首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Imino proton resonances of lambda OR3 17mer were observed with time-shared Redfield pulse method by using a JEOL 500 MHz NMR instrument. They show gradual broadening and disappearance with the elevation of temperature indicating the stepwise melting of the duplex. By the selective irradiation at each peak position nuclear Overhauser effects were observed between the imino and adenine C2H protons and between imino protons themselves. Combining these data, fifteen imino proton resonances could be assigned to each base pair except two terminal AT base pairs. Based on the assignment it can be said that AT rich regions near the terminal melt first, followed by the melting of the inside GC rich core. The two AT base pairs in the middle of the GC core are resistant to heat. Spin lattice relaxation times were also observed and the results are consistent with the melting profile.  相似文献   

2.
A comparison of imino proton NMR spectra of yeast tRNAPhe recorded at various solution conditions indicates, that polyamines have a limited effect on the structure of this tRNA molecule. Polyamines are found to catalyse the solvent exchange of several imino protons in yeast tRNAPhe not only of non hydrogen bonded imino protons, but also of imino protons of the GU and of some AU and tertiary base pairs. It is concluded that at low levels of catalysing components the exchange rates of the latter protons are not determined by the base pair lifetime. In the presence of high levels of spermidine the solvent exchange rates of imino protons of several base pairs in the molecule were assessed as a function of the temperature. Apparent activation energies derived from these rates were found to be less than 80 kJ/mol, which is indicative for (transient) independent opening of the corresponding base pairs. In the acceptor helix the GU base pair acts as a dynamic dislocation. The AU base pairs at one side of the GU base pair exhibit faster transient opening than the GC base pairs on the other side of this wobble pair. The base pairs m2GC10 and GC11 from the D stem and GC28 from the anticodon stem show relatively slow opening up to high temperatures. Model studies suggest that 1-methyladenosine, an element of tRNA itself, catalyses imino proton solvent exchange in a way similar to polyamines.  相似文献   

3.
The imino proton resonances of gamma OR3 17mer in water were observed at 500 MHz with the time-shared Redfield pulse train. All of the 17 imino proton resonances could be assigned specifically to individual base pairs by utilizing the trace of NOE connectivities between the imino and adenine C2H protons and between imino protons themselves. AT1 and 17 showed abnormally high chemical shifts in comparison with the other AT pairs. On raising the temperature, broadening of the signal occurred in a sequential manner from the terminals except for AT10 and AT11, which were broadened at a lower temperature than GC12. The relaxation rates of the imino protons were measured by the inversion recovery method. The rates at higher temperatures represent the exchange rates of the imino protons. From the temperature dependences, activation energies of about 15 kcal/mol for the AT imino protons and 23-26 kcal/mol for the GC imino protons were obtained.  相似文献   

4.
Sequence-dependent structural features of the DNA double helix have a strong influence on the base pair opening dynamics. Here we report a detailed study of the kinetics of base pair breathing in tracts of GC base pairs in DNA duplexes derived from 1H NMR measurements of the imino proton exchange rates upon titration with the exchange catalyst ammonia. In the limit of infinite exchange catalyst concentration, the exchange times of the guanine imino protons of the GC tracts extrapolate to much shorter base pair lifetimes than commonly observed for isolated GC base pairs. The base pair lifetimes in the GC tracts are below 5 ms for almost all of the base pairs. The unusually rapid base pair opening dynamics of GC tracts are in striking contrast to the behavior of AT tracts, where very long base pair lifetimes are observed. The implication of these findings for the structural principles governing spontaneous helix opening as well as the DNA-binding specificity of the cytosine-5-methyltransferases, where flipping of the cytosine base has been observed, are discussed.  相似文献   

5.
High-resolution two-dimensional NMR studies have been completed on the self-complementary d(C-G-C-G-A-G-C-T-T-G-C-G) duplex (designated G.T 12-mer) and the self-complementary d(C-G-C-G-A-G-C-T-O4meT-G-C-G) duplex (designated G.O4meT 12-mer) containing G.T and G.O4meT pairs at identical positions four base pairs in from either end of the duplex. The exchangeable and nonexchangeable proton resonances have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOESY) spectra for the G.T 12-mer and G.O4meT 12-mer duplexes in H2O and D2O solution. The guanosine and thymidine imino protons in the G.T mismatch resonate at 10.57 and 11.98 ppm, respectively, and exhibit a strong NOE between themselves and to imino protons of flanking base pairs in the G.T 12-mer duplex. These results are consistent with wobble pairing at the G.T mismatch site involving two imino proton-carbonyl hydrogen bonds as reported previously [Hare, D. R., Shapiro, L., & Patel, D. J. (1986) Biochemistry 25, 7445-7456]. In contrast, the guanosine imino proton in the G.O4meT pair resonates at 8.67 ppm. The large upfield chemical shift of this proton relative to that of the imino proton resonance of G in the G.T mismatch or in G.C base pairs indicates that hydrogen bonding to O4meT is either very weak or absent. This guanosine imino proton has an NOE to the OCH3 group of O4meT across the pair and NOEs to the imino protons of flanking base pairs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The novel hybrid duplex alpha-5'-d[TACACA]-3'.beta-5'-r[AUGUGU]-3' was analyzed extensively by 1D and 2D NMR methods. Two forms of the duplex exist in about an 80:20 ratio. Analysis of the exchangeable imino protons of the major component revealed that three AU and one AT base pair are present in addition to two GC base pairs, confirming that the duplex anneals in parallel orientation. The presence of the AT base pair, which can only be accounted for by a parallel duplex, was confirmed by a selective INEPT experiment, which correlated the thymidine imino proton to its C5 carbon. The lesser antiparallel form could be detected by exchangeable and nonexchangeable proton resonances in both strands. An exchange peak was observed in the NOESY spectrum for the thymidine methyl group resonance in both the predominant and lesser conformations, indicating the lifetime of the individual structures was on the millisecond time scale. The nonexchangeable protons of the predominant duplex were assigned by standard methods. The sugar pucker of the ribonucleosides was determined to be of the "S" type by a pseudorotation analysis according to Altona, with the J-couplings measured from the multiplet components of the phase-sensitive COSY experiment. The NOE pattern observed for the alpha-deoxynucleosides also suggested an S-type sugar pucker. The adoption of an S-type sugar pucker for both strands indicates that, in contrast to RNA.DNA duplexes formed exclusively from beta-nucleotides, the alpha-DNA.beta-RNA duplex may form a B-type helix. The 31P resonances of the alpha and beta strands have very different chemical shifts in the hybrid duplex and the difference persists above the helix melting temperature, indicating an intrinsic difference in 31P chemical shift for nucleotides differing only in the configuration about the glycosidic bond.  相似文献   

7.
Proton nuclear magnetic resonance (NMR) spectroscopy is employed to characterize the kinetics of base-pair opening in a series of 9mer duplexes containing different single base mismatches. The imino protons from the different mismatched, as well as fully matched, duplexes are assigned from the imino-imino region in the WATERGATE NOESY spectra. The exchange kinetics of the imino protons are measured from selective longitudinal relaxation times. In the limit of infinite exchange catalyst concentration, the exchange times of the mismatch imino protons extrapolate to much shorter lifetimes than are commonly observed for an isolated GC base pair. Different mismatches exhibit different orders of base-pair lifetimes, e.g. a TT mismatch has a shorter base-pair lifetime than a GG mismatch. The effect of the mismatch was observed up to a distance of two neighboring base pairs. This indicates that disruption in the duplex caused by the mismatch is quite localized. The overall order of base-pair lifetimes in the selected sequence context of the base pair is GC > GG > AA > CC > AT > TT. Interestingly, the fully matched AT base pair has a shorter base-pair lifetime relative to many of the mismatches. Thus, in any given base pair, the exchange lifetime can exhibit a strong dependence on sequence context. These findings may be relevant to the way mismatch recognition is accomplished by proteins and small molecules.  相似文献   

8.
Nuclear magnetic resonance (NMR) has been used to monitor the conformation and dynamics of the d(C1-G2-A3-T4-T5-A6-T6-A5-A4-T3-C2-G1) self-complementary dodecanucleotide duplex (henceforth called Pribnow 12-mer), which contains a TATAAT Pribnow box and a central core of eight dA X dT base pairs. The exchangeable imino and nonexchangeable base protons have been assigned from one-dimensional intra and inter base pair nuclear Overhauser effect (NOE) measurements. Premelting conformational changes are observed at all the dA X dT base pairs in the central octanucleotide core in the Pribnow 12-mer duplex with the duplex to strand transition occurring at 55 degrees C in 0.1 M phosphate solution. The magnitude of the NOE measurements between minor groove H-2 protons of adjacent adenosines demonstrates that the base pairs are propeller twisted with the same handedness as observed in the crystalline state. The thymidine imino proton hydrogen exchange at the dA X dT base pairs has been measured from saturation recovery measurements as a function of temperature. The exchange rates and activation barriers show small variations among the four different dA X dT base pairs in the Pribnow 12-mer duplex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
J Feigon  W A Denny  W Leupin  D R Kearns 《Biochemistry》1983,22(25):5930-5942
A variety of one-dimensional proton NMR methods have been used to investigate the properties of two synthetic DNA decamers, d(ATATCGATAT) and d(ATATGCATAT). These results, in conjunction with the results of two-dimensional NMR experiments, permit complete assignment of the base proton resonances. Low-field resonances were assigned by sequential "melting" of the A . T base pairs and by comparison of the spectra of the two decamers. Below 20 degree C spin-lattice relaxation is dominated by through-space dipolar interactions. A substantial isotope effect on the G imino proton relaxation is observed in 75% D2O, confirming the importance of the exchangeable amino protons in the relaxation process. A somewhat smaller isotope effect is observed on the T imino proton relaxation. At elevated temperatures spin-lattice relaxation of the imino protons is due to proton exchange with solvent. Apparent activation energies for exchange vary from 36 kcal/base pair for base pairs (3,8) to 64 kcal/mol for the most interior base pairs (5,6), indicating that disruption of part, or all, of the double helix contributes significantly to the exchange of the imino protons in these decamers. By contrast, single base pair opening events are the major low-temperature pathways for exchange from A X T and G X C base pairs in the more stable higher molecular weight DNA examined in other studies. The temperature dependence of the chemical shifts and line widths of certain aromatic resonances indicates that the interconversion between the helix and coil states is not in fast exchange below the melting temperature, Tm. Within experimental error, no differential melting of base pairs was found in either molecule, and both exhibited melting points Tm = 50-52 degrees C. Spin-spin and spin-lattice relaxation rates of the nonexchangeable protons (TH6, AH8, and AH2) are consistent with values calculated by using an isotropic rotor model with a rotational correlation time of 6 ns and interproton distances appropriate for B-family DNA. The faster decay of AH8 compared with GH8 is attributed to an interaction between the thymine methyl protons and the AH8 protons in adjacent adenines (5'ApT3'). The base protons (AH8, GH8, and TH6) appear to be located close (1.9-2.3 A) to sugar H2',2" protons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
A Pardi  K M Morden  D J Patel  I Tinoco 《Biochemistry》1982,21(25):6567-6574
The relaxation lifetimes of imino protons from individual base pairs were measured in (I) a perfect helix, d(C-G-C-G-A-A-T-T-C-G-C-G), (II) this helix with a G . C base pair replaced with a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and (III) the perfect helix with an extra adenine base in a mismatch, d(C-G-C-A-G-A-A-T-T-C-G-C-G). The lifetimes were measured by saturation recovery proton nuclear magnetic resonance experiments performed on the imino protons of these duplexes. The measured lifetimes of the imino protons were shown to correspond to chemical exchange lifetimes at higher temperatures and spin-lattice relaxation times at lower temperatures. Comparison of the lifetimes in these duplexes showed that the destabilizing effect of the G . T base pair in II affected the opening rate of only the nearest-neighbor base pairs. For helix III, the extra adenine affected the opening rates of all the base pairs in the helix and thus was a larger perturbation for opening of the base pairs than the G . T base pair. The temperature dependence of the exchange rates of the imino proton in the perfect helix gives values of 14-15 kcal/mol for activation energies of A . T imino protons. These relaxation rates were shown to correspond to exchange involving individual base pair opening in this helix, which means that one base-paired imino proton can exchange independent of the others. For the other two helices that contain perturbations, much larger activation energies for exchange of the imino protons were found, indicating that a cooperative transition involving exchange of at least several base pairs was the exchange mechanism of the imino protons. The effects of a perturbation in a helix on the exchange rates and the mechanisms for exchange of imino protons from oligonucleotide helices are discussed.  相似文献   

11.
Powell SW  Jiang L  Russu IM 《Biochemistry》2001,40(37):11065-11072
Nuclear magnetic resonance spectroscopy has been used to characterize opening reactions and stabilities of individual base pairs in two related DNA structures. The first is the triplex structure formed by the DNA 31-mer 5'-AGAGAGAACCCCTTCTCTCTTTTTCTCTCTT-3'. The structure belongs to the YRY (or parallel) family of triple helices. The second structure is the hairpin double helix formed by the DNA 20-mer 5'-AGAGAGAACCCCTTCTCTCT-3' and corresponds to the duplex part of the YRY triplex. The rates of exchange of imino protons with solvent in the two structures have been measured by magnetization transfer from water and by real-time exchange at 10 degrees C in 100 mM NaCl and 5 mM MgCl2 at pH 5.5 and in the presence of two exchange catalysts. The results indicate that the exchange of imino protons in protonated cytosines is most likely limited by the opening of Hoogsteen C+G base pairs. The base pair opening parameters estimated from imino proton exchange rates suggest that the stability of individual Hoogsteen base pairs in the DNA triplex is comparable to that of Watson-Crick base pairs in double-helical DNA. In the triplex structure, the exchange rates of imino protons in Watson-Crick base pairs are up to 5000-fold lower than those in double-helical DNA. This result suggests that formation of the triplex structure enhances the stability of Watson-Crick base pairs by up to 5 kcal/mol. This stabilization depends on the specific location of each triad in the triplex structure.  相似文献   

12.
We reported previously on NMR studies of (Y+)n.(R+)n(Y-)n DNA triple helices containing one oligopurine strand (R)n and two oligopyrimidine strands (Y)n stabilized by T.AT and C+.GC base triples [de los Santos, C., Rosen, M., & Patel, D. J. (1989) Biochemistry 28, 7282-7289]. Recently, it has been established that guanosine can recognize a thymidine.adenosine base pair to form a G.TA triple in an otherwise (Y+)n.(R+)n(Y-)n triple-helix motif. [Griffin, L. C., & Dervan, P. B. (1989) Science 245, 967-971]. The present study extends the NMR research to the characterization of structural features of a 31-mer deoxyoligonucleotide that folds intramolecularly into a 7-mer (Y+)n.(R+)n(Y-)n triplex with the strands linked through two T5 loops and that contains a central G.TA triple flanked by T.AT triples. The G.TA triplex exhibits an unusually well resolved and narrow imino and amino exchangeable proton and nonexchangeable proton spectrum in H2O solution, pH 4.85, at 5 degrees C. We have assigned the imino protons of thymidine and amino protons of adenosine involved in Watson-Crick and Hoogsteen pairing in T.AT triples, as well as the guanosine imino and cytidine amino protons involved in Watson-Crick pairing and the protonated cytidine imino and amino protons involved in Hoogsteen pairing in C+.GC triples in the NOESY spectrum of the G.TA triplex. The NMR data are consistent with the proposed pairing alignment for the G.TA triple where the guanosine in an anti orientation pairs through a single hydrogen bond from one of its 2-amino protons to the 4-carbonyl group of thymidine in the Watson-Crick TA pair.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Huang Y  Weng X  Russu IM 《Biochemistry》2011,50(11):1857-1863
Proton exchange and nuclear magnetic resonance spectroscopy are being used to characterize the kinetics and energetics of base-pair opening in two nucleic acid double helices. One is the RNA duplex 5'-r(GCGAUAAAAAGGCC)-3'/5'-r(GGCCUUUUUAUCGC)-3', which contains a central tract of five AU base pairs. The other is the homologous DNA duplex with a central tract of five AT base pairs. The rates and the equilibrium constants of the opening reaction of each base pair are measured from the dependence of the exchange rates of imino protons on ammonia concentration, at 10 °C. The results reveal that the tract of AU base pairs in the RNA duplex differs from the homologous tract of AT base pairs in DNA in several ways. The rates of opening of AU base pairs in RNA are high and increase progressively along the tract, reaching their largest values at the 3'-end of the tract. In contrast, the opening rates of AT base pairs in DNA are much lower than those of AU base pairs. Within the tract, the largest opening rate is observed for the AT base pair at the 5'-end of the tract. These differences in opening kinetics are paralleled by differences in the stabilities of individual base pairs. All AU base pairs in the RNA are less stable than the AT base pairs in the DNA. The presence of the tract enhances these differences by increasing the stability of AT base pairs in DNA while decreasing the stability of AU base pairs in RNA. Due to these divergent trends, along the tracts, the AU base pairs become progressively less stable than AT base pairs. These findings demonstrate that tracts of AU base pairs in RNA have specific dynamic and energetic signatures that distinguish them from similar tracts of AT base pairs in DNA.  相似文献   

14.
A comparison is presented of the imino proton NMR spectra of the double stranded octamer d(GCGTTGCG).d(CGCAACGC) and the same octamer in which the two central thymine residues occur as a cis-syn thymine dimer. Except for the terminal base pairs all imino protons were detected and assigned in the NMR spectrum. The spectra show that in the thymine dimer duplex, contrary to common belief, all base pairs occur in a hydrogen bonded form, although the hydrogen bonds of the two central AT base pairs are substantially weakened. The melting temperature decreases about 13 degrees C on thymine dimer formation.  相似文献   

15.
Nuclear magnetic resonance (NMR) has been used to monitor the conformation and dynamics of the d-(C1-G2-A3-G4-A5-A6-T6-T5-C4-G3-C2-G1) self-complementary dodecanucleotide (henceforth called 12-mer GA) that contains a dG X dA purine-purine mismatch at position 3 in the sequence. These results are compared with the corresponding d(C-G-C-G-A-A-T-T-C-G-C-G) dodecamer duplex (henceforth called 12-mer) containing standard Watson-Crick base pairs at position 3 [Patel, D.J., Kozlowski, S.A., Marky, L.A., Broka, C., Rice, J.A., Itakura, K., & Breslauer, K.J. (1982) Biochemistry 21, 428-436]. The dG X dA interaction at position 3 was monitored at the guanosine exchangeable H-1 and nonexchangeable H-8 protons and the nonexchangeable adenosine H-2 proton. We demonstrate base-pair formation between anti orientations of the guanosine and adenosine rings on the basis of nuclear Overhauser effects (NOE) observed between the H-2 proton of adenosine 3 and the imino protons of guanosine 3 (intra base pair) and guanosines 2 and 4 (inter base pair). The dG(anti) X dA(anti) pairing should result in hydrogen-bond formation between the guanosine imino H-1 and carbonyl O-6 groups and the adenosine N-1 and NH2-6 groups, respectively. The base pairing on either side of the dG X dA pair remains intact at low temperature, but these dG X dC pairs at positions 2 and 4 are kinetically destabilized in the 12-mer GA compared to the 12-mer duplex. We have estimated the hydrogen exchange kinetics at positions 4-6 from saturation-recovery measurements on the imino protons of the 12-mer GA duplex between 5 and 40 degrees C. The measured activation energies for imino proton exchange in the 12-mer GA are larger by a factor of approximately 2 compared to the corresponding values in the 12-mer duplex. This implies that hydrogen exchange in the 12-mer GA duplex results from a cooperative transition involving exchange of several base pairs as was previously reported for the 12-mer containing a G X T wobble pair at position 3 [Pardi, A., Morden, K.M., Patel, D.J., & Tinoco, I., Jr. (1982) Biochemistry 21, 6567-6574]. We have assigned the nonexchangeable base protons by intra and inter base pair NOE experiments and monitored these assigned markers through the 12-mer GA duplex to strand transition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
S Roy  A G Redfield 《Biochemistry》1983,22(6):1386-1390
Yeast tRNAPhe has been studied by using proton NMR and nuclear Overhauser effect (NOE) with deuterium substitution. Direct NOE evidence is presented for assignment of imino resonances of 23 of 27 base pairs in this tRNA. Other indirect evidence is presented for tentative assignment of four other base pairs. Almost total assignment also has been made of the important noninternally bonded imino protons and tertiary interactions (however, G18-psi 55 remains unassigned). The most surprising result has been identification of GC11 at -13.68 ppm; this is the first time a GC base pair has been identified so far downfield. This peak (GC11) is also identified as the resonance of the unique imino proton that exchanges in a time of more than 1 day, as previously described. These identifications of imino proton resonances made it possible to reinterpret the proton solvent exchange rate data previously published on this tRNA and understand them better. The assignments of resonances should pave the way for more detailed solution study of this tRNA and its interaction with biologically relevant molecules.  相似文献   

17.
S H Chou  D R Hare  D E Wemmer  B R Reid 《Biochemistry》1983,22(13):3037-3041
Using solid-phase phosphite triester methods, we have synthesized both strands of the phage lambda OR3 DNA sequence, reannealed them, and studied the native operator duplex by high-resolution NMR at 500 MHz. At 7 degrees C the imino protons of the two terminal base pairs at each end have disappeared from the spectrum by exchange broadening. The 13 detectable imino resonances have been assigned to their respective base pairs in the duplex by using sequential nearest-neighbor NOE connectivity methods described previously. In cases where two imino protons overlap in the spectrum, spin diffusion was used to drive the cross-saturation further afield in order to produce second-order next-nearest-neighbor effects. The results show that the imino connectivity method can be used to unambiguously assign the imino proton spectrum of operator DNAs containing one to two full turns of the helix.  相似文献   

18.
M W Kalnik  B F Li  P F Swann  D J Patel 《Biochemistry》1989,28(15):6170-6181
High-resolution two-dimensional NMR studies are reported on the self-complementary d-(C1-G2-C3-O6etG4-A5-G6-C7-T8-T9-G10-C11-G12) duplex (designated O6etG.T 12-mer) containing two symmetrically related O6etG.T lesion sites located four base pairs in from either end of the duplex. Parallel studies were undertaken on a related sequence containing O6meG.T lesion sites (designated O6meG.T 12-mer) in order to evaluate the influence of the size of the alkyl substituent on the structure of the duplex and were undertaken on a related sequence containing G.T mismatch sites (designated G.T 12-mer duplex), which served as the control duplex. The exchangeable and nonexchangeable proton and the phosphorus nuclei have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOE) and correlated spectra of the O6etG.T 12-mer, O6meG.T 12-mer, and G.T 12-mer duplexes in H2O and D2O solutions. The distance connectivities observed in the NOESY spectra of the O6alkG.T 12-mer duplexes establish that the helix is right-handed and all of the bases adopt an anti conformation of the glycosidic torsion angle including the O6alkG4 and T9 bases at the lesion site. The imino proton of T9 at the O6alkG.T lesion sites resonates at 8.85 ppm in the O6etG.T 12-mer duplex and at 9.47 ppm in the O6meG.T 12-mer duplex. The large upfield shift of the T9 imino proton resonance at the O6alkG4.T9 lesion site relative to that of the same proton in the G4.T9 wobble pair (11.99 ppm) and the A4.T9 Watson-Crick pair (13.95 ppm) in related sequences establishes that the hydrogen bonding of the imino proton of T9 to O6alkG4 is either very weak or absent. The imino proton of T9 develops NOEs to the CH3 protons of the O6etG and O6meG alkyl groups across the base pair, as well as to the imino and H5 protons of the flanking C3.G10 base pair and the imino and CH3 protons of the flanking A5.T8 base pair in the O6alkG.T 12-mer duplexes. These observations establish that the O6alkG4 and T9 residues are stacked into the duplex and that the O6CH3 and O6CH2CH3 groups of O6alkG4 adopt a syn orientation with respect to the N1 of the alkylated guanine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Imino proton and 31P NMR studies were conducted on the binding of actinomycin D (ActD) to self-complementary oligodeoxyribonucleotides with one GC binding site [d(ATATGCATAT) (1), d-(ATACGCGTAT) (2), and d(ATATACGCGTATAT) (3)] and with two GC sites [d(ATGCATGCAT) (4)]. At R = 1 (molar ratio of ActD to oligomer duplex) ActD caused a doubling of the number of imino proton signals at, and adjacent to, the GC binding site of 1. One of the G.C base pair signals shifted upfield while the other shifted downfield. Both of the signals for the A.T base pairs adjacent to the binding site shifted downfield. All imino proton signals of 2 and the longer sequence, 3, shifted upfield on binding of ActD to the GC site, indicating a sequence-dependent change in base stacking on complex formation. For both 1 and 2 addition of ActD resulted in a similar pattern of three downfield 31P NMR signals. The two most downfield signals have chemical shift and temperature dependence which are characteristic of phosphate groups at isolated intercalation sites. At R = 1 the ActD complex with 4 has very complex spectra with both upfield and downfield A.T and G.C imino signals. All these data were consistent with two 1:1 complexes with the unsymmetrical phenoxazone ring adopting both of the two possible orientations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Two-dimensional homonuclear and heteronuclear NMR and minimized potential energy calculations have been combined to define the structure of the antitumor agent mitomycin C (MC) cross-linked to deoxyguanosines on adjacent base pairs in the d(T1-A2-C3-G4-T5-A6).d(T7-A8-C9-G10-T11-A12) duplex. The majority of the mitomycin and nucleic acid protons in the MC-X 6-mer complex have been assigned from through-bond and through-space two-dimensional proton NMR studies in aqueous solution at 5 and 20 degrees C. The C3.G10 and G4.C9 base pairs are intact at the cross-link site and stack on each other in the complex. The amino protons of G4 and G10 resonate at 9.36 and 8.87 ppm and exhibit slow exchange with solvent H2O. The NMR experimental data establish that the mitomycin is cross-linked to the DNA through the amino groups of G4 and G10 and is positioned in the minor groove. The conformation of the cross-link site is defined by a set of NOEs between the mitomycin H1" and H2" protons and the nucleic acid imino and amino protons of G4 and the H2 proton of A8 and another set of NOEs between the mitomycin geminal H10" protons and the nucleic acid imino and amino protons of G10 and the H2 proton of A2. Several phosphorus resonances of the d(T-A-C-G-T-A) duplex shift dramatically on mitomycin cross-link formation and have been assigned from proton-detected phosphorus-proton two-dimensional correlation experiments. The proton chemical shifts and NOEs establish fraying at the ends of the d(T-A-C-G-T-A) duplex, and this feature is retained on mitomycin cross-link formation. The base-base and base-sugar NOEs exhibit similar patterns for symmetry-related steps on the two nucleic acid strands in the MC-X 6-mer complex, while the proton and phosphorus chemical shifts are dramatically perturbed at the G10-T11 step on cross-link formation. The NMR distance constraints have been included in minimized potential energy computations on the MC-X 6-mer complex. These computations were undertaken with the nonplanar five-membered ring of mitomycin in each of two pucker orientations. The resulting low-energy structures MX1 and MX2 have the mitomycin cross-linked in a widened minor groove with the chromophore ring system in the vicinity of the G10-T11 step on one of the two strands in the duplex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号