首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Apoptosis driven by IP(3)-linked mitochondrial calcium signals   总被引:23,自引:0,他引:23       下载免费PDF全文
Increases of mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)) evoked by calcium mobilizing agonists play a fundamental role in the physiological control of cellular energy metabolism. Here, we report that apoptotic stimuli induce a switch in mitochondrial calcium signalling at the beginning of the apoptotic process by facilitating Ca(2+)-induced opening of the mitochondrial permeability transition pore (PTP). Thus [Ca(2+)](m) signals evoked by addition of large Ca(2+) pulses or, unexpectedly, by IP(3)-mediated cytosolic [Ca(2+)] spikes trigger mitochondrial permeability transition and, in turn, cytochrome c release. IP(3)-induced opening of PTP is dependent on a privileged Ca(2+) signal transmission from IP(3) receptors to mitochondria. After the decay of Ca(2+) spikes, resealing of PTP occurs allowing mitochondrial metabolism to recover, whereas activation of caspases is triggered by cytochrome c released to the cytosol. This organization provides an efficient mechanism to establish caspase activation while mitochondrial metabolism is maintained to meet ATP requirements of apoptotic cell death.  相似文献   

2.
Sustained, mild K+ depolarization caused bovine chromaffin cell death through a Ca(2+)-dependent mechanism. During depolarization, Ca(2+) entered preferentially through L-channels to induce necrotic or apoptotic cell death, depending on the duration of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) signal, as proven by the following. (i) The L-type Ca(2+) channel activators Bay K 8644 and FPL64176, more than doubled the cytotoxic effects of 30 mm K+; (ii) the L-type Ca(2+) channel blocker nimodipine suppressed the cytotoxic effects of K+ alone or K+ plus FPL64176; (iii) the potentiation by FPL64176 of the K+ -evoked [Ca(2+)](c) elevation was totally suppressed by nimodipine. Cell exposure to K+ plus the L-type calcium channel agonist FPL64176 caused an initial peak rise followed by a sustained elevation of the [Ca(2+)](c) that, in turn, increased [Ca(2+)](m) and caused mitochondrial membrane depolarization. Cyclosporin A, a blocker of the mitochondrial transition pore, and superoxide dismutase prevented the apoptotic cell death induced by Ca(2+) overload through L-channels. These results suggest that Ca(2+) entry through L-channels causes both calcium overload and mitochondrial disruption that will lead to the release of mediators responsible for the activation of the apoptotic cascade and cell death. This predominant role of L-type Ca(2+) channels is not shared by other subtypes of high threshold voltage-dependent neuronal Ca(2+) channels (i.e. N, P/Q) expressed by bovine chromaffin cells.  相似文献   

3.
Diospyrin diethylether (D7), a bisnaphthoquinonoid derivative, exhibited an oxidative stress-dependent apoptosis in several human cancer cells and tumor models. The present study was aimed at evaluation of the increase in cytosolic calcium [Ca(2+)](c) leading to the apoptotic cell death triggered by D7 in MCF7 human breast carcinoma cells. A phosphotidylcholine-specific phospholipase C (PC-PLC) inhibitor, viz. U73122, and an antioxidant, viz. N-acetylcysteine, could significantly prevent the D7-induced rise in [Ca(2+)](c) and PC-PLC activity. Using an endoplasmic reticulum (ER)-Ca(2+) mobilizer (thapsigargin) and an ER-IP3R antagonist (heparin), results revealed ER as a major source of [Ca(2+)](c) which led to the activation of calpain and caspase12, and cleavage of fodrin. These effects including apoptosis were significantly inhibited by the pretreatment of Bapta-AM (a cell permeable Ca(2+)-specific chelator), or calpeptin (a calpain inhibitor). Furthermore, D7-induced [Ca(2+)](c) was found to alter mitochondrial membrane potential and induce cytochrome c release, which was inhibited by either Bapta-AM or ruthenium red (an inhibitor of mitochondrial Ca(2+) uniporter). Thus, these results provided a deeper insight into the D7-induced redox signaling which eventually integrated the calcium-dependent calpain/caspase12 activation and mitochondrial alterations to accentuate the induction of apoptotic cell death.  相似文献   

4.
Overproduction of reactive oxygen species is one of the major causes of cell death in ischemic-reperfusion (I/R) injury. In I/R animal models, electron microscopy (EM) has shown mixed apoptotic and necrotic characteristics in the same cardiomyocyte. The present study shows that H(2)O(2) activates both apoptotic and necrotic machineries in the same myocyte and that the ultrastructure seen using EM is very similar to that in I/R animal studies. The apoptotic component is caused by the activation of clotrimazole-sensitive, NAD(+)/ADP ribose/poly(ADP-ribose) polymerase (PARP)-dependent transient receptor potential M2 (TRPM2) channels, which induces mitochondrial [Na(+)](m) (and [Ca(2+)](m)) overload, resulting in mitochondrial membrane disruption, cytochrome c release, and caspase 3-dependent chromatin condensation/fragmentation. The necrotic component is caspase 3-independent and is caused by PARP-induced [ATP](i)/NAD(+) depletion, resulting in membrane permeabilization. Inhibition of either TRPM2 or PARP activity only partially inhibits cell death, while inhibition of both completely prevents the ultrastructural changes and myocyte death.  相似文献   

5.
Mitochondria and Ca(2+)in cell physiology and pathophysiology   总被引:9,自引:0,他引:9  
Duchen MR 《Cell calcium》2000,28(5-6):339-348
There is now a consensus that mitochondria take up and accumulate Ca(2+)during physiological [Ca(2+)](c)signalling. This contribution will consider some of the functional consequences of mitochondrial Ca(2+)uptake for cell physiology and pathophysiology. The ability to remove Ca(2+)from local cytosol enables mitochondria to regulate the [Ca(2+)] in microdomains close to IP3-sensitive Ca(2+)-release channels. The [Ca(2+)] sensitivity of these channels means that, by regulating local [Ca(2+)](c), mitochondrial Ca(2+)uptake modulates the rate and extent of propagation of [Ca(2+)](c)waves in a variety of cell types. The coincidence of mitochondrial Ca(2+)uptake with oxidative stress may open the mitochondrial permeability transition pore (mPTP). This is a catastrophic event for the cell that will initiate pathways to cell death either by necrotic or apoptotic pathways. A model is presented in which illumination of an intramitochondrial fluorophore is used to generate oxygen radical species within mitochondria. This causes mitochondrial Ca(2+)loading from SR and triggers mPTP opening. In cardiomyocytes, mPTP opening leads to ATP consumption by the mitochondrial ATPase and so results in ATP depletion, rigor and necrotic cell death. In central mammalian neurons exposed to glutamate, a cellular Ca(2+)overload coincident with NO production also causes loss of mitochondrial potential and cell death, but mPTP involvement has proven more difficult to demonstrate unequivocally.  相似文献   

6.
Recent studies have suggested that apoptosis and necrosis share common features in their signaling pathway and that apoptosis requires intracellular ATP for its mitochondrial/apoptotic protease-activating factor-1 suicide cascade. The present study was, therefore, designed to examine the role of intracellular energy levels in determining the form of cell death in cardiac myocytes. Neonatal rat cardiac myocytes were first incubated for 1 h in glucose-free medium containing oligomycin to achieve metabolic inhibition. The cells were then incubated for another 4 h in similar medium containing staurosporine and graded concentrations of glucose to manipulate intracellular ATP levels. Under ATP-depleting conditions, the cell death caused by staurosporine was primarily necrotic, as determined by creatine kinase release and nuclear staining with ethidium homodimer-1. However, under ATP-replenishing conditions, staurosporine increased the percentage of apoptotic cells, as determined by nuclear morphology and DNA fragmentation. Caspase-3 activation by staurosporine was also ATP dependent. However, loss of mitochondrial transmembrane potential (DeltaPsi(m)), Bax translocation, and cytochrome c release were observed in both apoptotic and necrotic cells. Moreover, cyclosporin A, an inhibitor of mitochondrial permeability transition, attenuated staurosporine-induced apoptosis and necrosis through the inhibition of DeltaPsi(m) reduction, cytochrome c release, and caspase-3 activation. Our data therefore suggest that staurosporine induces cell demise through a mitochondrial death signaling pathway and that the presence of intracellular ATP favors a shift from necrosis to apoptosis through caspase activation.  相似文献   

7.
Calcium signal transmission between ryanodine receptors and mitochondria   总被引:19,自引:0,他引:19  
Control of energy metabolism by increases of mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)) may represent a fundamental mechanism to meet the ATP demand imposed by heart contractions, but the machinery underlying propagation of [Ca(2+)] signals from ryanodine receptor Ca(2+) release channels (RyR) to the mitochondria remains elusive. Using permeabilized cardiac (H9c2) cells we investigated the cytosolic [Ca(2+)] ([Ca(2+)](c)) and [Ca(2+)](m) signals elicited by activation of RyR. Caffeine, Ca(2+), and ryanodine evoked [Ca(2+)](c) spikes that often appeared as frequency-modulated [Ca(2+)](c) oscillations in these permeabilized cells. Rapid increases in [Ca(2+)](m) and activation of the Ca(2+)-sensitive mitochondrial dehydrogenases were synchronized to the rising phase of the [Ca(2+)](c) spikes. The RyR-mediated elevations of global [Ca(2+)](c) were in the submicromolar range, but the rate of [Ca(2+)](m) increases was as large as it was in the presence of 30 microm global [Ca(2+)](c). Furthermore, RyR-dependent increases of [Ca(2+)](m) were relatively insensitive to buffering of [Ca(2+)](c) by EGTA. Therefore, RyR-driven rises of [Ca(2+)](m) appear to result from large and rapid increases of perimitochondrial [Ca(2+)]. The falling phase of [Ca(2+)](c) spikes was followed by a rapid decay of [Ca(2+)](m). CGP37157 slowed down relaxation of [Ca(2+)](m) spikes, whereas cyclosporin A had no effect, suggesting that activation of the mitochondrial Ca(2+) exchangers accounts for rapid reversal of the [Ca(2+)](m) response with little contribution from the permeability transition pore. Thus, rapid activation of Ca(2+) uptake sites and Ca(2+) exchangers evoked by RyR-mediated local [Ca(2+)](c) signals allow mitochondria to respond rapidly to single [Ca(2+)](c) spikes in cardiac cells.  相似文献   

8.
Many studies have demonstrated the protective effects of Bcl-x(L) against both apoptotic and necrotic cell death, but the mode of action of Bcl-x(L) remains unclear. This work analyzed effects of Bcl-x(L) overexpression on cellular levels of reactive oxygen species (ROS), intracellular calcium ([Ca(2+)](i)), and mitochondrial membrane potential (DeltaPsi(m)) in cultured mouse primary astrocytes after exposure to glucose deprivation (GD) or hydrogen peroxide (H(2)O(2)). Upon exposure to GD or H(2)O(2), uninfected and Lac-Z-expressing astrocytes showed an immediate, rapid increase in ROS accumulation that was slowed and or reduced by Bcl-x(L). Changes in DeltaPsi(m) in response to the two insults differed. H(2)O(2) induced a decrease in DeltaPsi(m) that was initially greater in Bcl-x(L) cells, but then held stable. DeltaPsi(m) in control and Lac-Z-expressing cells initially declined more slowly, but after about 20 min showed rapid deterioration. Five hours of GD caused mitochondrial membrane hyperpolarization followed by a decrease in DeltaPsi(m,) which was not observed with Bcl-x(L) overexpression. Bcl-x(L) failed to inhibit the calcium dysregulation seen in control cells exposed to 400 microM H(2)O(2), but still improved cell survival. There was no increase in [Ca(2+)](i) with 5 h of GD. These data thus dissociate the effect of Bcl-x(L) on calcium homeostasis from effects on ROS, DeltaPsi(m,) and for H(2)O(2) exposure, cell survival.  相似文献   

9.
Local Ca(2+) transfer between adjoining domains of the sarcoendoplasmic reticulum (ER/SR) and mitochondria allows ER/SR Ca(2+) release to activate mitochondrial Ca(2+) uptake and to evoke a matrix [Ca(2+)] ([Ca(2+)](m)) rise. [Ca(2+)](m) exerts control on several steps of energy metabolism to synchronize ATP generation with cell function. However, calcium signal propagation to the mitochondria may also ignite a cell death program through opening of the permeability transition pore (PTP). This occurs when the Ca(2+) release from the ER/SR is enhanced or is coincident with sensitization of the PTP. Recent studies have shown that several pro-apoptotic factors, including members of the Bcl-2 family proteins and reactive oxygen species (ROS) regulate the Ca(2+) sensitivity of both the Ca(2+) release channels in the ER and the PTP in the mitochondria. To test the relevance of the mitochondrial Ca(2+) accumulation in various apoptotic paradigms, methods are available for buffering of [Ca(2+)], for dissipation of the driving force of the mitochondrial Ca(2+) uptake and for inhibition of the mitochondrial Ca(2+) transport mechanisms. However, in intact cells, the efficacy and the specificity of these approaches have to be established. Here we discuss mechanisms that recruit the mitochondrial calcium signal to a pro-apoptotic cascade and the approaches available for assessment of the relevance of the mitochondrial Ca(2+) handling in apoptosis. We also present a systematic evaluation of the effect of ruthenium red and Ru360, two inhibitors of mitochondrial Ca(2+) uptake on cytosolic [Ca(2+)] and [Ca(2+)](m) in intact cultured cells.  相似文献   

10.
3-Nitropropionic acid (3NP) functions as an irreversible inhibitor of succinic acid dehydrogenase (complex II) and induces neuronal disorders in rats similar to those in patients with Huntington's disease. It is well known that L-carnitine (LC), a carrier of long chain fatty acid into the mitochondrial matrix, attenuates the neuronal degeneration in 3NP-treated rats. From these findings it has been suggested that 3NP induces certain neuronal cell death through mitochondrial dysfunction and that LC preserves the neurons against the dysfunction of mitochondria caused by 3NP. However, the detailed mechanism of cell death by 3NP and the protective actions of LC against the mitochondrial dysfunction have not been fully elucidated yet. Thus, we studied the molecular mechanism of the effects of 3NP and LC on isolated rat liver mitochondria. 3NP inhibited succinate respiration and the decreased respiratory control ratio of isolated mitochondria without affecting oxidative phosphorylation. 3NP induced a membrane permeability transition (MPT), which plays an important role in the mechanism of apoptotic cell death. 3NP stimulated Ca2+ release from mitochondria, decreased membrane potential, induced mitochondrial swelling, and stimulated cytochrome c release from mitochondria. 3NP-induced swelling was suppressed by bovine serum albumin, inhibitors of phospholipase A(2) and by an inhibitor of classic MPT, cyclosporin A. Furthermore, LC suppressed the changes brought about by 3NP in mitochondrial functions in the presence of ATP. These results suggest that MPT underlies the mechanism of 3NP-induced cell death, and that LC attenuates mitochondrial MPT by decreasing long chain fatty acids generated by phospholipase A(2).  相似文献   

11.
Human macrophages (Mphi) respond to Mycobacterium tuberculosis (Mtb) infection by undergoing apoptosis, a cornerstone of effective antimycobacterial host defense. Virulent mycobacteria override this reaction by inducing necrosis leading to uncontrolled Mtb replication. Accordingly, Mphi death induced by inoculation with Mtb had the characteristics of apoptosis and necrosis and correlated with moderate increase of mitochondrial permeability transition (MPT), mitochondrial cytochrome c release, and caspase-9 and -3 activation. We hypothesized that changes in intramitochondrial Ca(2+) concentration ([Ca(2+)](m)) determine whether Mphi undergo either apoptosis or necrosis. Therefore, we induced mechanism(s) leading to predominant apoptosis or necrosis by modulating [Ca(2+)](m) and examined their physiological consequences. Adding calcium ionophore A23187 to Mphi inoculated with Mtb further increased calcium flux into the cells which is thought to lead to increased [Ca(2+)](m), blocked necrosis, stabilized MPT, decreased mitochondrial cytochrome c release, lowered caspase activation, and accompanied effective antimycobacterial activity. In contrast, Mphi infected with Mtb in presence of the mitochondrial calcium uniporter inhibitor ruthenium red showed increased mitochondrial swelling and cytochrome c release and decreased MPT and antimycobacterial activity. Thus, in Mtb-infected Mphi, high levels of mitochondrial membrane integrity, low levels of caspase activation, and diminished mitochondrial cytochrome c release are hallmarks of apoptosis and effective antimycobacterial activity. In contrast, breakdown of mitochondrial membrane integrity and increased caspase activation are characteristic of necrosis and uncontrolled Mtb replication.  相似文献   

12.
Mitochondria shape Ca(2+) signaling and exocytosis by taking up calcium during cell activation. In addition, mitochondrial Ca(2+) ([Ca(2+)](M)) stimulates respiration and ATP synthesis. Insulin secretion by pancreatic beta-cells is coded mainly by oscillations of cytosolic Ca(2+) ([Ca(2+)](C)), but mitochondria are also important in excitation-secretion coupling. Here, we have monitored [Ca(2+)](M) in single beta-cells within intact mouse islets by imaging bioluminescence of targeted aequorins. We find an increase of [Ca(2+)](M) in islet-cells in response to stimuli that induce either Ca(2+) entry, such as extracellular glucose, tolbutamide or high K(+), or Ca(2+) mobilization from the intracellular stores, such as ATP or carbamylcholine. Many cells responded to glucose with synchronous [Ca(2+)](M) oscillations, indicating that mitochondrial function is coordinated at the whole islet level. Mitochondrial Ca(2+) uptake in permeabilized beta-cells increased exponentially with increasing [Ca(2+)], and, particularly, it became much faster at [Ca(2+)](C)>2 microM. Since the bulk [Ca(2+)](C) signals during stimulation with glucose are smaller than 2 microM, mitochondrial Ca(2+) uptake could be not uniform, but to take place preferentially from high [Ca(2+)](C) microdomains formed near the mouth of the plasma membrane Ca(2+) channels. Measurements of mitochondrial NAD(P)H fluorescence in stimulated islets indicated that the [Ca(2+)](M) changes evidenced here activated mitochondrial dehydrogenases and therefore they may modulate the function of beta-cell mitochondria. Diazoxide, an activator of K(ATP), did not modify mitochondrial Ca(2+) uptake.  相似文献   

13.
Blockade of ionotropic glutamate receptors induces neuronal cell apoptosis. We investigated if mitochondria-mediated death signals would contribute to neuronal apoptosis following administration of glutamate antagonists. The administration of MK-801 and CNQX (MK-801/CNQX), the selective antagonists of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors, produced widespread neuronal death in neonatal rat brain and cortical cell cultures. MK-801/CNQX-induced neuronal apoptosis was prevented by zVAD-fmk, a broad inhibitor of caspases, but insensitive to inhibitors of calpain or cathepsin D. Activation of caspase-3 was observed within 6-12 h and sustained over 36 h after exposure to MK-801/CNQX, which cleaved PHF-1 tau, the substrate for caspase-3. Activation of caspase-3 was blocked by high K+ and mimicked by BAPTA-AM, a selective Ca2+ chelator. Reducing extracellular Ca2+, but not Na+, activated caspase-3, suggesting an essential role of Ca2+ deficiency in MK-801/CNQX-induced activation of caspases. Cortical neurons treated with MK-801/CNQX triggered activation of caspase-9, release of cytochrome c from mitochondria, and translocation of Bax into mitochondria. The present study suggests that blockade of ionotropic glutamate receptors causes caspase-3-mediated neuronal apoptosis due to Ca2+ deficiency that is coupled to the sequential mitochondrial death pathway.  相似文献   

14.
A unique feature of human alveolar macrophages is their prolonged survival in the face of a stressful environment. We have shown previously that the ERK MAPK is constitutively active in these cells and is important in prolonging cell survival. This study examines the role of the ERK pathway in maintaining mitochondrial energy production. The data demonstrate that ATP levels in alveolar macrophages depend on intact mitochondria and optimal functioning of the electron transport chain. Significant levels of MEK and ERK localize to the mitochondria and inhibition of ERK activity induces an early and profound depletion in cellular ATP coincident with a loss of mitochondrial transmembrane potential. The effect of ERK suppression on ATP levels was specific, since it did not occur with PI3K/Akt, p38, or JNK suppression. ERK inhibition led to cytosolic release of mitochondrial proteins and caspase activation. Both ERK inhibition and mitochondrial blockers induced loss of plasma membrane permeability and cell death. The cell death induced by ERK inhibition had hallmarks of both apoptotic (caspase activation) and necrotic (ATP loss) cell death. By blocking ERK inhibition-induced reactive oxygen species, caspase activation was prevented, although necrotic pathways continued to induce cell death. This suggests that mitochondrial dysfunction caused by ERK inhibition generates both apoptotic and necrotic cell death-inducing pathways. As a composite, these data demonstrate a novel mitochondrial role for ERK in maintaining mitochondrial membrane potential and ATP production in human alveolar macrophages.  相似文献   

15.
In the present work we investigated the effect of selective stimulation of non-desensitizing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in the intracellular processes leading to hippocampal neuronal death and production of reactive oxygen species (ROS). Activation of AMPA receptors in the presence of cyclothiazide (CYZ), a blocker of AMPA receptor desensitization, resulted in the death of approximately 25% of neurones, which was prevented by 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(f)quinoxaline (NBQX), an AMPA-preferring receptor antagonist. (+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) protected the neurones from necrotic death induced by AMPA or NMDA receptor activation. Neurodegeneration caused by selective activation of non-desensitizing AMPA receptors, in the presence of AMPA, CYZ and MK-801, significantly decreased the number of Co2+-positive neurones, used as a cytochemical marker of Ca2+-permeable AMPA receptors, but maintained intracellular ATP/ADP. The AMPA-mediated apoptotic cell death involved mitochondrial cytochrome c release and the activation of caspases-1 and -3, which was prevented by NBQX. Interestingly, although selective activation of AMPA receptors was not associated with production of intracellular peroxides, a moderate increase in superoxide production was observed upon exposure to antimycin A (AA). Furthermore, increased activity of Mn- superoxide dismutase (SOD) was observed on selective activation of non-desensitizing AMPA receptors. Taken together, these data make important contributions to the elucidation of the downstream pathways activated in AMPA receptor-mediated excitotoxicity in cultured rat hippocampal neurones.  相似文献   

16.
The mechanisms that enable the heart to rapidly increase ATP supply in line with increased demand have not been fully elucidated. Here we used an adenoviral system to express the photoproteins luciferase and aequorin, targeted to the mitochondria or cytosol of adult cardiomyocytes, to investigate the interrelationship between ATP and Ca(2+) in these compartments. In neither compartment were changes in free [ATP] observed upon increased workload (addition of isoproterenol) in myocytes that were already beating. However, when myocytes were stimulated to beat rapidly from rest, in the presence of isoproterenol, a significant but transient drop in mitochondrial [ATP] ([ATP](m)) occurred (on average to 10% of the initial signal). Corresponding changes in cytosolic [ATP] ([ATP](c)) were much smaller (<5%), indicating that [ATP](c) was effectively buffered in this compartment. Although mitochondrial [Ca(2+)] ([Ca(2+)](m)) is an important regulator of respiratory chain activity and ATP production in other cells, the kinetics of mitochondrial Ca(2+) transport are controversial. Parallel experiments in cells expressing mitochondrial aequorin showed that the drop in [ATP](m) occurred over the same time scale as average [Ca(2+)](m) was increasing. Conversely, in the absence or presence of isoproterenol, clear beat-to-beat peaks in [Ca(2+)](m) were observed at 0.9 or 1.3 mum, respectively, concentrations similar to those observed in the cytosol. These results suggest that mitochondrial Ca(2+) transients occur during the contractile cycle and are translated into a time-averaged increase in mitochondrial ATP production that keeps pace with increased cytosolic demand.  相似文献   

17.
Calbindin-D28k (CaBP) is a calcium-binding protein found in specific neuronal populations in the mammalian brain that, as a result of its proposed calcium-buffering action, may protect neurons against potentially harmful increases in intracellular calcium. We have stably transfected HEK 293 cells with recombinant human CaBP in order to determine the influence of this protein upon transient increases in intracellular ionic calcium concentration ([Ca(2+)](i)) induced either by transient transfection of the NR1 and NR2A subunits of the N-methyl-D-aspartate (NMDA) receptor and brief exposure to glutamate, photolysis of the caged calcium compound NP-EGTA, or exposure to the Ca(2+)]-ionophore 4-Br-A23187. The presence of CaBP did not significantly reduce the peak [Ca(2+)](i)stimulated by glutamate activation of NMDA receptors but significantly prolonged the recovery to baseline values. Flash photolysis of NP-EGTA in control cells resulted in an almost instantaneous increase in [Ca(2+)](i)followed by a bi-exponential recovery to baseline values. In cells stably expressing CaBP, the peak [Ca(2+)](i)levels were not statistically different from the controls, however, there was a significant prolongation of the initial portion of the slow recovery phase. In cells exposed to 4-Br-A23187, the presence of CaBP significantly reduced the rate of rise of [Ca(2+)](i), reduced the peak response, slowed the rate of recovery, and reduced the depolarization of mitochondria. In studies of delayed, Ca(2+)]-dependent cell death, CaBP transfected cells exhibited enhanced survival 24h after a 1-h exposure to 200 microM NMDA. However, necrotic cell death observed after the first 6h was not prevented by the presence of CaBP. These results provide direct evidence for a Ca(2+)-buffering effect of CaBP which serves to limit Ca(2+)entry and the depolarization of mitochondria, thereby protecting cells from death mediated most likely by apoptosis.  相似文献   

18.
Mitochondrial Ca2+ and the heart   总被引:2,自引:0,他引:2  
It is now well established that mitochondria accumulate Ca(2+) ions during cytosolic Ca(2+) ([Ca(2+)](i)) elevations in a variety of cell types including cardiomyocytes. Elevations in intramitochondrial Ca(2+) ([Ca(2+)](m)) activate several key enzymes in the mitochondrial matrix to enhance ATP production, alter the spatial and temporal profile of intracellular Ca(2+) signaling, and play an important role in the initiation of cell death pathways. Moreover, mitochondrial Ca(2+) uptake stimulates nitric oxide (NO) production by mitochondria, which modulates oxygen consumption, ATP production, reactive oxygen species (ROS) generation, and in turn provides negative feedback for the regulation of mitochondrial Ca(2+) accumulation. Controversy remains, however, whether in cardiac myocytes mitochondrial Ca(2+) transport mechanisms allow beat-to-beat transmission of fast cytosolic [Ca(2+)](i) oscillations into oscillatory changes in mitochondrial matrix [Ca(2+)](m). This review critically summarizes the recent experimental work in this field.  相似文献   

19.
The effect of N-methyl-D-aspartate (NMDA) receptor antagonists on cell viability was studied in rat primary cortical cells. NMDA antagonists [MK-801 and 2-amino-5-phosphonovalerate (APV)] induced cell shrinkage, nuclear condensation or fragmentation, and internucleosomal DNA fragmentation. Treatment of cells with MK-801 (an NMDA antagonist) for 1-2 days induced apoptotic cell death in a dose-dependent manner (1 nM to 10 microM). NMDA (25 microM), however, inhibited the MK-801 (0.1 microM)-induced apoptotic cell death. MK-801 and APV decreased the concentration of intracellular calcium ion. Activation of caspase-3 was accompanied by MK-801-induced cell death in a dose-dependent manner, and an inhibitor of caspase-3 reduced the cell death. Further, cycloheximide (0.2 microg/ml) completely protected the cells from MK-801-induced apoptotic cell death and caspase-3 activation. Insulin-like growth factor I completely attenuated MK-801-induced apoptotic cell death and caspase-3 activation. These results demonstrated that the moderate NMDA receptor activation is probably involved in the survival signal of the neuron.  相似文献   

20.
Whether mitochondrial Ca(2+) transport is rapid enough to respond to changes in cytosolic [Ca(2+)] ([Ca(2+)](c)) which occur during excitation-contraction coupling in the heart is controversial; different results wereobtained with different techniques and different species. In this study mitochondrial [Ca(2+)] ([Ca(2+)](m)) was measured in indo-1/AM-loaded myocytes from rat and guinea-pig hearts where the cytosolic indo-1 had been removed by extended incubation of cells at 37 degrees C ("heat treatment"). The mitochondrial origin of the remaining fluorescence was confirmed by sensitivity of the indo-1 signal to ruthenium red. In resting rat myocytes, [Ca(2+)](m) was lower than [Ca(2+)](c), whereas in guinea-pig cells [Ca(2+)](m) was higher than [Ca(2+)](c). Upon electrical stimulation of cells, no change occurred in [Ca(2+)](m) in rat myocytes. However, in guinea-pig cells mitochondrial Ca(2+) transients were clearly visible with a mean indo-1 ratio amplitude of 0.153 +/- 0.2 (n = 20), compared with 0.306 +/- 0.02 (n = 25), p < 0.001, prior to heat treatment. These observations suggest significant differences in mitochondrial Ca(2+) transport in cardiomyocytes from different species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号