首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activin, a disulfide-linked polypeptide dimer first isolated from gonadal tissue extracts, has amino acid sequence and structural homology with transforming growth factor beta (TGF beta). Along with other activities, TGF beta regulates replication and differentiation and interacts with a defined set of binding sites on isolated bone cells. To determine if activin shares these properties, recombinant human activin-A (A-chain homodimer) was examined in osteoblast-enriched cultures obtained from fetal-rat parietal bone. After 23 h of treatment, 60 to 6,000 pM activin-A increased the rate of [3H]thymidine incorporation into DNA 1.5- to 4.0-fold, and at 600 to 6,000 pM, it enhanced the rate of [3H]proline incorporation into collagen and noncollagen protein by up to 1.7-fold. Like earlier studies with TGF beta in primary osteoblast-enriched cultures, the stimulatory effects of activin-A on DNA and protein synthesis were opposed by parathyroid hormone, and the influence of activin-A on collagen synthesis was independent of cell replication. Binding studies with 125I-activin-A indicated approximately 8,000 high-affinity (Kd = 0.4 nM) and 300,000 low-affinity (Kd = 40 to 50 nM) binding sites per cell. Polyacrylamide gel analysis revealed 125I-activin-A-binding complexes of Mr greater than 200,000 and 73,000 which did not appear to correspond to primary TGF beta-binding sites. These results indicate that activin-A produces TGF beta-like effects in bone and that some of these effects may be mediated, at least in part, by distinct activin receptors on bone cells.  相似文献   

2.
Transforming growth factor-beta (TGF beta) serves an important role in extracellular matrix formation by stimulating the production of numerous extracellular matrix proteins by connective tissue cells and by osteoblasts or bone-forming cells. TGF beta has been shown to stimulate alkaline phosphatase (ALPase) activity in the rat osteoblast-like osteosarcoma cell line ROS 17/2.8. Previous studies have shown that this enzyme is elevated during calcification of bone and that it is enriched in matrix vesicles, an extracellular organelle associated with initial hydroxyapatite formation. To test the hypothesis that TGF beta plays a role in regulating mineral deposition in the matrix, the effects of TGF beta on ALPase and phospholipase A2, two enzymes associated with mineralization, were examined. ROS 17/2.8 cells were cultured at high and low density with recombinant human TGF beta (0.1-10 ng/ml) to examine the influence of cell maturation on response to TGF beta. Maximal stimulation of ALPase activity in the low density cultures was seen at 5 ng/ml; in high-density cultures, there was further stimulation at 10 ng/ml. There was a dose-dependent increase in ALPase activity seen in the matrix vesicles and plasma membranes in both types of cultures. Matrix vesicle ALPase exhibited a greater response to factor than did the plasma membrane enzyme. However, in low-density cultures, the two membrane fractions exhibited a parallel response with greatest activity consistently in the matrix vesicles. There was a dose-dependent increase in phospholipase A2-specific activity in the plasma membranes and matrix vesicles of both high- and low-density cultures. In agreement with previous studies, TGF beta inhibited cellular proliferation 50%. The results show that addition of TGF beta stimulates the activity of enzymes associated with calcification. The effect of TGF beta is dependent on the stage of maturation of the cell. This study indicates that TGF beta may play an important role in induced bone formation, calcification, and fracture repair in addition to its role in promoting chondrogenesis.  相似文献   

3.
Human bone marrow fibroblasts were cultivated and characterized by immunofluorescent staining and electron microscopy. Their interactions with PDGF and TGF beta were studied. While a positive intracellular antifibronectin staining was observed, the cultured cells were not labeled with specific antibodies toward factor VIII von Willebrand factor (F VIII/vWF), desmin, and macrophage antigen. Moreover, electron microscopy excluded the presence of endothelial cells by the absence of Weibel-Palade bodies. The binding of pure human PDGF to the cultured bone marrow fibroblasts was investigated. Addition of an excess of unlabeled PDGF decreased the binding to 75 and 80%, which means that the nonspecific binding represented 20-25% of total binding, whereas epidermal growth factor (EGF) had no effect. Two classes of sites were detected by Scatchard analysis with respectively 21,000 and 37,000 sites per cell, with a KD of 0.3 x 10(-10) M and KD of 0.5 x 10(-9) M. The stimulation of DNA synthesis by PDGF was quantified by [3H]thymidine incorporation. When PDGF was added alone at a concentration of 15 ng/ml, it induced a maximal DNA synthesis of 400%, which increased up to 900%, in the presence of platelet-poor plasma (PPP). On the other hand, PDGF-induced fibroblast proliferation was inhibited in a dose-dependent manner by TGF beta. This inhibition was related to a significantly decreased binding of 125I-labeled PDGF observed in the presence of TGF beta. Our results suggested that PDGF and TGF beta could modulate the growth of bone marrow fibroblasts.  相似文献   

4.
Transforming growth factor-beta 1 (TGF beta 1) is a multifunctional regulator of cell growth and differentiation. We report here that TGF beta 1 decreased the proliferation of nontransformed bovine anterior pituitary-derived cells grown in culture. We have previously demonstrated that these cells express both TGF alpha and its receptor [the epidermal growth factor (EGF) receptor] and that expression can be stimulated by phorbol ester (TPA) and EGF. TGF beta 1 treatment over a 2-day period decreased the proliferation of pituitary cells. This decreased growth rate was accompanied by a decrease in the TGF alpha mRNA level. The effect of TGF beta 1 on TGF alpha mRNA down-regulation was both dose dependent (maximal effect observed at 1.0 ng/ml TGF beta 1) and time dependent (minimum of 2-day treatment with TGF beta 1 was required before a decrease in TGF alpha mRNA was observed). Studies on TGF alpha mRNA stability indicated that TGF beta 1 did not alter the TGF alpha mRNA half-life. Treatment of the TGF beta 1 down-regulated cells with EGF resulted in the stimulation of TGF alpha mRNA levels; thus, the TGF beta 1-treated cells remained responsive to EGF. The decreased proliferation in response to TGF beta 1 could be only partially reversed by simultaneous treatment of the cells with EGF (10(-9)M) and TGF beta 1 (3.0 ng/ml). Qualitatively, the TGF beta 1-induced reduction of TGF alpha mRNA content was independent of cell density. TGF beta 1 treatment of the anterior pituitary-derived cells also reduced the levels of c-myc and EGF receptor mRNA. These results represent the first demonstration of the down-regulation of TGF alpha synthesis by a polypeptide growth factor and suggest that TGF beta 1 may be a physiological regulator of TGF alpha production in vivo.  相似文献   

5.
The effect of transforming growth factor beta (TGF-beta) has been studied in a bovine articular cartilage organ culture. The peptide stimulates synthesis of proteoglycans in a dose-dependent manner, reaching saturation at 10 ng/ml. This dose gave an approximate 7-fold increase in synthesis over basal controls. In addition, the peptide decreased the rates of catabolism of proteoglycans with an approximately 2-fold maximal effect seen at 5 ng/ml. At the latter concentration, TGF-beta prevented the 4-fold loss of proteoglycans which occurred in cultures maintained under basal conditions over the course of 3 weeks. There was no increase in cell (DNA) content of the cartilage explants under these conditions of TGF-beta treatment, and the net collagen content of the explants remained constant.  相似文献   

6.
7.
Effects of platelet-derived growth factor on bone formation in vitro   总被引:5,自引:0,他引:5  
Platelet-derived growth factor (PDGF) is a polypeptide found in a variety of tissues, including bone, where it could act as an autologous regulator of skeletal remodeling. Therefore, a recombinant B chain homodimer of human PDGF was studied for its effects on bone formation in cultured rat calvariae. PDGF at 10-100 ng/ml stimulated [3H]thymidine incorporation into DNA by up to sixfold and increased the DNA content and the number of colcemid-induced metaphase arrested cells. This effect was observed in the fibroblast and precursor cell-rich periosteum. As a result of its mitogenic actions, PDGF enhanced [3H]proline incorporation into collagen, an effect that was observed primarily in the osteoblast-rich central bone. The effect of PDGF was not specific for collagen since it also increased noncollagen protein synthesis. In addition, PDGF increased bone collagen degradation. PDGF and insulin-like growth factor (IGF) I had additive effects on calvarial DNA synthesis, but PDGF opposed the stimulatory effect of IGF I on collagen synthesis and IGF I prevented the PDGF effect on collagen degradation. In conclusion, PDGF stimulates calvarial DNA synthesis which causes an increased number of collagen-synthesizing cells, but PDGF also enhances bone collagen degradation.  相似文献   

8.
Beta transforming growth factor (TGF beta) has multiple in vitro biological effects including stimulation or inhibition of proliferation of specific cell types. A second major form of TGF beta, TGF beta-2, has recently been isolated from porcine platelets, from bovine bone matrix, and from several other sources. The two forms of TGF beta are biologically equipotent with the exception that TGF beta-2 was much less active than TGF beta-1 for inhibition of proliferation of a rat pleuripotent hematopoietic stem cell line. During the purification of beta TGF from bone, we obtained two fraction pools that differed in their ability to inhibit 3H-thymidine incorporation into aortic endothelial cells (AEC). We therefore compared highly purified TGF beta-1 and TGF beta-2 isolated from porcine platelets for inhibition of DNA synthesis in mink lung epithelial cells (MvILu), and in AEC, and for stimulation of 3H-thymidine incorporation in calvarial bone cells (CBC) in 3 experiments. TGF beta-1 and TGF beta-2 inhibited cell proliferation in MvILu with no significant differences in the ED50 (31 +/- 8 pg/ml vs 23 +/- 7). TGF beta-2 was much less potent than TGF beta-1 in inhibiting DNA synthesis in AEC (6310 +/- 985 pg/ml vs 101 +/- 34). The reduced specific activity of TGF beta-2 was also observed in adrenal capillary endothelial cells. Both beta-1 and beta-2 stimulated proliferation of CBC (ED50 26 +/- 2 pg/ml vs 10 +/- 4). We also examined the specificity of the MvILu and AEC inhibition assays. Epidermal growth factor (EGF), platelet derived growth factor (PDGF), acidic and basic fibroblast growth factors (FGF), skeletal growth factor (SGF)/insulin-like growth factor-II (IGF-II), and insulin-like growth factor-I (IGF-I) did not inhibit DNA synthesis in either assay system. However, when the growth factors were added to maximal inhibiting concentrations of TGF beta-1, both acidic and basic FGF significantly reduced TGF beta-1 inhibition in AEC. We conclude that (1) inhibition of DNA synthesis in endothelial cells is relatively specific for TGF beta-1, (2) inhibition of DNA synthesis in MvILu is a sensitive and specific assay for generic TGF beta activity but does not distinguish beta-1 from beta-2, (3) the relative inhibition of DNA synthesis in MvILu and AEC may provide a means to quantitatively estimate TGF beta-1 and TGF beta-2, and (4) both TGF beta-1 and TGF beta-2 are potent mitogens for chicken embryonic calvarial bone cells.  相似文献   

9.
10.
Clonal subpopulations of NRK-49F cells were isolated and characterized for their responses to transforming growth factor beta (TGF beta). Two fibroblastic clones, N1 and N4, were found to have opposite TGF beta responses. TGF beta inhibits EGF-induced proliferation in growth-arrested, subconfluent monolayer cultures of N1 but not N4 cells. In contrast, TGF beta stimulates DNA synthesis and an increase in cell number in N4 but not N1 cells. The inhibitory effect of TGF beta on DNA synthesis in N1 cells is due not to modulation of the EGF receptor or other early G1 events. EGF-induced myc mRNA accumulation is not inhibited, and the action point for TGF beta inhibition of the entry into S of N1 cells is at the G1-S boundary.  相似文献   

11.
12.
We show here that purified platelet derived growth factor (PDGF) stimulates DNA synthesis in normal endosteal mouse and human osteoblastic cells isolated by selective migration from the trabecular bone surface. Maximum DNA synthesis as measured by (3H)-thymidine incorporation into DNA was increased at 50 ng/ml PDGF (48-72 hours). In both species, the effect of PDGF (25 ng/ml) was lower than the mitogenic effect of 10% FCS. We found that the mitogenic effect of PDGF on human trabecular cells decreased with the number of cell passages. DNA synthesis was increased about 4-fold by PDGF (25 ng/ml) in early passaged cells that expressed low basal growth rate and high osteocalcin production in basal conditions and in response to 1,25(OH)2 vitamin D, whereas DNA synthesis was increased 1.2 fold by PDGF in late passaged cells that showed high basal growth rate and low osteocalcin release in absence or presence of 1,25(OH)2D. PDGF alone had no effect on osteocalcin production. These results indicate that PDGF has mitogenic effect on normal mouse and human osteoblastic cells lining the trabecular bone surface and that the responsiveness to PDGF of human trabecular cells varies with the stage of differentiation.  相似文献   

13.
14.
The effects of the transforming growth factor beta (TGF-beta) on the growth and glycosaminoglycan synthesis of rabbit growth plate-chondrocytes in culture were studied. In serum-free medium, TGF-beta caused dose-dependent inhibition of DNA synthesis by chondrocytes, measured as [3H]thymidine incorporation (ED50 = 0.1-0.3 ng/ml). The inhibitory effect was maximal at a dose of 1 ng/ml, and extended for a duration of 16-42 h. In contrast, TGF-beta potentiated the synthesis of DNA stimulated by fetal calf serum (FCS). Addition of TGF-beta (1 ng/ml) to cultures containing 10% FCS increased [3H]thymidine incorporation to 1.6-times that in cultures with 10% FCS alone. Consistent with this finding, TGF-beta potentiated DNA synthesis stimulated by the purified growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and fibroblast growth factor (FGF). The maximal stimulation of DNA synthesis by FGF (0.4 ng/ml) was further potentiated dose dependently by TGF-beta (ED50 = 0.1 ng/ml, maximum at 1 ng/ml). When the cultures were treated with the optimal concentrations of TGF-beta (1 ng/ml) and FGF (0.4 ng/ml), [3H]thymidine incorporation was 3-times higher than that of cultures treated with FGF alone. This TGF-beta-induced potentiation of DNA synthesis was associated with replication of chondrocytes, as shown by a marked increase in the amount of DNA during treatment of sparse cultures of the cells with the growth factors for 5 days. In contrast, TGF-beta caused dose-dependent stimulation of glycosaminoglycan synthesis in confluent cultures of growth-plate chondrocytes (ED50 = 0.3 ng/ml, maximum at 1 ng/ml). This stimulatory effect of TGF-beta was greater than that of insulin-like growth factor I (IGF-I) or PDGF. Furthermore, TGF-beta stimulated glycosaminoglycan synthesis additively with IGF-I or PDGF. Recently, it has been suggested that bone and articular cartilage are rich sources of TGF-beta, whereas epiphyseal growth cartilage is not. Thus, the present data indicate that TGF-beta may be important in bone formation by modulating growth and phenotypic expression of chondrocytes in the growth plate, possibly via a paracrine mechanism.  相似文献   

15.
We have recently observed that attomolar concentration of exogenously added TGF beta, a molecule structurally related to inhibin, can stimulate the basal secretion of FSH in a pituitary cell culture. Inhibin purified from porcine follicular fluid antagonizes this activity of TGF beta. To understand further the homeostatic regulatory properties of inhibin and TGF beta we have investigated whether the aromatase activity of ovarian granulosa cells is also subject to intra-ovarian modulation by these peptides. Granulosa cells from immature hypophysectomized diethylstilbestrol-treated rats were cultured for 2 days with androstenedione (10(-7) M) as a substrate, oFSH (2 ng), and different amounts of TGF beta or inhibin. Basal estrogen secretion was negligible and remained unaffected by treatment with purified TGF beta or inhibin (10 ng/ml), whereas treatment with oFSH (2 ng/ml) produced a 100-fold increase in estrogen accumulation. The concurrent application of increasing concentrations (10 pg-10 ng/ml) of TGF beta produced dose-dependent increments in the FSH-stimulated accumulation of estrogen with a ED50 of 0.3 +/- 0.02 ng/ml. On the other hand, concurrent incubation of FSH with inhibin ranging from 10 pg to 10 ng/ml decreases the FSH-mediated estrogen secretion. TGF beta antagonizes the inhibition of inhibin on aromatase activity. These findings suggest that inhibin and TGF beta, two closely related molecules, play novel and opposite roles in modulating the follicular functions.  相似文献   

16.
We reported previously that a 32-36-kDa osteogenic protein purified from bovine bone matrix is composed of dimers of two members of the transforming growth factor (TGF)-beta superfamily: the bovine equivalent of human osteogenic protein-1 (OP-1) and bone morphogenetic protein-2a, BMP-2a (BMP-2). In the present study, we produced the recombinant human OP-1 (hOP-1) in mammalian cells as a processed mature disulfide-linked homodimer with an apparent molecular weight of 36,000. Examination of hOP-1 in the rat subcutaneous bone induction model demonstrated that hOP-1 was capable of inducing new bone formation with a specific activity comparable with that exhibited by highly purified bovine osteogenic protein preparations. The half-maximal bone-inducing activity of hOP-1 in combination with a rat collagen matrix preparation was 50-100 ng/25 mg of matrix as determined by the calcium content of day 12 implants. Evaluation of hOP-1 effects on cell growth and collagen synthesis in rat osteoblast-enriched bone cell cultures showed that both cell proliferation and collagen synthesis were stimulated in a dose-dependent manner and increased 3-fold in response to 40 ng of hOP-1/ml. Examination of the expression of markers characteristic of the osteoblast phenotype showed that hOP-1 specifically stimulated the induction of alkaline phosphatase (4-fold increase at 40 ng of hOP-1/ml), parathyroid hormone-mediated intracellular cAMP production (4-fold increase at 40 ng of hOP-1/ml), and osteocalcin synthesis (5-fold increase at 25 ng of hOP-1/ml). In long-term (11-17 day) cultures of osteoblasts in the presence of beta-glycerophosphate and L(+)-ascorbate, hOP-1 markedly increased the rate of mineralization as measured by the number of mineral nodules per well (20-fold increase at 20 ng of hOP-1/ml). Direct comparison of TGF-beta 1 and hOP-1 in these bone cell cultures indicated that, although both hOP-1 and TGF-beta 1 promoted cell proliferation and collagen synthesis, only hOP-1 was effective in specifically stimulating markers of the osteoblast phenotype.  相似文献   

17.
Soluble mediators elaborated by activated Kupffer cells have been implicated in the activation of liver fat-storing cells. In the present study some of these factors were identified as TGF beta and TGF alpha affecting disparate reactions in the activation process. TGF beta is secreted in an inactive, latent form by Kupffer cells. It is activated after addition to primary FSC cultures and stimulates dose-dependently sulfated proteoglycan synthesis especially that of chondroitin sulfate, whereas the incorporation of [3H] thymidine is reduced significantly. These effects were neutralized completely by anti-TGF beta antibodies which ultimately converted the proliferation inhibitory effect of Kupffer cell medium in a proliferation stimulatory action. The latter is at least partially due to TGF alpha. Both cytokines are preferentially expressed in activated Kupffer cells. We conclude that Kupffer cells modulate the mitogenic activity of FSC in culture depending on the ratio of activated TGF beta and TGF alpha and affect chondroitin sulfate synthesis mainly by TGF beta. The results suggest a paracrine activation of FSC in injured liver by both transforming growth factors secreted by activated Kupffer cells.  相似文献   

18.
TGF beta 1 from porcine platelets increased alkaline phosphatase (AP) activity in the rat osteoblastic cell line ROS 17/2.8 about three-fold. This effect was dose-dependent with an ED50 of about approximately 0.2 ng/ml and was larger during logarithmic growth than at confluence. TGF beta 1 inhibited cell growth by about 30% with similar dose dependence. Thirty min exposure to TGF beta 1 was sufficient to increase AP activity 3 days later by about two-fold but did not affect cell growth, suggesting dissociation between effects on proliferation and differentiation. The rise in AP activity started 6 h after TGF beta 1 addition and was blocked by cycloheximide and actinomycin D. TGF beta 1 also increased AP mRNA by two- to three-fold and this effect was not blocked by cycloheximide. The half-life of AP mRNA, estimated following the addition of 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole was about ten h in both control and TGF beta 1-treated cells. The mRNAs for type I procollagen and osteonectin were also increased by TGF beta 1 but fibronectin mRNA was decreased. TGF beta 2 effects on AP and cell growth were similar to those of TGF beta 1, except for lack of activity following transient exposure. At saturating concentrations, TGF beta 2 (2 ng/ml) or dexamethasone (10(-7) M), which has similar effects on these cells, did not further augment the effects of TGF beta 1 (at 2 ng/ml). Above findings suggest that TGF beta promotes osteoblastic differentiation in rat osteosarcoma cells at least in part by acting at the pretranslational level.  相似文献   

19.
The activities of three bone morphogenetic proteins (BMPs), BMP-1, BMP-2 and BMP-3, on alkaline phosphatase activity, collagen synthesis and DNA synthesis were studied in cultured osteoblastic cells, MC3T3-E1. Treatment of cells with BMP-2 for 48 h induces an increase in cellular alkaline phosphatase activity. This stimulatory effect is evident at a concentration as low as 20 ng/ml of BMP-2 and becomes greater with increasing doses of BMP-2. The BMP-2-induced increase in alkaline phosphatase activity is enhanced by the presence of beta-estradiol, dexamethasone or 1 alpha, 25(OH)2D3. BMP-2 and BMP-3 slightly but significantly stimulate collagen synthesis. None of the BMPs stimulates DNA synthesis in MC3T3-E1 cells at doses tested. These results indicate that BMPs act directly on osteoblastic cells and stimulate the expression of the osteoblastic phenotypes.  相似文献   

20.
We have examined the effect of Transforming Growth Factor (TGF) beta on proliferation of L6 and embryonic porcine myogenic cells. Proliferation of L6 cells was suppressed by both TGF beta-1 and TGF beta-2 in a dose-dependent manner. Half-maximal suppression of proliferation occurred at .036 ng TGF beta-1/ml and .06 ng TGF beta-2/ml. Maximal inhibition (60% suppression of proliferation for TGF beta-1 and 52% for TGF beta-2) occurred between .1 and .3 ng/ml for each growth factor. Suppression of proliferation was completely abolished in the presence of an anti-TGF beta antibody that inhibited the biological activity of TGF beta-1 and TGF beta-2. When we evaluated the effect of TGF beta-1 on proliferation of embryonic porcine myogenic cells we obtained results which were very similar to those obtained for L6 cells. Insulin-like growth factor (IGF)-I stimulated proliferation of L6 cells in a dose-dependent manner in serum-free, defined medium. However as little as .02 ng TGF beta-1/ml detectably suppressed this stimulation and .3 ng TGF beta-1/ml caused a 60% reduction in cell number in cultures treated with 30 ng IGF-l/ml. Thus TGF beta-1 significantly suppressed IGF-I-stimulated proliferation of L6 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号