首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calcite treatment of chronically acidic lakes has improved fish habitat, but the effects on downstream water quality have not previously been examined. In this study, the spatial and temporal effects of watershed CaCO3 treatment on the chemistry of a lake outlet stream in the Adirondack Mountains of New York were examined. Before CaCO3 treatment, the stream was chronically acidic. During spring snowmelt before treatment, pH and acid-neutralizing capacity (ANC) in the outlet stream declined, and NO 3 and inorganic monomeric aluminum (AlIM) concentrations increased sharply. During that summer, SO 4 and NO 3 concentrations decreased downstream, and dissolved organic carbon (DOC) concentrations and ANC increased, in association with the seasonal increase in decomposition of organic matter and the attendant SO 4 -reduction process. A charge-balance ANC calculation closely matched measured downstream changes in ANC in the summer and indicated that SO 4 reduction was the major process contributing to summer increases in ANC. Increases in Ca2+ concentration and ANC began immediately after CaCO3 application, and within 3 months, exceeded their pretreatment values by more than 130 eq/L. Within 2 months after treatment, downstream decreases in Ca2+ concentration, ANC, and pH, were noted. Stream mass balances between the lake and the sampling site 1.5 km downstream revealed that the transport of all chemical constituents was dominated by conservative mixing with tributaries and ground water; however, non-conservative processes resulted in significant Ca2+ losses during the 13-month period after CaCO3 treatment. Comparison of substrate samples from the buffered outlet stream with those from its untreated tributaries showed that the percentage of cation-exchange sites occupied by Ca2+ as well as non-exchangeable Ca, were higher in the outlet-stream substrate than in tributary-stream substrate. Mass-balance data for Ca2+ H+, AlIM, and DOC revealed net downstream losses of these constituents and indicated that a reasonable set of hypothesized reactions involving AlIM, HCO 3 , Ca2+, SO 4 NO 3 , and DOC could have caused the measured changes in stream acid/base chemistry. In the summer, the sharp decrease in ANC continued despite significant downstream decreases in SO4 2– concentrations. After CaCO3 treatment, reduction of SO 4 was only a minor contributor to ANC changes relative to those caused by Ca2+ dilution from acidic tributaries and acidic ground water, and Ca2+ interactions with stream substrate.  相似文献   

2.
The Experimental Watershed Liming Study (EWLS) was initiated to evaluate the application of CaCO3 to a forested watershed in an effort to mitigate the acidification of surface water. The objective of the EWLS was to assess the response of the Woods Lake watershed to an experimental addition of CaCO3. During October 1989, 6.89 Mg CaCO3/ha was applied by helicopter to two subcatchments comprising about 50% (102.5 ha) of the watershed area. The EWLS involved individual investigations of the response of soil and soil water chemistry, forest and wetland vegetation, soil microbial processes, wetland, stream and lake chemistry, and phytoplankton and fish to the CaCO3 treatment. In addition, the Integrated Lake/Watershed Acidification (ILWAS) model was applied to the site to evaluate model performance and duration of the treatment. The results of these studies are detailed in this volume. The purposes of this introduction and synthesis paper are to: 1) present the overall design of the EWLS, 2) discuss the linkages between the individual studies that comprise the EWLS, and 3) summarize the response of the lakewater chemistry to watershed addition of CaCO3 and compare these results to previous studies of direct lake addition. An analysis of lake chemistry revealed the watershed treatment resulted in a gradual change in pH, acid neutralizing capacity (ANC) and Ca2+ in the water column. This pattern was in contrast to direct lake additions of CaCO3 which were characterized by abrupt changes following base addition and subsequent rapid reacidification. Over the three-year study period, the supply of ANC to drainage waters was largely derived from dissolution of CaCO3 in wetlands. Relatively little dissolution of CaCO3 occurred in freely draining upland soils. The watershed treatment had only minor effects on forest vegetation. The watershed treatment eliminated the episodic acidification of streamwater and the near-shore region of the lake during snowmelt, a phenomenon that occurred during direct lake treatments. Positive ANC water in the near-shore area may improve chemical conditions for fish reproduction, and allow for the development of a viable fish population. The watershed CaCO3 treatment also decreased the transport of Al from the watershed to the lake, and increased the concentrations of dissolved organic carbon (DOC) and dissolved silica (H4SiO4) in stream and lakewater. The watershed treatment appeared to enhance soil nitrification, increasing concentrations of NO3 in soilwater and surface waters. However, the acidity associated with this NO3 release was small compared to the increase in ANC due to CaCO3 addition and did not alter the acid-base status of Woods Lake. Acid neutralizing capacity (ANC) budgets for 12-month periods before and after the watershed treatment showed that the lake shifted from a large source of ANC to a minor source due to retention of SO4 2–, NO3 , Al and the elevated inputs of Ca2+ associated with the watershed CaCO3 application. In contrast to the direct lake treatments, Ca2+ inputs from the watershed application were largely transported from the lake.  相似文献   

3.
Temporal and longitudinal variations in the chemistry of two tributary streams of Woods Lake in the Adirondack Mountains of New York were monitored before and after a watershed CaCO3 application. One subcatchment of the lake had a large beaver pond and wetland at its headwaters, while the second was free-flowing. Treatment of both subcatchments with CaCO3 resulted in an immediate increase in acid neutralizing capacity (ANC) associated with Ca2+ release. The extent and duration of the response to the treatment were greater in the wetland-impacted stream. Aluminum was retained and complexed with organic solutes generated within the beaver-pond. In the free-flowing stream, NO 3 concentration increased significantly after the manipulation; this pattern was not evident in the wetland-impacted stream. Net retention of SOkinf4/sup2– was evident in the beaver pond prior to and following treatment, and this response was enhanced after the watershed liming. Comparisons of beaver pond inlet/outlet concentrations, mass balance calculations, and in-pond profiles of chemical parameters revealed patterns of retention of SO 4 2– , NO 3 and Al, and release of Fe2+, dissolved organic carbon (DOC) and NH 4 + in the wetland during the summer before CaCO3 treatment. Post-treatment releases of Ca2+ from the near-sediment zone in the beaver pond corresponded to anoxic periods in mid- to late-summer and under ice in winter. These findings demonstrate the importance of increased microbial processing of organic matter, along with high partial pressure Of CO2 (Pco2) in facilitating the dissolution of the applied CaCO3. Dissolved silica (H4SiO4) was retained in the wetland during the summer prior to treatment but was released after the manipulation. This phenomenon may reflect the dissolution of diatom frustules or silicate minerals in the wetland at higher pH and DOC concentrations. Within two years of the CaCO3 treatment 60% of the CaCO3 applied to the beaver pond and surrounding wetland was dissolved and transported from the pond, in contrast to only 2.2% of the CaCO3 applied to the upland subcatchment draining into the wetland. These results, coupled with high quantities of exchangeable Ca2+ found in sediments and onSphagnums mosses in the pond, demonstrate the importance of hydrologic source areas and wetlands in facilitating the dissolution of added CaCO3 and in regulating the production of chemical species important in ANC generation.  相似文献   

4.
During the fall of 1989 7.7Mg/ha of calcium carbonate was applied on two tributary catchments (40 ha and 60 ha) to Woods Lake, a small (25 ha) acidic headwater lake in the western Adirondack region of New York. Stream-water chemistry in both catchment tributaries responded immediately. Acid-neutralizing capacity (ANC) increased by more than 200 eq/L in one of the streams and more than 1000 eq/L in the other, from pre-liming values which ranged from –25 to +40 eq/L. The increase in ANC was primarily due to increases in dissolved Ca2+ concentrations. Most of the initial response of the streams was due to the dissolution of calcite that fell directly into the stream channels and adjacent wetlands. A small beaver impoundment and associated wetlands were probably responsible for the greater response observed in one of the streams.After the liming of subcatchmentIV (60 ha), Ca2+ concentrations increased with increasing stream discharge in the stream during fall rain events, suggesting a contribution from calcite dissolved within the soil and transported to the stream by surface runoff or shallow interflow. Concentrations of other ions not associated with the calcite (e.g. Na+) decreased during fall rain events, presumably due to mixing of solute-rich base flow with more dilute shallow interflow. The strong relation between changes in Ca2+ and changes in NO 3 concentrations during spring snowmelt, (r2 = 0.93, slope = 0.96, on an equivalent basis) suggests that both solutes had a common source in the organic horizon of the soil. Increases in NO 3 concentrations during snowmelt were balanced by increases in Ca2+ that was released either directly from the calcite or from exchange sites, mitigating episodic acidification of the stream. However, high ambient NO 3 concentrations and relatively low ambient Ca2+ concentrations in the stream during the spring caused the stream to become acidic despite the CaCO3 treatment.In stream WO2 (40ha), Ca2+ concentrations were much higher than in stream WO4 because of the dissolution of calcite which fell directly into the upstream beaver pond and its associated wetlands. Calcium concentrations decreased as both NO 3 concentrations and stream discharge increased, due to the dilution of Ca-enriched beaver pond water by shallow interflow. Despite this dilution, Ca2+ concentrations were high enough to more than balance strong acid anion (SO 4 , NO 3 , Cl) concentrations, resulting in a positive ANC in this stream throughout the year. These data indicate that liming of wetlands and beaver ponds is more effective than whole catchment liming in neutralizing acidic surface waters.  相似文献   

5.
Solution chemistry profiles of mixed-conifer forests before and after fire   总被引:6,自引:2,他引:4  
Solution chemistry profiles of mixed-conifer forests in granitic catchments of the Sierra Nevada were measured for three years before (1987–1990) and three years after (1990–1993) prescribed fire. Wet deposition, throughfall and soil solution samplers were installed in both white-fir and giant-sequoia dominated forest stands underlain by poorly developed inceptisols. Stream water chemistry was monitored as part of an ongoing study of catchment outputs. Calcium, NO 3 and Cl were the major ions in precipitation. Canopy leaching increased mean concentrations of all major ions, especially K+ and Ca2+. Water flux through the soil occurred largely during spring snowmelt. Forest floor leachate represented the most concentrated solutions of major ions. Interaction with the mineral soil decreased mean concentrations of most species and the average composition of soil solutions closely resembled stream water at baseflow. Bicarbonate alkalinity, Ca2+, Mg2+, and Na+ were enriched in stream water relative to precipitation whereas inputs of H+, NH 4 + , NO 3 and SO 4 2– were retained within the catchments.Burning of the forest understory and litter layer increased solute concentrations in soil solution and stream water. Mean soil solution Ca2+, Mg2+ and K+ concentrations increased more than 10 fold, but the relative predominance of these cations was not affected by burning. Sulfate concentration, which was very low in soil solutions of undisturbed stands (<25 mmolc m–3), increased more than 100 times following fire. Ammonium concentration exhibited a rapid, short-term increase and then a decrease below pre-burn levels. Changes in soil solution chemistry were reflected in catchment outputs.Corresponding author.  相似文献   

6.
Watershed processes influence the acid neutralizing capacity of surface waters by mediating changes in concentration of ionic solutes. Acidification of surface waters by atmospheric deposition of mineral acids and the extent to which ecosystem transformations neutralize this acidity are of particular concern. Seasonal variations in flow paths of water through soil and biological processes result in short-term changes in chemistry that may be critical to surface water ecology. In this study, we assessed longitudinal and temporal variations in the chemistry of a low-order stream, Pancake-Hall Creek, located in the west-central Adirondack region of New York. By quantifying changes in ionic solute concentration (e.g. Ca2+, Ala+, SO 4 2– , NO 3 ) we were able to evaluate processes responsible for short-term fluctuations in acid/base chemistry.In the headwater sites, stream water was acidic; changes in pH, acid neutralizing capacity (ANC) and Al were primarily due to seasonal variations in basic cation and NO 3 concentrations. At the downstream sites, water migrated through a large beaver impoundment and thick till resulting in higher pH, acid neutralizing capacity and basic cation concentrations, and lower concentrations of Al. Neutralization of acidity was particularly evident during the low flow summer period and coincided with retention of SO 4 2– in the beaver impoundment. During the high flow non-summer (October to June) period, depressed pH and ANC, and elevated Al concentrations were observed in the downstream sites. Acidic conditions during the non-summer period were not due to the oxidation of reduced sulfur deposits (e.g. SO 4 2– events) but rather the resumption of conservative SO 4 2– transport through the beaver impoundment (e.g. minimal SO 4 2– retention) coupled with increases in NO 3 .  相似文献   

7.
In acid-sensitive watersheds of the northeastern US, decreases in SO2 emissions and atmospheric deposition of sulfur have not been accompanied by marked changes in pH and acid neutralizing capacity (ANC). To better understand this phenomenon, we investigated the long-term trends in soil solution (1984–1998) and stream water (1982–2000) chemistry along a natural soil catena at the Hubbard Brook Experimental Forest, New Hampshire, USA. Significant declines in strong acid anion concentrations were accompanied by declines in base cation concentrations in soil solutions draining the Oa and Bs soil horizons at all elevations. The magnitude of change varied with position in the landscape. Recovery, as indicated by increasing ANC (mean 2.38µEqL–1year–1) and decreasing concentrations of inorganic monomeric Al (mean 1.03µmolL–1year–1), was confined to solutions draining the Bs horizon at mid-to-higher elevations. However, persistently low Ca2+/Ali ratios (<1) in Bs soil solutions at these sites may be evidence of continuing Al stress to trees. In Bs soil solution at a lower elevation site and in Oa soil solutions at all sites, declines in base cations (mean 3.71µEqL–1year–1) were either similar to or exceeded declines in strong acid anions (mean 3.25µEqL–1year–1) resulting in no change in ANC. Changes in the chemistry of stream water reflected changes in soil solutions, with the greatest improvement in ANC occurring at high elevation and the rate of increase decreasing with decreases in elevation. The pH of soil solutions and stream waters either declined or did not change significantly. Therefore pH-buffering processes, including hydrolysis of Al and possibly the deprotonation of organic acids, have prevented increases in drainage water pH despite considerable reductions in inputs of strong acids.  相似文献   

8.
The relationship between root Al concentrations and Al fractions in the soil solution was examined in a mature Abies amabilis ecosystem in the Cascade Range of Washington State. The naturally acidic soils in these ecosystems lead to high concentrations of aqueous Al in soil solutions and contribute to the biocycling of Al by the A. amabilis/T. mertensiana stand. Root concentrations of Al were very closely related to aqueous Al3+ activities, but poorly correlated with total aqueous Al concentrations. The solution Al/Ca molar ratios followed a seasonal cycle with low values during the fall and high values during the spring. Ratios remained <1 throughout the year in the Oa horizon while they varied between 2 and 14 in the E and Bhs horizons. The vertical distribution of roots and the mortality of fine roots may be linked to the soil solution Al/Ca ratio. Root cation exchange capacity ranged between 180 and 225 mol g-1 and the exchangeable Al fraction represented from 12–17% of the total Al content in the root. Evidence for solid-phase co-precipitates of Al with PO4 and oxalate was indicated from selective dissolution of the root tissue. Sufficient quantities of PO4 and oxalate exist in the roots to tie up 20–40% of the Al present in the roots of the Oa and E horizons, but only 9% of that present in the Bhs horizon. Species differences in the distribution of Al between the above-ground and below-ground components may be dictated by these retention processes in the fine roots.  相似文献   

9.
Factors behind the small-scale variaton of pH were examined in O horizons (humus layers) developed under two stands of Picea abies (L.) Karst. (Site F and K) by combining data on the composition of the cation exchange complex with data from titrations of corresponding H+-saturated samples. Cations extractable in 0.5 M CuCl2 (S=cmolc kg–1 [2Ca+2Mg+2Mn+K+Na]), aluminium extractable in 1.0 M KCl (Ale=cmolc kg–1 [3Al]) and in 0.5 M CuCl2 (Alorg=cmolc kg–1 [3Al]), as well as pH measured in 0.01 M CaCl2 (pHCa) were analysed in one-cm-layers of 13 O horizon cores at each site. Composite samples representing each of the one-cm-layers at each site, as well as samples with two different levels of Al saturation at Site K, were H+ saturated and titrated with NaOH to chosen end points of pHCa=4.0 and 5.5 in a 0.01 M CaCl2 ionic medium. The Acid Neutralisation Capacity (ANC) was estimated as the amount of base needed to increase pHCa of the composite H+-saturated samples to the mean pHCa of the corresponding natural samples. The ANC was found to be similar in magnitude or higher than the amount of sites binding S+Ale, which suggests that 1.0 M KCl exchangeable Al ions are nonacidic in acid O horizons. The relative contribution from i) the capacity of acidic functional groups, ii) their acid strength and iii) their degree of neutralisation to differences in pHCa between sites, among cm-layers and between samples with different levels of Al saturation were estimated from titration curves adjusted to hold two out of three factors (i, ii and iii) to be constant. The degree of neutralisation explained most of the differences in pHCa between the two sites, as well as between samples with different levels of Al saturation at Site K. The pHCa decrease by depth at site F was, however, partly explained by an increasing acid strength. The study emphasizes the importance of examining not only changes in the degree of neutralisation, but also changes in the acid strength and the capacity of buffering functional groups before conclusions about causes behind acidification processes can be made. Difficulties of accurately estimating the degree of neutralisation (base saturation) of acidic functional groups from the composition of adsorbed cations, owing to the unknown acidity of adsorbed Al, was also demonstrated.  相似文献   

10.
Nitrogen deposition in the range of 10–40 kg N ha-1 a-1 is common in large parts of Europe. Substancial amounts are deposited as NH 4 + having fertilization and acidification effects in ecosystems. In a long term experiment the reactions of different compartments of a forest ecosystem were studied when the system became N saturated by continuously applying (NH4)2SO4. The experiment was conducted in a beech forest and the application of 10 kmolc N ha-1 a-1 lasted 11 yr from 1983 till 1993.The results revealed that despite the high soil acidity, the applied NH 4 + was quickly oxidized to NO 3 - in the surface 10 cm soil layer and leached to deeper depths. The amount of NO 3 - leached from the surface soil increased during the initial three years and remained constant on a high level for the rest of the experimental period. Nitrification was associated with acidification of the soil solution, causing high concentrations of Al and Mn2+ in soil solutions. More than 50% of total Al in solution occurred in non-phytotoxic form (Al–SO4 complexes). Moreover, concentration of base cations and dissolved organic carbon increased. Concentrations of SO 4 2- in soil solutions increased during the first few years approaching more or less constant values in the surface 40 cm depth, whereas in 40–100 cm depth it took about 10 yr to reach those levels of sulphate concentrations in soils, indicating its retention in the deeper soil layers. No significant change in the chemistry of throughfall water and leaves was observed, indicating to N-saturation of the trees.  相似文献   

11.
We studied the effect of a calcite (CaCO3) treatment on peat and pore water chemistry in poor fen and conifer swamp wetlands next to Woods Lake and its tributaries to evaluate the role of wetlands in an Experimental Watershed Liming Study (EWLS). Peat was characteristically organic rich and nutrient poor, with exchangeable Ca concentrations of < 13 cmolckg–1. We estimated that between 0.4 to 4 Mg (CaCO3) ha–1 fell directly on three study sites; however, one year after the treatment the increase in Ca concentration (0–8 cm depth) was equivalent to a (CaCO3) dosage of 3 Mg ha–1 with an additional 2–4 Mg ha–1 of undissolved (CaCO3) still present, suggesting the peat retained Ca supplied from uplands. Most aspects of peat chemistry including microbial respiration and SO4 reduction did not respond to the treatment.Peat pore water (5 and 20 cm depths) had a mean pH of 4.82 before treatment with high concentrations of dissolved organic carbon (DOC mean of 790 mol C/l) and low Ca2+ concentration (mean of 32 mol/l). The (CaCO3) treatment increased concentrations of Ca2+ to a mean of 87 mol/l and dissolved inorganic carbon (DIC) from 205 to a mean of 411 mol/l, whereas it decreased monomeric Al concentration from 19 to 10 mol/l. Otherwise, pore water chemistry showed little response to the treatment, at least within natural spatial and temporal variation of solute concentrations. The results suggest that liming watersheds with the relatively low (CaCO3) dosage applied in this study can benefit acidic waters downstream by exporting more Ca and DIC and less monomeric Al, with otherwise little effect on the peat itself.  相似文献   

12.
We measured concentrations of soil nutrients (0–15 and 30–35 cm depths) before and after the dry season in control and dry-season irrigated plots of mature tropical moist forest on Barro Colorado Island (BCI) in central Panama to determine how soil moisture affects availability of plant nutrients. Dry-season irrigation (January through April in 1986, 1987, and 1988) enhanced gravimetric soil water contents to wet-season levels (ca. 400 g kg–1 but did not cause leaching beyond 0.8 m depth in the soil. Irrigation increased concentrations of exchangeable base cations (Ca2+, Mg2+, K+, Na+), but it had little effect on concentrations of inorganic N (NH4 +C, NO3 and S (SO4 2–). These BCI soils had particularly low concentrations of extractable P especially at the end of the dry season in April, and concentrations increased in response to irrigation and the onset of the rainy season. We also measured the response of soil processes (nitrification and S mineralization) to irrigation and found that they responded positively to increased soil moisture in laboratory incubations, but irrigation had little effect on rates in the field. Other processes (plant uptake, soil organic matter dynamics) must compensate in the field and keep soil nutrient concentrations at relatively low levels.  相似文献   

13.
Decreases in pH and increases in the concentration of Al and NO 3 have been observed in surface waters draining acid-sensitive regions in the northeastern U.S. during spring snowmelt. To assess the source of this acidity, we evaluated solute concentrations in snowpack, and in meltwater collected from snow and forest floor lysimeters in the west-central Adirondack Mountains of New York during the spring snowmelt period, 29 March through 15 April 1984.During the initial phase of snowmelt, ions were preferentially leached from the snowpack resulting in elevated concentrations in snowmelt water (e.g. H+ = 140 eq.l–1; NO 4 2– = 123 eq.l–1; SO 3 = 160 eq.l–1). Solute concentrations decreased dramatically within a few days of the initial melt (< 50 eq.l–1). The concentrations of SO 4 2– and NO 3 in snowpack and snowmelt water were similar, whereas NO 3 in the forest floor leachate was at least two times the concentration of SO 4 2– .Study results suggest that the forest floor was a sink for snowmelt inputs of alkalinity, and a net source of H+, NO 3 , dissolved organic carbon, K+ and Al inputs to the mineral soil. The forest floor was relatively conservative with respect to snowmelt inputs of Ca2+, SO 4 2– and Cl. These results indicate that mineralization of N, followed by nitrification in the forest floor may be an important process contributing to elevated concentrations of H+ and NO 3 in streams during the snowmelt period.  相似文献   

14.
The solute relations of the upper epidermis of the third leaf of barley (Hordeum vulgare L. cv. Klaxon) were studied by analysing vacuolar saps extracted from individual cells. Their osmolality (nanolitre osmometry) and the concentrations of K, Na, Ca, Cl, P, S (energy dispersive X-ray analysis) and NO 3 (microfluorometry) were measured. All of the osmotically important solutes were accounted for. These were K+, NO 3 , Cl, and Ca2+. The concentration of each solute varied along the leaf blade and changed with leaf age. Calcium in particular increased during leaf ageing, exceeding concentrations of 50 mM. Plants starved of Ca2+ during this period accumulated epidermal K+ instead of Ca2+. Leaf ageing was accompanied by an increase in epidermal osmolalities by about 100 mosmol · kg–1. When compared to the bulk leaf extract, epidermal cell extracts exhibited significantly higher concentrations of NO 3 , Cl and Ca2+, similar concentrations of K+ and Na+, and lower concentrations of P. In plants subjected to various levels of NaCl stress (up to 200 mM), epidermal concentrations of Cl always exceeded those of the bulk extract, while Na+ concentrations were similar. Epidermal cells osmotically adjusted to the increase in the external salt concentration.Abbreviations EDX analysis energy dispersive X-ray analysis We wish to thank Paul Richardson, Jeremy Pritchard, Peter Hinde, Eirion Owen and Andrew Davies (Banger) for their helpfull discussion and technical advice. This work was financed by a grant (UR5/ 521) from the Agricultural and Food Research Council.  相似文献   

15.
The effects of three S deposition scenarios — 50% reduction, no change, and 100% increase — on the cycles of N, P, S, K, Ca, and Mg in a mixed deciduous forest at Coweeta, North Carolina, were simulated using the Nutrient Cycling model (NuCM). The purpose of this exercise was to compare NuCM's output to observed soil and streamwater chemical changes and to explore NuCM's response to varying S deposition scenarios. Ecosystem S content and SO4 2– leaching were controlled almost entirely by soil SO4 2– adsorption in the simulations, which was in turn governed by the nature of the Langmuir isotherm set in the model. Both the simulations and the 20-year trends in streamwater SO4 2– concentration suggest that the ecosystem is slowly becoming S saturated. The streamwater data suggest S saturation is occurring at a slower rate than indicated by the simulations, perhaps because of underestimation of organic S retention in the model. Both the simulations and field data indicated substantial declines in exchangeable bases in A and BA soil horizons, primarily due to vegetation uptake. The correspondence of model output with field data in this case was a result of after-the-fact calibration (i.e. setting weathering rates to very low values) rather than prediction, however. Model output suggests that soil exchangeable cation pools change rapidly, undergoing annual cycles and multi-decade fluctuations.Varying S deposition had very little effect upon simulated vegetation growth, nutrient uptake, or N cycling. Varying S deposition strongly affected simulated Ca2+. Mg2+, K+, and P leaching but caused little change in soil exchangeable pools of Ca2+ K+, or P because soil exchangeable pools were large relative to fluxes. Soil exchangeable Mg2+ pools were reduced by high rates of S deposition but remained well above levels sufficient for tree growth. Although the total soil pools of exchangeable Ca2+ and K+ were only slightly affected by S deposition, there was a redistribution of Ca2+ and K+ from upper to lower horizons with increasing S deposition, causing increased base saturation in the deepest (BC) horizon. The 100% increased S deposition scenario caused increasing peaks in simulated Al3+ concentrations in A horizons after 25 years as a result of large seasonal pulses of SO4 2– and lowered base saturation. Simulated soil solution Al3+ concentrations remained well below toxicity thresholds for selected tree species at the site.  相似文献   

16.
M. R. Davis 《Plant and Soil》1990,126(2):237-246
Concentrations of ions were measured in soil solutions from beech (Nothofagus) forests in remote areas of New Zealand and in solutions from beech (Fagus sylvatica) and Norway spruce (Picea abies) forests in North-East Bavaria, West Germany, to compare the chemistry of soil solutions which are unaffected by acid deposition (New Zealand) with those that are affected (West Germany). In New Zealand, soil solution SO4 2– concentrations ranged between <2 and 58 mol L–1, and NO3 concentrations ranged between <1 and 3 mol L–1. In West Germany, SO4 2– concentrations ranged between 80 and 700 mol L–1, and NO3 concentrations at three of six sites ranged between 39 and 3750 mol L–1, but was not detected at the remaining three sites. At all sites in New Zealand, and at sites where the soil base status was moderately high in West Germany, pH levels increased, and total Al (Alt) and inorganic monomeric Al (Ali) levels decreased rapidly with increasing soil depth. In contrast, at sites on soils of low base status in West Germany, pH levels increased only slightly, and Al levels did not decline with increasing soil depth.Under a high-elevation Norway spruce stand showing severe Mg deficiency and dieback symptoms in West Germany, soil solution Mg2+ levels ranged between 20 and 60 mol L, and were only half those under a healthy stand. Alt and Ali levels were substantially higher the healthy stand than under the unhealthy stand, indicating that Al toxicity was not the main cause of spruce decline.  相似文献   

17.
J. Gorham  J. Bridges 《Plant and Soil》1995,176(2):219-227
The optimum Ca2+ concentration for growth of cotton (Gossypium hirsutum cv. Acala SJ-2) was in the range 1 to 15 mol m–3 for plants growing in hydroponic culture with 100–150 mol m–3 NaCl. Most saline (but not sodic) soils contain higher Ca2+ concentrations. CaCl2 was inhibitory to the growth of cotton above 20–50 mol m–3. Increasing concentrations of Ca2+ in the range 0–2 mol m–2 drastically reduced Na+ accumulation in the leaves. As CaCl2 concentrations were increased above the optimum for growth there was a further reduction in leaf Na+ accumulation, but this was more than offset by increased leaf Ca2+ and Cl concentrations. Leaf K+ concentrations were not much affected by changes in external CaCl2 concentrations. The response of Mg2+ varied from an increase to a decrease with increasing external CaCl2 and was influenced by nutritional status. There was no evidence that high Ca2+ caused a deficiency of Mg2+ in cotton. Except for Cl, whose concentrations tended to decrease initially and then increase as the CaCl2 concentration increased, the anions were largely unaffected by changes in external CaCl2.  相似文献   

18.
Three field experiments were carried out to compare cattle and sheep urine patches in relation to (i) initial wetting pattern and volume of soil affected, (ii) soil solution ionic composition and (iii) the fate of15N-labelled urine in the soil over the winter period. The distribution of Br (used as a urine tracer) across the soil surface and down the profile was irregular in all the patches. The pasture area covered by Br in the sheep patches was 0.04–0.06 m2 and Br was detected to a depth of 150 mm. Cattle patches were significantly larger covering a surface area of 0.38–0.42 m2 and penetrating to a depth of 400 mm. The rapid downward movement of urine occurred through macropore flow but even so, over half of the applied Br was detected in the 0–50 mm soil layer in both sheep and cattle patches. Due to the larger volume of urine added to the cattle patches (2000 mL for cattle and 200 mL for sheep) the effective application rate was about 5 L m–2 compared with 4 L m–2 for sheep. Concentrations of extractable mineral N and ionic concentrations in soil solution were higher in cattle than sheep patches particularly near the soil surface. In both sheep and cattle patches, urea was rapidly hydrolysed to NH 4 + and nitrification occurred between 14 and 29 days after urine application. Initially the major anions and cations in the soil solution were HCO 3 , SO 4 = , Cl, NH 4 + , Mg++, K+ and Na+, which were derived from the urine application. Ionic concentrations in the soil solution decreased appreciably over time due to plant uptake and possibly some leaching. As nitrification proceeded, NO 3 became the dominant anion in soil solution and the major accompanying cation was Ca++. The fate of15N-labelled urine-urea was followed during a 5 month period beginning in late autumn. Greater leaching losses of NO 3 occurred below cattle patches (equivalent to 60 kg N ha–1 below 300 mm and 37 kg N ha–1 below 600 mm) compared with sheep patches (10 kg N ha–1 below 300 mm and 1 kg N ha below 600 mm). While 6% of the applied15N was leached the amount of N leached was equivalent to 11% of the applied urine-N in cattle patches. This suggests that there was significant immobilsation-mineralisation turnover in urine patch soil with the release of mineral N from native soil organic matter. In both sheep and cattle patches 60% of the15N was accounted for in plant uptake, remaining in the soil and leaching. About 40% of the applied N was therefore lost through gaseous emission.  相似文献   

19.
Soil columns with O + A (Experiment I) or Ohorizons (Experiment II) from a Haplic Podsol wereincubated at 15 °C for 368 and 29 + 106 days,respectively. Three types of liming material differingin Ca2+ content, i.e. calcium carbonate(CaCO3), dolomite (CaMg(CO3)2) andmagnesium carbonate (MgCO3), were mixed into theO horizons in equimolar amounts corresponding to 6000kg of CaCO3 per ha. In the limed treatments ofExperiment I, the leaching of dissolved organic carbon(DOC) and the net sulphur mineralization (estimated asaccumulated SO 4 2– leaching corrected forchanges in the soil pools of adsorbed and waterextractable SO 4 2– ) increased with decreasingCa2+ content of the lime and increasing degree oflime dissolution. In relation to the controltreatment, only the MgCO3 treatment resulted ina significantly higher net sulphur mineralization. InExperiment I the net sulphur mineralization was 4.06,1.68, 0.57, and 2.14 mg S in the MgCO3,CaMg(CO3)2, CaCO3 and control treatment,respectively. The accumulated SO 4 2– leachingin Experiment II during the first 29 days was 1.70,0.74 and 0.48 mg S in the MgCO3,CaMg(CO3)2 and control treatment,respectively. In the two experiments there wereconsistently significant positive correlations betweenleached amounts of SO 4 2– and DOC. It wasconcluded that net sulphur mineralization was stronglyconnected to the solubilization of the organic matter(DOC formation) and that pH and/or Ca2+ ionsaffected the net sulphur mineralization through theireffects on organic matter solubility.  相似文献   

20.
Summary Inhibitory effect of potassium chloride on nitrification of ammonium sulfate and urea in acid, neutral and calcareous soils was observed in an incubation study. In acidic soil, NO 3 –N production in soil treated with urea was retarded by addition of KCl. NO 3 –N concentration was much less even in comparison to control where ammonium sulfate and KCl were added together which might be due to cumulative effect of Cl and SO 4 –2 ions. In neutral and calcareous soils, nitrification inhibition was less conspicuous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号