首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
From porcine thyroid cell membranes, we purified five GTP-binding proteins (G-proteins); Nos. 1 to 3 have 41-kDa alpha-subunits, and Nos. 4 and 5 have 40-kDa alpha-subunits. They were chromatographically (Mono Q) separable and served as specific substrates for islet-activating protein (pertussis toxin). G-proteins 1 and 2 were indistinguishable from porcine brain Gi1 with respect to three criteria, i.e., mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pI of the ADP-ribosylated alpha-subunit, and immunoreactivity. G-protein 3 was identified as Gi3 by immunoreactivity. The SDS-PAGE and isoelectric focusing (IEF) analyses identified G-proteins 4 and 5 as being chromatographically heterogeneous subtypes of Gi2 in comparison with a pure porcine brain preparation. The IEF analysis also disclosed that each of the Gi1, Gi2, and Gi3 subspecies isolated in the present study has a minor component characterized by a slightly lower pI of its alpha-subunit. We conclude that porcine thyroid tissue contains at least Gi1, Gi2, and Gi3, and that each is made up of heterogeneous populations.  相似文献   

2.
Plasma membranes from bovine liver contain a phosphatidylinositol 4,5-bisphosphate-specific phospholipase C (PLC) activity that is activated by guanine nucleotides. The G-proteins involved retained their ability to activate bovine brain PLC-beta 1 in a guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-dependent manner following extraction from the membranes with cholate and reconstitution with phospholipids. This reconstitution assay was used to purify the G-proteins by chromatography on heparin-Sepharose, DEAE-Sephacel, octyl-Sepharose, hydroxylapatite, Mono Q, and Sephacryl S-300 gel filtration. Gel electrophoresis showed that two alpha-subunits with molecular mass of 42 and 43 kDa were isolated to a high degree of purity, together with a beta-subunit. Neither alpha-subunit was a substrate for pertussis toxin-catalyzed ADP-ribosylation. Gel filtration of the final activity indicated an apparent molecular mass of 95 kDa, suggesting the presence of an alpha beta gamma heterotrimer. Immunological data revealed that the 42- and 43-kDa proteins were related to alpha-subunits of the Gq class recently purified from brain (Pang, I.-H., and Sternweis, P. C. (1990) J. Biol. Chem. 265, 18707-18712) and identified by molecular cloning (Strathmann, M., and Simon, M. I. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 9113-9117). The activation of PLC-beta 1 by the purified G-protein preparation was specific for nonhydrolyzable guanine nucleotides, the efficacy decreasing in order GTP gamma S greater than guanylimidodiphosphate greater than guanylyl(beta,gamma-methylene)-diphosphonate. Half-maximal activation required 4 microM GTP gamma S suggesting that the affinity of the G-proteins for GTP analogues is low. The GTP gamma S-dependent activation of PLC-beta 1 required millimolar Mg2+ and was inhibited by guanosine 5'-O-(2-thiodiphosphate) and by excess beta gamma-subunits. Aluminum fluoride also activated PLC-beta 1 in the presence of the G-proteins. The G-proteins were inactive toward PLC-gamma 1 or PLC-delta 1. In summary, these findings identify two G-protein activators of PLC-beta 1 that have the properties of heterotrimeric G-proteins and are members of the Gq class.  相似文献   

3.
An antiserum (13CB) was generated against a synthetic peptide, HDNLKQLMLQ, which is predicted to represent the C-terminal decapeptide of the alpha subunit of the novel G-protein, G13. Competitive ELISA indicated that the antiserum reacted with this peptide but that it showed minimal ability to recognize peptides which represent the equivalent regions of the pertussis toxin-insensitive G-proteins, Gq + G11, G12, G15 + G16, GL1 (also called G14) as Gz, and well as other G-proteins. Immunoblots of human platelet membranes with antiserum 13CB identified a single 43-kDa polypeptide, and while this immunoreactivity was abolished by the presence of the cognate peptide it was not modified by the presence of peptides corresponding to the equivalent region of other G-proteins. Immunoreactivity corresponding to G13 alpha was detected in a range of cell types with human platelets having the highest levels of this polypeptide.  相似文献   

4.
The complexion of the adenylate cyclase system and in particular, the regulation of G-proteins was examined in 3T3-L1 cells during differentiation from a fibroblast-like to an adipocyte-like phenotype. Gs alpha (the identified regulatory component of hormone-sensitive adenylate cyclase that mediates stimulation), measured by cholera toxin-catalyzed ADP-ribosylation, increased by approximately 6-fold from day 0 to day 8. Gs alpha, measured by functional reconstitution, increased in specific activity by approximately 3-fold from day 0 to day 8. Both Gi alpha (the G-protein with alpha-subunit Mr 40,000-41,000 whose function is in part the mediation of inhibition of adenylate cyclase) and Go alpha (the highly abundant G-protein first isolated from bovine brain whose effector system remains to be established) measured by pertussis toxin-catalyzed ADP-ribosylation increased by approximately 4-fold over this same period. 3T3-L1 cells possess beta-subunits of G-proteins displaying Mr = 36,000 (beta 36) and Mr = 35,000 (beta 35). The increase in the beta 35 as well as beta 36 subunits was approximately 2-fold. Using quantitative immunoblotting techniques and specific antisera, the total amount of beta-subunits was determined to be 150 as compared to 70 pmol/mg of membrane protein, while the amount of Go alpha was 40 and 10 pmol/mg of membrane protein in adipocytes and fibroblasts, respectively. Since Go alpha is the most abundant G-protein alpha-subunit observed to date in both phenotypes, the overall ratio of beta- to alpha-subunits of G-proteins appears to decrease from approximately 4.7 in fibroblasts to 2.5 in adipocytes. These data suggest that in differentiation not only is the complexion of G-proteins altered but more importantly, the relative amounts of alpha- to beta-subunits are regulated.  相似文献   

5.
Antisera AS/6 and 7, raised against a synthetic peptide KENLKDCGLF corresponding to the carboxyl-terminal decapeptide of transducin-alpha, react on immunoblots with purified transducin-alpha and with proteins of 40-41 kDa in all tissues tested. The latter represent one or more forms of Gi alpha but not Go alpha, since a synthetic peptide, KNNLKDCGLF, corresponding to the carboxyl-terminal decapeptide of two forms of Gi alpha blocks AS/6 and 7 reactivity with transducin-alpha and Gi alpha on immunoblots, whereas the corresponding Go-related peptide, ANNLRGCGLY, does not. Antisera LE/2 and 3, raised against the synthetic peptide LERIAQSDYI, corresponding to an internal sequence predicted by one form of Gi alpha cDNA (Gi alpha-2) and differing by 3 residues from the sequence of another form, Gi alpha-1, react strongly with a 40-kDa protein abundant in neutrophil membranes and with the major pertussis toxin substrate purified from bovine neutrophils. LE/2 and 3 reveal a relatively faint 40-kDa band on immunoblots of crude brain membranes or of purified brain Gi/Go. LE/2 and 3 do not react with transducin-alpha or Go alpha nor with the 41-kDa form of pertussis toxin substrate in brain, Gi alpha-1. These antisera distinguish between the major pertussis toxin substrates of brain and neutrophil and tentatively identify the latter as Gi alpha-2.  相似文献   

6.
D J Carty  R Iyengar 《FEBS letters》1990,262(1):101-103
Purified preparations of human erythrocyte G-proteins contain a 43 kDa pertussis toxin substrate which appears to be the alpha-subunit of a heterotrimeric GTP-binding protein. The 43 kDa protein is recognized by antisera that are sequence-specific for peptides encoding a sequence common to all 39-53 kDa G-protein alpha-subunits. G alpha o-specific antiserum did not recognize 43 or 40-41 kDa alpha-subunits. AS/6, which recognizes the alpha i proteins, recognized 43 kDa as well as 40-41 kDa proteins. Of the three antisera specific for individual members of the alpha i family, only the Gi3-specific antiserum recognized the 43 kDa erythrocyte G-protein. However, 40-41 kDa forms of all three alpha is are present. These observations indicate that human erythrocytes contain a novel 43 kDa form of Gi3.  相似文献   

7.
The predominant guanine nucleotide-binding protein (G-protein) of bovine lung membranes, termed GL, has been purified and compared biochemically, immunochemically and functionally with Gi and Go purified from rabbit brain. The purified GL appeared to have a similar subunit structure to Gi and Go, being composed of alpha, beta and possibly gamma subunits. On Coomassie Blue-stained SDS/polyacrylamide gels and immunoblots, the alpha subunit of GL (GL alpha) displayed an intermediate mobility (40 kDa) between those of Gi and Go (Gi alpha and Go alpha). GL alpha was [32P]ADP-ribosylated in the presence of pertussis toxin and [32P]NAD+. Analysis of [32P]ADP-ribosylated alpha subunits by SDS/polyacrylamide-gel electrophoresis and isoelectric focusing showed that GL alpha was distinct from Gi alpha and Go alpha, but very similar to the predominant G-protein in neutrophil membranes. Immunochemical characterization also revealed that GL was distinct from Gi and Go, but was indistinguishable from the G-protein of neutrophils, which has been tentatively identified as Gi2 [Goldsmith, Gierschik, Milligan, Unson, Vinitsky, Maleck & Spiegel (1987) J. Biol. Chem. 262, 14683-14688]. In functional studies, higher Mg2+ concentrations were required for guanosine 5'-[gamma-[35S]thio]triphosphate (GTP[35S]) binding to GL than were required for nucleotide binding to Go, whereas Gi showed a Mg2+-dependence similar to that of GL. The kinetics of GTP[35S] binding to GL was quite different from those of Gi and Go; t1/2 values of maximal binding were 30, 15 and 5 min respectively. In contrast, the rate of hydrolysis of [gamma-32P]GTP by GL (t1/2 approximately 1 min) was approx. 4 times faster than that by Gi or Go. These results indicated that the predominant G-protein purified from lung is structurally and functionally distinct from Gi and Go of brain, but structurally indistinguishable from Gi2 of neutrophils.  相似文献   

8.
A cDNA encoding a previously unknown G protein alpha-subunit lacking the site for pertussis toxin-catalyzed ADP-ribosylation was recently cloned and its putative protein product named Gz (Fong, H. K. W., Yoshimoto, K. K., Eversole-Cire, P., and Simon, M. I. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 3066-3070) or Gx (Matsuoka, M., Itoh, H. Kozasa, T., and Kaziro, Y. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5384-5388). A synthetic peptide corresponding to the deduced carboxyl-terminal decapeptide of this putative protein (alpha z) has been synthesized and used to prepare a polyclonal rabbit antiserum directed against the protein. The specificity and cross-reactivity of this antiserum was assessed using bacterially expressed recombinant G protein alpha-subunit fusion proteins (r alpha). The crude antiserum strongly recognizes r alpha z in immunoblots. Pretreatment of antiserum with antigen peptide greatly reduces the interaction of the antiserum with r alpha z. Affinity purified antiserum strongly recognizes expressed r alpha z, does not recognize r alpha s1, r alpha s1, r alpha o, or r alpha i3, and very weakly interacts with r alpha i1 and r alpha i2. In contrast, the alpha-subunits of purified bovine brain Gi1 and human erythrocyte Gi2 and Gi3 did not react with the alpha z-antiserum. Partially purified mixtures of human erythrocyte G proteins contain a 41-kDa protein that reacts specifically in immunoblots with both crude and affinity purified alpha z-specific antiserum. Quantitative immunoblotting using r alpha z as a standard indicates that there is 60-100 ng of alpha z/micrograms of 40/41-kDa alpha-subunit protein in partially purified human erythrocyte G protein preparations. We conclude that we have identified the alpha z gene product as a 41-kDa trace protein in human erythrocytes.  相似文献   

9.
In locust skeletal muscle, FMRFamide-like peptides decrease a K+ conductance. Functional data suggest the involvement of G-proteins. For identification of G-protein alpha-subunits, membranes of locust skeletal muscle were probed with ADP-ribosylating bacterial toxins, the photoreactive GTP analog, [alpha-32P]GTP azidoanilide, and with antibodies against mammalian alpha-subunits. Multiple guanine nucleotide-binding proteins of approximately 24-95 kDa were detected. Pertussis toxin catalyzed the ADP-ribosylation of two proteins comigrating with the ADP-ribosylated alpha-subunits of the mammalian G-proteins Go and Gi. Cholera toxin promoted ADP-ribosylation of a protein comigrating with mammalian cholera toxin substrates (i.e., Gs alpha-subunits). An antibody against mammalian Go alpha-subunits detected a 54-kDa protein. Thus proteins with properties of mammalian G-protein subunits are present in insect muscle.  相似文献   

10.
A 23 kDa GTP-binding protein was purified from pig heart sarcolemma. This protein was not ADP-ribosylated by cholera, pertussis and botulinum C3 toxins. In pig heart sarcolemma pertussis toxin ADP-ribosylated 40 kDa subunit of Gi-protein, cholera toxin--45 kDa subunit of Gs-protein, botulinum C3 toxin ADP-ribosylated a group of proteins with Mr 22, 26 and 29 kDa. Antiserum generated against the peptide common for all alpha-subunits of G-proteins did not react with purified 23 kDa protein. Trypsin cleaved the 23 kDa protein in the presence of guanyl nucleotides into a 22 kDa fragment. Proteolysis of the 39 kDa alpha 0-subunit from bovine brain plasma membranes and ADP-ribosylated 40 kDa alpha i-subunit from pig heart sarcolemma in the presence of GTP gamma S yielded the 37 and 38 kDa fragments, respectively. In the presence of GTP and GDP the proteolysis of alpha 0 yielded the 24 and 15 kDa fragments, while the proteolysis of ADP-ribosylated alpha i-subunit yielded a labelled 16 kDa peptide. Irrespective of nucleotides trypsin cleaved the ADP-ribosylated 26 kDa substrate of botulinum C3 toxin into two labelled peptides with Mr 24 and 17 kDa. The data obtained indicate the existence in pig heart sarcolemma of a new 23 kDa GTP-binding protein with partial homology to the alpha-subunits of "classical" G-proteins.  相似文献   

11.
Identification of the GTP-binding protein encoded by Gi3 complementary DNA   总被引:11,自引:0,他引:11  
Three closely related, but distinct, GTP-binding proteins (G-proteins) are encoded by cDNAs arbitrarily designated Gi1, Gi2, and Gi3. The in vitro translated products of mRNAs prepared from Gi1, Gi2, and Gi3 cDNAs migrate as 41-, 40-, and 41-kDa proteins, respectively, on sodium dodecyl sulfate-polyacrylamide gels. Antisera were raised against synthetic decapeptides corresponding to a divergent sequence (residues 159-168 for Gi1 and Gi3; 160-169 for Gi2) of the three cDNAs and tested on immunoblots for reactivity with three purified G-proteins, G41 and G40 from brain and G41 from HL-60 cells. LD antisera (Gi1 peptide) react only with brain G41. LE antisera (Gi2 peptide) react only with brain G40, and SQ antisera (Gi3 peptide) react exclusively with HL-60 G41. The results indicate that the 41-kDa G-protein purified from HL-60 cells differs from the purified brain 41-kDa protein and suggest that the HL-60 cell protein corresponds to that encoded by Gi3 cDNA.  相似文献   

12.
Prostaglandin E2 (PGE2) was found to bind specifically to a 100,000 x g pellet prepared from bovine adrenal medulla. The PGE receptor was associated with a GTP-binding protein (G-protein) and could be covalently cross-linked with this G-protein by dithiobis(succinimidyl propionate) in the 100,000 x g pellet (Negishi, M., Ito, S., Tanaka, T., Yokohama, H., Hayashi, H., Katada, T., Ui, M., and Hayaishi, O. (1987) J. Biol. Chem. 262, 12077-12084). In order to characterize the G-protein associated with the PGE receptor and reconstitute these proteins in phospholipid vesicles, we purified the G-protein to apparent homogeneity from the 100,000 x g pellet. The G-protein served as a substrate of pertussis toxin but differed in its alpha subunit from two known pertussis toxin substrate G-proteins (Gi and Go) purified from bovine brain. The molecular weight of the alpha subunit was 40,000, which is between those of Gi and Go. The purified protein was also distinguished immunologically from Gi and Go and was referred to as Gam. PGE receptor was solubilized by 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid and freed from G-proteins by wheat germ agglutinin column chromatography. Reconstitution of the PGE receptor with pure Gam, Gi, or Go in phospholipid vesicles resulted in a remarkable restoration of [3H]PGE2 binding activity in a GTP-dependent manner. The efficiency of these three G-proteins in this capacity was roughly equal. When pertussis toxin- or N-ethylmaleimide-treated G-proteins, instead of the native ones, were reconstituted into vesicles, the restoration of binding activity was no longer observed. The displacement of [3H]PGE2 binding was specific for PGE1 and PGE2. Furthermore, addition of PGE2 stimulated the GTPase activity of the G-proteins in reconstituted vesicles. These results indicate that the PGE receptor can couple functionally with Gam, Gi, or Go in phospholipid vesicles and suggest that Gam may be involved in signal transduction of the PGE receptor in bovine adrenal medulla.  相似文献   

13.
Herein we describe the distribution of G-proteins in canine cardiac sarcolemma (SL) and sarcoplasmic reticulum (SR) and in rabbit skeletal muscle SL, T-tubules, and junctional and longitudinal SR in comparison to G-proteins of human erythrocyte and bovine brain. G-proteins were unequivocally present in cardiac SL and SR and in skeletal T-tubules. Both cardiac fractions had two substrates specifically ADP-ribosylated by cholera toxin migrating on a sodium dodecyl sulfate-polyacrylamide gel at about 42 and 45 kDa. In skeletal muscle membranes, cholera toxi-labeled substrates migrated at about 42 and 62 kDa. Three substrates for pertussis toxin were resolved by sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis in cardiac SL at about 38, 40, and 43 kDa. Only the two higher molecular weight substrates were detected in cardiac SR and in any of several skeletal muscle membrane fractions. Comparison of G-proteins in muscle membrane fractions with G-proteins isolated from bovine brain and human erythrocyte as well as their reaction with antisera to either a common sequence of alpha subunits of G-proteins (G alpha common antibody) or to a unique sequence of the alpha subunit of Go (G alpha o antibody) indicated that the two lower molecular weight bands in cardiac SL are Go or Go-like, and therefore the upper band is probably Gi. These data demonstrate that pertussis toxin substrates are more heterogeneous than previously described and have implications for studies attempting to attribute physiological functions to G-protein isolates.  相似文献   

14.
GTP-binding regulatory proteins (G-proteins) were identified in chemosensory membranes from the channel catfish, Ictalurus punctatus. The common G-protein beta-subunit was identified by immunoblotting in both isolated olfactory cilia and purified taste plasma membranes. A cholera toxin substrate (Mr 45,000), corresponding to the G-protein that stimulates adenylate cyclase, was identified in both membranes. Both membranes also contained a single pertussis toxin substrate. In taste membranes, this component co-migrated with the alpha-subunit of the G-protein that inhibits adenylate cyclase. In olfactory cilia, the Mr 40,000 pertussis toxin substrate cross-reacted with antiserum to the common amino acid sequence of G-protein alpha-subunits, but did not cross-react with antiserum to the alpha-subunit of the G-protein from brain of unknown function. The interaction of G-proteins with chemosensory receptors was determined by monitoring receptor binding affinity in the presence of exogenous guanine nucleotides. L-Alanine and L-arginine bind with similar affinity to separate receptors in both olfactory and gustatory membranes from the catfish. GTP and a nonhydrolyzable analogue decreased the affinity of olfactory L-alanine and L-arginine receptors by about 1 order of magnitude. In contrast, the binding affinities of the corresponding taste receptors were unaffected. These results suggest that olfactory receptors are functionally coupled to G-proteins in a manner similar to some hormone and neurotransmitter receptors.  相似文献   

15.
In the rat pituitary cell line GH3, carbachol inhibits PRL secretion in a pertussis toxin-sensitive manner. For elucidation of the underlying mechanisms, we studied the effect of carbachol on voltage-dependent Ca2+ currents. Under voltage-clamp conditions, carbachol inhibited whole-cell Ca2+ currents by about 25%. This inhibitory action of carbachol was not observed in cells treated with pertussis toxin, indicating the involvement of a pertussis toxin-sensitive G-protein. In membranes of GH3 cells, carbachol stimulated a pertussis toxin-sensitive high-affinity GTPase. In immunoblot experiments with peptide antisera, we identified two forms of the Gi alpha-subunit (41 and 40 kDa) and two forms of the Go alpha-subunit (40 and 39 kDa). The 40-kDa Gi alpha-subunit was recognized by an antibody specific for the Gi2 alpha-subunit, and the 39-kDa Go alpha-subunit was detected by an antibody specific for the Go2 alpha-subunit. Incubation of membranes with the photoreactive GTP analog [alpha-32P]GTP azidoanilide resulted in photo-labelling of 40- and 39-kDa pertussis toxin substrates comigrating with G-protein alpha-subunits of the corresponding molecular masses. Carbachol dose-dependently stimulated incorporation of the photoreactive GTP analog into the 39-kDa pertussis toxin substrate and, to a lesser extent, into 40-kDa pertussis toxin substrates. The data indicate that muscarinic receptors of GH3 cells couple preferentially to Go, which is likely to be involved in the inhibition of secretion, possibly by conferring an inhibitory effect to voltage-dependent Ca2+ channels.  相似文献   

16.
In the previous paper, we reported the identification of a 74-kDa G-protein that co-purifies with the alpha 1-adrenergic receptor following ternary complex formation. We report here on the purification and characterization of this 74-kDa G-protein (termed Gh) isolated de novo from rat liver membranes. After solubilization of rat liver membranes with the detergent sucrose monolaurate, Gh was isolated by sequential chromatography using heparin-agarose, Ultrogel AcA 34, hydroxylapatite, and heptylamine-Sepharose columns. The protein, thus isolated, is not a substrate for cholera or pertussis toxin but displays GTPase activity (turnover number, 3-5 min-1) and high-affinity guanosine 5'-O-3-thiotriphosphate (GTP gamma S) binding (half-maximal binding = 0.25-0.3 microM), which is Mg2(+)-dependent and saturable. The relative order of nucleotide binding by Gh is GTP gamma S greater than GTP greater than GDP greater than ITP much much greater than ATP greater than or equal to adenyl-5'-yl imidodiphosphate, which is similar to that observed for other heterotrimeric G-proteins involved in receptor signaling. Moreover, specific alpha 1-agonist-stimulated GTPase (turnover number, 10-15 min-1) and GTP gamma S binding activity could be demonstrated after reconstitution of purified Gh with partially purified alpha 1-adrenergic receptor into phospholipid vesicles. The alpha 1-agonist stimulation of GTP gamma S binding and GTPase activity was inhibited by the alpha-antagonist phentolamine. A 50-kDa protein co-purifies with the 74-kDa G-protein. This protein does not bind guanine nucleotides and may be a subunit (beta-subunit) of Gh. These findings indicate that Gh is a G-protein that functionally couples to the alpha 1-adrenergic receptor.  相似文献   

17.
To obtain antisera specific for the GTP-binding protein Gi alpha we immunized rabbits against a synthetic peptide derived from the N-terminal (3-17) sequence predicted from the rat Gi alpha cDNA clone published by Itoh et al. (1986) (Proc. Natl. Acad. Sci. USA 83, 3776-3780). Western-blot analysis of bovine brain G-proteins purified and resolved by hydrophobic chromatography and of rat striatal membranes, indicate that this antiserum does not recognize 41 kDa alpha i or 39 kDa alpha o. However, it reacts with a 40 kDa alpha-subunit. The data suggest that the sequence deduced from the rat G alpha i cDNA corresponds to a G40 alpha protein and that N-terminus directed antisera are useful tools to discriminate between two different G alpha i-like types of G-proteins present in mammalian brain.  相似文献   

18.
Adipocyte plasma membranes contain two Gi subtypes but are devoid of Go   总被引:5,自引:0,他引:5  
Antisera generated against synthetic peptides were used to identify G-protein alpha-subunits in plasma membranes from rat adipocytes. Applying the immunoblot technique, we detected two Gs alpha-subunits of 42 and 43 kDa, corresponding to the two cholera toxin substrates, and two Gi alpha-subunits of 40 and 41 kDa, corresponding to the two pertussis toxin substrates present in these membranes. The 40 kDa protein was tentatively identified as the Gi2 alpha-subunit. A serum specific for the Go alpha-subunit failed to detect any immunoreactive protein. Thus plasma membranes of adipocytes possess two forms of Gi but not Go.  相似文献   

19.
Two GTP-binding proteins which can be ADP-ribosylated by islet-activating protein, pertussis toxin, were purified from the cholate extract of bovine lung membranes. Both proteins had the same heterotrimeric structure (alpha beta gamma), but the alpha subunits were dissociated from the beta gamma when they were purified in the presence of AlCl3, MgCl2 and NaF. The molecular mass of the alpha subunit of the major protein (designated GLu, with beta gamma) was 40 kDa and that of the minor one was 41 kDa. The results of peptide mapping analysis of alpha subunits with a limited proteolysis indicated that GLu alpha was entirely different from the alpha of brain Gi or Go, while the 41-kDa polypeptide was identical with the alpha of bovine brain Gi. The kinetics of guanosine 5'-[3-O-thio]triphosphate (GTP[gamma S]) binding to GLu was similar to that to lung Gi but quite different from that to brain Go. On the other hand, incubation of GLu alpha at 30 degrees C caused a rapid decrease of GTP[gamma S] binding, the inactivation curve being similar to that of Go alpha but different from that of Gi alpha. The alpha subunits of lung Gi and GLu did not react with the antibodies against the alpha subunit of bovine brain Go. The antibodies were raised in rabbits against GLu alpha and were purified with a GLu alpha-Sepharose column. The purified antibodies reacted not only with GLu alpha but also with the 41-kDa protein and purified brain Gi alpha. However, the antibodies adsorbed with brain Gi alpha reacted only with GLu alpha, indicating antisera raised with GLu alpha contained antibodies that recognize both Gi alpha and GLu alpha, and those specific to GLu alpha. These results further indicate that GLu is different from Gi or Go. Anti-GLu alpha antibodies reacted with the 40-kDa proteins in the membranes of bovine brain and human leukemic (HL-60) cells. The beta gamma subunits were also purified from bovine lung. The beta subunit was the doublet of 36-kDa and 35-kDa polypeptides. The lung beta gamma could elicit the ADP-ribosylation of GLu alpha by islet-activating protein, increase the GTP[gamma S] binding to GLu and protect the thermal denaturation of GLu alpha. The antibodies raised against brain beta gamma cross-reacted with lung beta but not with lung gamma.  相似文献   

20.
A novel form of the Go alpha-subunit (alpha o2) has been identified by molecular cloning (Hsu et al., J. Biol. Chem. 265, 11220-11226, 1990). An antibody was generated against a synthetic peptide corresponding to a region of the protein encoded by alpha o2 cDNA. The antibody reacted with an apparently single 39 kDa protein in membrane preparations of rodent brain and with a 39 kDa pertussis toxin substrate in membranes of rodent neuroendocrine and pituitary cells. A previously produced antibody raised against a region common to proteins encoded by alpha o2 cDNA and the previous cloned alpha o1 cDNA (Itoh et al., Proc. Natl. Acad. Sci. USA 83, 3776-3780, 1986) recognized proteins of 39 and 40 kDa in preparations of bovine, porcine and rodent brain and pertussis toxin substrates of 39 and 40 kDa in membranes of rodent neuroendocrine and pituitary cells. We conclude that the 39 kDa Go alpha subunit is encoded by alpha o2 cDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号