fibroblasts or the p53-mediated G(1) arrest induced by DNA damage. In addition, endogenous basal levels and DNA damage-induced levels of p53 were not affected by p53Ser18 phosphorylation. p53Ala18 mice developed normally and were not susceptible to spontaneous tumorigenesis, and the reduced apoptotic function of p53Ala18 did not rescue the embryo-lethal phenotype of Mdm2-null mice. These results indicate that phosphorylation of the ATM target site on p53 specifically regulates p53 apoptotic function and further reveal that phosphorylation of p53 serine 18 is not required for p53-mediated tumor suppression.  相似文献   

18.
19.
The tumor suppressor p53 is inactivated by multiple mechanisms that include mutations of the p53 gene itself and increased levels of the p53 inhibitors MDM2 and MDM4. Mice lacking Mdm2 or Mdm4 exhibit embryo-lethal phenotypes that are completely rescued by concomitant deletion of p53. Here we show that Mdm2 and Mdm4 haploinsufficiency leads to increased p53 activity, exhibited as increased sensitivity to DNA damage and decreased transformation potential. Moreover, in in vivo tumor development, Emu-myc Mdm4+/- mice show a delayed onset of B-cell lymphomas compared to Emu-myc mice. Additionally, Mdm2+/- Mdm4+/- double-heterozygous mice are not viable and exhibit defects in hematopoiesis and cerebellar development. The defects in Mdm2+/- Mdm4+/- mice are corrected by deletion of a single p53 allele. These findings highlight the exquisite sensitivity of p53 to Mdm2 and Mdm4 levels and suggest that some cell types may be more sensitive to therapeutic drugs that inhibit the Mdm-p53 interaction.  相似文献   

20.
The histone acetyl transferase Tip60 (HTATIP) shares many properties with the tumor suppressor p53 (TP53). Both proteins are involved in the cellular response to DNA damage, are subjected to proteasomal digestion following Mdm2-mediated ubiquitination, and accumulate after UV irradiation. We found here that knock-down of Tip60 affects the p53-dependent response following actinomycin D treatment, most likely because it inhibits p21 (CDKN1A) accumulation. Moreover, Tip60 is required for p53 to activate the endogenous p21 promoter, suggesting that it functions as a p53 co-activator. However, we also found that knock-down of Tip60 increases the turnover rate of p53 under normal growth conditions. Tip60 interferes with Mdm2-mediated degradation of p53, probably because it affects its subcellular localization. Taken together, our results suggest that Tip60 plays a double role in the p53 pathway: under normal growth conditions, Tip60 contributes to maintain a basal pool of p53 by interfering with its degradation; following DNA damage, Tip60 functions as p53 co-activator. That these two distinct roles are linked during the p53-dependent response is an attractive hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号