首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
以离心换液的批培养为例,通过设计谷氨酰胺和天冬酰胺不同的添加方式来考察两者对CHO细胞生长,代谢及产物表达的影响。结果表明:基础培养基中谷氨酰胺和天冬酰胺不能简单地相互替换,缺失谷氨酰胺或天冬酰胺的基础培养基均不能支持dhfr-CHO细胞的正常生长和产物表达,仅谷氨酰胺和天冬酰胺的浓度同时达到4mmol/L,才能满足细胞生长所需。另外,代谢副产物氨的生成仅与谷氨酰胺和天冬酰胺的加和线性相关,与两者添加比例无关。但适当提高天冬酰胺与谷氨酰胺的比例可提高抗体表达水平,同时减少乳酸的生成。因此,为培养基开发与优化过程中谷氨酰胺和天冬酰胺的添加策略提供了依据,为建立高效的流加培养过程奠定了基础。  相似文献   

5.
6.
The Cell Wall of Rickettsia mooseri I. Morphology and Chemical Composition   总被引:5,自引:6,他引:5  
Cell walls prepared by mechanically disrupting intact Rickettsia mooseri (R. typhi) were examined in an electron microscope and analyzed chemically. Electron micrographs of metal-shadowed and negatively stained rickettsial cell walls revealed no significant differences, except for smaller size, from bacterial cell walls prepared in a similar manner. The chemical composition was complex, and resembled that of gram-negative bacterial cell walls more closely than that of gram-positive bacterial cell walls. R. mooseri cell walls contained the sugars, glucose, galactose, and glucuronic acid, the amino sugars, glucosamine, and muramic acid, and at least 15 amino acids. Diaminopimelic acid, a compound hitherto found only in bacteria and blue-green algae, was demonstrated in rickettsiae for the first time. Teichoic acids were not detected. The compounds identified accounted for about 70% of the dry weight of the cell walls.  相似文献   

7.
Rhodes D  Rich PJ  Brunk DG 《Plant physiology》1989,89(4):1161-1171
A serious limitation to the use of N(O,S)-heptafluorobutyryl isobutyl amino acid derivatives in the analysis of 15N-labeling kinetics of amino acids in plant tissues, is that the amides glutamine and asparagine undergo acid hydrolysis to glutamate and aspartate, respectively, during derivatization. This led us to consider an alternative procedure (G Fortier et al. [1986] J Chromatogr 361: 253-261) for derivatization of glutamine and asparagine with N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide in pyridine. Gas chromatography-mass spectrometry (electron ionization) yielded fragment ions (M-57) of mass 417 and 431 for the [14N]asparagine and [14N]glutamine derivatives, respectively, suitable for monitoring unlabeled, single-15N- and double-15N-labeled amide species from the ion clusters at mass to charge ratio (m/z) 415 to 423 for asparagine, and m/z 429 to 437 for glutamine. From separate analyses of the specific isotope abundance of the amino-N groups of asparagine and glutamine as their N-heptafluorobutyryl isobutyl derivatives, the specific amide-[15N] abundance of these amino acids was determined. We demonstrate that this approach to 15N analysis of the amides can yield unique insights as to the compartmentation of asparagine and glutamine in vivo. The ratios of unlabeled:single-15N:double-15N-labeled species are highly diagnostic of the relative sizes and turnover of metabolically active and inactive pools of the amides and their precursors. Kinetic evidence is presented to indicate that a significant proportion (approximately 10%) of the free asparagine pool may be metabolically inactive (vacuolar). If the amide group of asparagine is derived exclusively from glutamine-amide, then asparagine must be synthesized in a compartment of the cell in which both glutamine-amide and aspartate are more heavily labeled with 15N than the bulk pools of these amino acids. This compartment is presumably the chloroplast. The transaminase inhibitor aminooxyacetate is shown to markedly inhibit amino acid synthesis; several amino acid pools accumulated in the presence of aminooxyacetate and [15N]H4+ are 14N-enriched and must be derived primarily from protein turnover.  相似文献   

8.
9.
10.
11.
12.
13.
14.
本文报导了天冬酰胺酶及PEG_2-天冬酰胺酶对废物L-天冬酰胺、谷氨酰胺亲和性的研究,结果表明:PEG_2-天冬酰胺酶对谷氨酰胺的亲和性明显强于天冬酰胺酶(Km值分别为7.35×10~(-3)mol/L和7.14×10~(-2)mol/L),对天冬酰胺的亲和性略强于天冬酰胺酶(Km值分别为2.9×10~(-5)mol/L和4.0×10~(-5)mol/L)。天冬酰胺酶和PEG_2-天冬酰胺酶的CD光谱表明:天冬酰胺和谷氨酰胺对天冬酰胺酶和PEG_2-天冬酰胺酶的构象影响较大,但天冬酰胺酶和PEG_2-天冬酰胺酶的构象变化趋势有明显的不同。  相似文献   

15.
16.
17.
A relatively simple and rapid procedure for the measurement of free ammonium and the amides in plant extracts is described. The method was developed by combining a cation-exchange method for blood ammonia with a differential acid-hydrolysis procedure for asparagine and glutamine amide-nitrogen.The recovery of standard samples (100-400 mug of ammonium- or amide-nitrogen) of free ammonium, asparagine, and glutamine after being run through the extraction, column, and analytical procedures ranged between 99 and 102%.The harvest, extraction, and analytical procedures were tested on shoots from 4 to 6-day-old germinating barley seeds. The high levels of the amides and the low level of free ammonium present in the tissue extracts indicated that the extraction and analytical procedures resulted in little if any hydrolysis of the amides.  相似文献   

18.
[This corrects the article on p. toc in vol. 54.].  相似文献   

19.
Isolated rat brain synaptosomes accumulated L-asparagine with a Km value of 348 microM and a Vmax value of 3.7 nmol/mg of protein/min at 28 degrees C. Uptake of L-asparagine was inhibited by the presence of L-glutamine, whereas transport of L-glutamine was blocked by L-asparagine. Alanine, serine, cysteine, threonine, and, in particular, leucine were also inhibitory whereas alpha-(methylamino)isobutyrate, ornithine, lysine, arginine, and glutamate were much less effective blockers. Transport of L-asparagine had a substantial sodium-dependent component, whereas that of the D-stereoisomer was almost unaffected by the presence or absence of the cation. L-Asparagine was accumulated to a maximal gradient, [L-Asn]i/[L-Asn]o, of 20-30, and this value was reduced to 5-6 by withdrawal of sodium or addition of high [KCI]. A plot of log [Na+]o/[Na+]i against the log [L-Asn]i/[L-Asn]o had a slope close to I, which indicates that a single sodium ion is transported inward with each asparagine molecule. It is postulated that uptake of L-asparagine occurs, to a large extent, in cotransport with Na+ and that it utilizes the sodium chemical gradient and the membrane electrical potential as the source of energy. The similarity between the L-asparagine and L-glutamine transport systems and the reciprocal inhibition of influx of the two amino acids suggest that the same mechanism is responsible for glutamine accumulation. This could explain the high [Gln]i maintained by the brain in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号