首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Since terrestrial invertebrates are often consumed by stream fishes, land-use practices that influence the input of terrestrial invertebrates to streams are predicted to have consequences for fish production. We studied the effect of riparian land-use regime on terrestrial invertebrate inputs by estimating the biomass, abundance and taxonomic richness of terrestrial invertebrate drift from 15 streams draining catchments with three different riparian land-use regimes and vegetation types: intensive grazing — exotic pasture grasses (4 streams), extensive grazing — native tussock grasses (6 streams), reserve — native forest (5 streams). Terrestrial invertebrate drift was sampled from replicated stream reaches enclosed by two 1 mm mesh drift nets that spanned the entire channel. The mean biomass of terrestrial invertebrates that entered tussock grassland (12 mg ash-free dry mass m–2 d–1) and forest streams (6 mg AFDM m–2 d–1) was not significantly different (p > 0.05). However, biomass estimated for tussock grassland and forest streams was significantly higher than biomass that entered pasture streams (1 mg AFDM m–2 d–1). Mean abundance and richness of drifting terrestrial invertebrates was not significantly different among land-use types. Winged insects contributed more biomass than wingless invertebrates to both pasture and tussock grassland streams. Winged and wingless invertebrates contributed equally to biomass entering forest streams. Land use was a useful variable explaining landscape-level patterns of terrestrial invertebrate input for New Zealand streams. Evidence from this study suggests that riparian land-use regime will have important influences on the availability of terrestrial invertebrates to stream fishes.  相似文献   

2.
Copepods are considered to be the main component of the Arctic marine zooplankton. We examined the copepod distribution and diversity off Franz Josef Land (northern Barents Sea) in August 2006 and 2007. A total of 18 and 14 copepod taxa were identified from the sampling layers (100–0 m or bottom–0 m) in 2006 and in 2007, respectively. There were no significant differences in the total copepod abundance between the years (means ± SE: 118,503 ± 24,115 individuals m−2 in 2006 vs. 113,932 ± 28,564 individuals m−2 in 2007). However, the copepod biomass in 2006 (4,518 ± 1,091 mg C m−2) exceeded clearly the value in 2007 (1,253 ± 217 mg C m−2). The copepod community showed low species richness and diversity in both years (Simpson index D: 0.34 and 0.38, respectively). Biomass of the large and small copepod species strongly decreased from 2006 to 2007. The total abundance of copepods was negatively correlated with water temperature in 2006 and positively correlated with salinity in 2007. The patchiness in copepod distribution was associated with local hydrography and temperature conditions.  相似文献   

3.
Macroinvertebrate composition, abundance and biomass were investigated at four intertidal sites throughout the Robbins Passage wetlands, Tasmania, over a 12-month period, in order to identify differences among and within sites, and to determine whether environmental variables could explain these differences. As this region is the most important shorebird area in Tasmania, we wanted to quantify the potential food source for shorebirds within the wetlands. Thirty-five taxa from 28,928 individuals were identified, with a mean abundance of 6026.6 ind m−2 and biomass of 27.1 gDW m−2. Bivalves and gastropods dominated the assemblage in terms of abundance and biomass (79% and 60%, respectively). There was a significant interaction among tidal level, site and season for invertebrate abundance and diversity, while biomass differed significantly among sites. In general, the mid-intertidal stratum had the greatest invertebrate density and diversity, while the low intertidal stratum had the greatest biomass. Community composition varied among the four sites, with the bivalve Paphies elongata dominating at two of the sites, while gastropods and polychaetes were more abundant at the other sites. Differences in invertebrate composition and abundance could partly be explained by seagrass biomass, i.e., dry mass of seagrass leaves and roots. Areas with seagrass had increased invertebrate abundance and diversity, but mean sediment particle size, % organic carbon and % seagrass cover had no significant effect. These results will assist in the investigation of habitat use by shorebirds and the identification of important shorebird feeding areas within the wetlands. Handling editor: P. Viaroli  相似文献   

4.
The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 ± 1.1 specimens m−2 (approximately 230 gWW m−2 of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 ± 0.7 specimens m−2, approximately 315 gWW m−2 of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m−2). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic–pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 ± 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter.  相似文献   

5.
The community structure of mesozooplankton was investigated in Dolgaya Bay (southern Barents Sea), a subarctic fjord, using a Juday net (0.168-mm mesh size) in July, 2008. A total of 39 species and higher taxa were found. Average abundance, biomass and diversity (±standard error) were 153,403 ± 15,855 ind m−2, 570 ± 61 mg dry mass m−2, and 2.25 ± 0.09, respectively. Copepods were the most numerous species. The mesozooplankton communities were dominated by omnivores (Oithona similis and Acartia spp.). Vertical distribution of the mesozooplankton was characterized by copepod dominance at each sampled layer. There were no significant correlations among physical variables and biological parameters, except negative correlation for the mean biomass and mean water temperature.  相似文献   

6.
During summer 2007, Arctic microphytobenthic potential primary production was measured at several stations around the coastline of Kongsfjorden (Svalbard, Norway) at ≤5 m water depth and at two stations at five different water depths (5, 10, 15, 20, 30 m). Oxygen planar optode sensor spots were used ex situ to determine oxygen exchange in the overlying water of intact sediment cores under controlled light (ca. 100 μmol photons m−2 s−1) and temperature (2–4°C) conditions. Patches of microalgae (mainly diatoms) covering sandy sediments at water depths down to 30 m showed high biomass of up to 317 mg chl a m−2. In spite of increasing water depth, no significant trend in “photoautotrophic active biomass” (chl a, ratio living/dead cells, cell sizes) and, thus, in primary production was measured at both stations. All sites from ≤5 to 30 m water depth exhibited variable rates of net production from −19 to +40 mg O2 m−2 h−1 (−168 to +360 mg C m−2 day−1) and gross production of about 2–62 mg O2 m−2 h−1 (17–554 mg C m−2 day−1), which is comparable to other polar as well as temperate regions. No relation between photoautotrophic biomass and gross/net production values was found. Microphytobenthos demonstrated significant rates of primary production that is comparable to pelagic production of Kongsfjorden and, hence, emphasised the importance as C source for the zoobenthos.  相似文献   

7.
The response of the aquatic plant Sparganium emersum to different sediment nutrient levels was studied in three mesocosm experiments. The aim was to assess plant growth parameters and nutrient accumulation in the plant tissue under conditions relevant for habitats with sediments affected by anthropogenic nutrient enrichment. The experimental treatments were produced by fertilisation of the rooting medium (washed river sand) with differing doses of either NPK mineral fertiliser or digested sludge from solid pig slurry waste. Growth inhibition by high nutrient levels was not observed in any treatment (highest nutrient concentrations in the sediment with mineral fertiliser: N 250 mg kg−1, P 50 mg kg−1; organic fertiliser: N 6300 mg kg−1, P 1800 mg kg−1), which confirms the tolerance of S. emersum to high nutrient loads. The sediment nutrient concentration was best reflected in shoot dry mass. Nutrient contents in plant tissues were similar for most nutrient concentrations in the rooting media; only N increased significantly with N levels in the sediment in belowground parts. Nutrient standing stocks in plants, however, generally corresponded to the nutrient supply, and reached highest values (max. N 3.7 g m−2, P 1.2 g m−2) in the richest treatments with organic fertiliser. The capability of S. emersum to use nutrients from high sediment concentrations and in organically polluted environments recommends this species for use in water quality management including tertiary wastewater treatment.  相似文献   

8.
Abundant growths of macrophytes are a common feature of streams in open lowland areas of New Zealand during summer, but the values of these to aquatic biota are poorly understood. We studied the temporal dynamics of, and associations amongst, elements of a macrophyte-invertebrate system to provide an improved information base for lowland stream management. The biomass of macrophytes increased significantly over the four quarterly sampling occasions from 43.8 g m-2 in June to 370.8 g m-2 in March; biomass was dominated by Egeria densa on all dates, except in December when Potamogeton crispus was dominant. We did not detect strong associations between epiphyton biomass and invertebrate abundance in our study, but this may reflect the fact that we sampled loosely-adhering epiphyton on young, surface-reaching shoots whereas invertebrates were collected from macrophytes growing through the water column. Density of some invertebrate species per gram dry weight of plant material varied by macrophyte type, with the chironomids Tanytarsus vespertinus and Naonella forsythi displaying positive correlations with Egeria and Potamogeton biomass, respectively. The shrimp Paratya curvirostris accounted for 50% of phytophilous invertebrate biomass, with Chironomidae the only other group to comprise more than 9%. Abundance of total phytophilous invertebrates displayed a positive linear relationship with macrophyte biomass in a sample (0.1 m2), and a humped relationship with species richness, such that highest numbers of taxa occurred at macrophyte biomass levels around 400 g dw m-2. Our study suggests that intermediate macrophyte biomass levels are likely to enhance macroinvertebrate biodiversity in sandy-bottomed lowland streams. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
In vitro cultures of Berberis buxifolia were established using thidiazuron (4.5, 23 and 45 mM) or picloram (4 and 40 mM) as plant growth regulators for sustaining growth. For producing berberine, a two-stage culture was performed. In the first step, thidiazuron or picloram were used for biomass production followed by the production stage where benzylaminopurine (4.4 mM) was added as a plant growth regulator. Berberine yields (102 mg g−1 DW) and in vitro shoot cultures (200 mg g−1 DW) were significantly lower than those of whole plants in the field (416 mg g−1 DW). The highest productivity (0.18 mg 1−1 day−1) was attained using picloram (either 4 on 40 mM) in the first stage for producing biomass.  相似文献   

10.
This study addresses the spatial variability in mesozooplankton biomass and composition in the Central and Western Bay of Bengal (India) during the summer monsoon season of 2001. Perennially warmer sea surface temperatures (>28°C), stratified top layer (sea surface salinity, 28–33 psu), high turbidity, and low nutrient concentrations due to weak/null upwelling and light limitation make the Bay of Bengal a region of low primary productivity. Despite this, mesozooplankton biomass values, i.e. 2.9–104 mg C m−3 in the Central Bay and 1.3–31 mg C m−3 in the Western Bay, observed in the mixed layer (2–51 m) during the summer monsoon were in the same range as reported from the more productive Arabian Sea. Mesozooplankton biomass was five times and density 18 times greater at stations with signatures of cold-core eddies, causing a higher spatial heterogeneity in zooplankton distribution. Among the 27 taxonomic groups recorded during the season, Copepoda was the most abundant group in all samples followed by Chaetognatha. The dominant order of Copepoda, Calanoida, was represented by 132 species in a total of 163 species recorded. Oncaea venusta was the key copepod species in the Bay. In the Central Bay, the predominant copepod species were carnivorous/omnivorous vis-a-vis mostly herbivores in the Western Bay. Pleuromamma indica increased to its maximum abundance at 18°N in the Central Bay, coinciding with the lowest dissolved oxygen concentrations. The Central Bay had higher mesozooplankton biomass, copepod species richness and diversity than in the Western Bay. Although zooplankton biomass and densities were greater at the eddy stations, correlation between zooplankton and chl a was not statistically significant. It appears that the grazer mesozooplankton rapidly utilize the enhanced phytoplankton production in cold-core eddies.  相似文献   

11.
Samples from stone surfaces were collected in pools within four unpolluted hillstreams (two shaded and two unshaded) in monsoonal Hong Kong (lat. 23°N) to elucidate the extent of spatial (within and among streams) and temporal (seasonal) variations in algal biomass and assemblage composition. Sampling continued for over 12 months, incorporating the dry season when streams were at baseflow, and the wet season when spates were frequent. We anticipated that algal biomass would be lower in shaded streams and during the wet season, with associated seasonal differences in assemblage composition or relative abundance of different growth forms (e.g. erect versus prostrate). Benthic chlorophyll a (a proxy for algal biomass) varied among streams from an annual mean of 11.0–22.3 mg m−2. Dry-season standing stocks were 18% higher than during the wet season when spate-induced disturbance reduced algal standing stocks. Algal biomass varied significantly at the stream scale, but not at the pool scale, and was lower in unshaded streams, where standing stocks may have been limited by high densities of algivorous balitorid loaches (mainly Pseudogastromyzon myersi). An overriding effect of grazers on algal biomass could also have reduced variations resulting from spate-induced disturbance. Significant differences in assemblage composition among streams, which were dominated by diatoms and cyanobacteria (totally 82 taxa) were not systematically related to shading conditions. Seasonal variations in algal assemblages were statistically significant but rather minor, and did not involve major shifts in composition or growth form caused by spate-induced disturbance. The abundance of filamentous cyanobacteria in all the streams may have been due to ‘gardening’ by balitorid loaches that removed erect or stalked diatoms and favoured cyanobacteria that persist through basal regeneration of filaments. This explanation requires validation through manipulative experiments. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: Luis Mauricio Bini  相似文献   

12.
1. We characterised aquatic and terrestrial invertebrate drift in six south‐western North Carolina streams and their implications for trout production. Streams of this region typically have low standing stock and production of trout because of low benthic productivity. However, little is known about the contribution of terrestrial invertebrates entering drift, the factors that affect these inputs (including season, diel period and riparian cover type), or the energetic contribution of drift to trout. 2. Eight sites were sampled in streams with four riparian cover types. Drift samples were collected at sunrise, midday and sunset; and in spring, early summer, late summer and autumn. The importance of drift for trout production was assessed using literature estimates of annual benthic production in the southern Appalachians, ecotrophic coefficients and food conversion efficiencies. 3. Abundance and biomass of terrestrial invertebrate inputs and drifting aquatic larvae were typically highest in spring and early summer. Aquatic larval abundances were greater than terrestrial invertebrates during these seasons and terrestrial invertebrate biomass was greater than aquatic larval biomass in the autumn. Drift rates of aquatic larval abundance and biomass were greatest at sunset. Inputs of terrestrial invertebrate biomass were greater than aquatic larvae at midday. Terrestrial invertebrate abundances were highest in streams with open canopies and streams adjacent to pasture with limited forest canopy. 4. We estimate the combination of benthic invertebrate production and terrestrial invertebrate inputs can support 3.3–18.2 g (wet weight) m−2 year−1 of trout, which is generally lower than values considered productive [10.0–30.0 g (wet weight) m−2 year−1]. 5. Our results indicate terrestrial invertebrates can be an important energy source for trout in these streams, but trout production is still low. Any management activities that attempt to increase trout production should assess trout food resources and ensure their availability.  相似文献   

13.
The emergence of variety of land-use changes due to continuous anthropogenic pressure in peri-urban areas may concomitantly result in modification of the structure of associated plant communities for their sustainable growth. In the present study, plant diversity, and above- and belowground biomass distribution among species were investigated to understand their dynamics across different season, soil, and site conditions in a dry tropical peri-urban region in India. From four study sites that covered contrasting land uses: abandoned brick kiln (ABK), grazing land (GL), Kali river bank (KRB), and agricultural land (AL), a total of 360 monoliths were randomly extracted in three seasons, and dry weights were estimated for aboveground and belowground parts of species individuals. Seasonal soil samples of the sites were analyzed for physico-chemical characteristics. Of the total 87 recorded species that were mainly annual weeds and ruderals, 77% were forbs and 23% grasses. The ranges of plant biomass recorded across all sites and seasons were: aboveground 228–738 g m−2, belowground 83–288 g m−2, and a total of 344–1,026 g m−2. The dominance of species differed between above- and belowground; some species dominated only above- or belowground, and others dominated in both layers. Above- and belowground biomass of the sites, differential community-biomass allocation to above- and belowground parts and species dominants varied significantly with site and season. ABK and AL sites showed lower species diversity and soil nutrients compared to GL and KRB sites. Belowground biomass significantly declined with increasing soil organic C and total N, indicating altered dry matter allocation under resource-scarce habitat conditions. Higher diversity occurred at both low- and high-biomass sites, reflective of enhanced ability of these plant communities to exploit resources maximally in spatio-temporal pattern.  相似文献   

14.
We investigated the photosynthesis–light intensity (P–I) relationships of phytoplankton collected from a sublittoral sand bank in the Seto Inland Sea, Japan, under different temperature conditions. In spite of low chlorophyll a concentration (<3 mg m−3), phytoplankton had considerably high photosynthetic potential (>10 mg C (mg chl a)−1 h−1) in the study area. Based on the P–I relationships, we conducted numerical simulation of areal primary production using published data on water temperature, chlorophyll a concentration, and irradiance. The areal primary production ranged between 159 and 187 g C m−2 year−1. This production was within the range of typical values reported previously in deeper areas of the Seto Inland Sea. The productivity in the sand bank area was discussed in relation to water current, allochthonous resource input, and fisheries.  相似文献   

15.
A. McMinn  A. Martin  K. Ryan 《Polar Biology》2010,33(11):1547-1556
The phytoplankton and sea ice algal communities at the end of winter in McMurdo Sound were dominated by Fragilariopsis sublineata, with Thalassiosira antarctica, Melosira adele, Pinnularia quadreata, Entomoneis kjellmannii and heterotrophic dinoflagellates also present. Sea ice algal biomass at the end of winter was very low, only 0.050 ± 0.019 mg chla m−2 in 2007 and 0.234 ± 0.036 mg chla m−2 in 2008, but this increased to 0.377 ± 0.078 mg chla m−2 by early October in 2007 and to 1.07 ± 0.192 by late September in 2008. Under ice phytoplankton biomass remained consistently below 0.1 μg chla l−1 throughout the measuring period in both years. The photosynthetic parameters Fv/Fm, rETRmax and α document microalgal communities that are mostly healthy and well adapted to their low light under ice environment. Our results also suggest that species such as Fragilariopsis sublineata are well adapted to deal with low winter light levels but are unlikely to survive an increase in irradiance, whereas other taxa, such as Thalassiosira antarctica, will do better in a higher light environment.  相似文献   

16.
Sources of nitrogen and phosphorus were measured for a small pool, Brown Moss, which is a Site of Special Scientific Interest in the UK. The site is designated for its macrophyte and bird interest and comprises several pools flanked by heath and woodland. Currently the largest pool has high mean concentrations of total N and P (4 ± 2.4 mg N l−1 and 389 ± 254 μg P l−1), and also suffers from water table fluctuation and recreational impact. There are no point sources of nutrients but potential diffuse sources include direct rainfall, drainage from surrounding heathland and potentially from distal agricultural land, some septic tank drainage and bird excreta. Nutrients are also released from the sediments. Amongst external sources of phosphorus, birds contributed 234 mg m−2 yr−1 (73%), land drainage 63 mg m−2 yr−1 (20%), and rainfall 24 mg m−2 yr−1 (7%). Major bird species were dabbling ducks and geese. For external sources of nitrogen, the most important was land drainage (2,860 mg m−2 yr−1 and 64%), followed by rainfall (870 mg m−2 yr−1 and 19%) and birds (741 mg m−2 yr−1 and 11%) There was substantial internal loading of phosphorus (1670 mg m−2 yr−1) so that internal loading dominated the overall phosphorus budget (84%). The nitrogen budget was dominated by land drainage, though for short periods, geese made a major contribution. Restoration of the site to the status required by European legislation will be very difficult, if not impossible in the medium-term.  相似文献   

17.
The mesozooplankton of the northern White Sea and Mezen Bay was investigated at nine stations in July 2008 using a Juday net (168 μm mesh size). A total of 39 taxa (species and higher taxa) were found in the samples. Average abundance, biomass, and diversity (Shannon index) were (±SE) 120,793 ± 70,439 ind. m−2, 443 ± 216 mg DW m−2, and 1.41 ± 0.11, respectively. Copepods were most numerous. Overall, herbivores dominated primarily Cirripedia nauplii and Pseudocalanus minutus. Significant correlations were observed among mean temperature, salinity, and mean mesozooplankton abundance and biomass. Our data suggest that salinity and intensive local currents could be the main factors responsible for the distribution of mesozooplankton in the northern White Sea. The average mesozooplankton biomass was higher than in previous studies, indicating a possible climatic impact on the mesozooplankton community.  相似文献   

18.
By adding a biomass carrier to an activated sludge system, the biomass concentration will increase, and subsequently the organic removal efficiency will be enhanced. In this study, the possibility of using excess sludge from ceramic and tile manufacturing plants as a biomass carrier was investigated. The aim of this study was to determine the effect of using fireclay as a biomass carrier on biomass concentration, organic removal and nitrification efficiency in an activated sludge system. Experiments were conducted by using a bench scale activated sludge system operating in batch and continuous modes. Artificial simulated wastewater was made by using recirculated water in a ceramic manufactutring plant. In the continuous mode, hydraulic detention time in the aeration reactor was 8 and 22 h. In the batch mode, aeration time was 8 and 16 h. Fireclay doses were 500, 1,400 and 2,250 mg l−1, and were added to the reactors in each experiment separately. The reactor with added fireclay was called a Hybrid Biological Reactor (HBR). A reactor without added fireclay was used as a control. Efficiency parameters such as COD, MLVSS and nitrate were measured in the control and HBR reactors according to standard methods. The average concentration of biomass in the HBR reactor was greater than in the control reactor. The total biomass concentration in the HBR reactor (2.25 g l−1 fireclay) in the continuous mode was 3,000 mg l−1 and in the batch mode was 2,400 mg l−1. The attached biomass concentration in the HBR reactor (2.25 g l−1 fireclay) in the continuous mode was 1,500 mg l−1 and in the batch mode was 980 mg l−1. Efficiency for COD removal in the HBR and control reactor was 95 and 55%, respectively. In the HBR reactor, nitrification was enhanced, and the concentration of nitrate was increased by 80%. By increasing the fireclay dose, total and attached biomass was increased. By adding fireclay as a biomass carrier, the efficiency of an activated sludge system to treat wastewater from ceramic manufacturing plants was increased.  相似文献   

19.
We surveyed macrophyte community structure and measured community metabolism and nutrient uptake along a temperature gradient (9.7–17.4°C) in four Icelandic streams influenced by geothermal heating. The study streams are part of the geothermal area in Hengill that is uniquely characterised by streams with comparable water chemistry despite the geothermal influence. Stream metabolism was studied applying the diurnal upstream–downstream dissolved oxygen change technique. Nutrient uptake was studied by adding solutions of nitrogen and phosphorus together with a conservative tracer. Rates of primary production (GPP) and uptake of nitrate–N and phosphate-P increased with increasing stream temperature. GPP was 20 times higher (up to 12.99 g O2 m−2 day−1) and rates of nutrient uptake were up to 30-times higher (up to 22.99, 13.31 and 7.94 mg m−2 h−1 for ammonium, nitrate and phosphate, respectively) in the warmest streams compared with the coldest. Furthermore, macrophytes, when present, were strongly controlling ecosystem processes. Our study implies that temperature may affect stream ecosystem processes both directly (i.e. physiologically) and indirectly (i.e. by changing other structural parameters).  相似文献   

20.
Azadirachtin, a well-known biopesticide, is a secondary metabolite extracted from the seeds of Azadirachta indica. In the present study, azadirachtin was produced in hairy roots of A. indica, generated by Agrobacterium rhizogenes-mediated transformation of leaf explants. Liquid cultures of A. indica hairy roots were developed with a liquid-to-flask volume ratio of 0.15. The kinetics of growth and azadirachtin production were established in a basal plant growth medium containing MS medium major and minor salts, Gamborg’s medium vitamins, and 30 g l−1 sucrose. The highest azadirachtin accumulation in the hairy roots (up to 3.3 mg g−1) and azadirachtin production (∼44 mg l−1) was obtained on Day 25 of the growth cycle, with a biomass production of 13.3 g l−1 dry weight. To enhance the production of azadirachtin, a Plackett–Burman experimental design protocol was used to identify key medium nutrients and concentrations to support high root biomass production and azadirachtin accumulation in hairy roots. The optimal nutrients and concentrations were as follows: 40 g l−1 sucrose, 0.19 g l−1 potassium dihydrogen phosphate, 3.1 g l−1 potassium nitrate, and 0.41 g l−1 magnesium sulfate. Concentrations were determined by a central composite design protocol and verified in shake-flask cultivation. The optimized medium composition yielded a root biomass production of 14.2 g l−1 and azadirachtin accumulation of 5.2 mg g−1, which was equivalent to an overall azadirachtin production of 73.84 mg l−1, 68% more than that obtained under non-optimized conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号