首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forskolin,UTP, 1-ethyl-2-benzimidazolinone (1-EBIO), NS004, 8-methoxypsoralen(Methoxsalen; 8-MOP), and genistein were evaluated for theireffects on ion transport across primary cultures of human bronchialepithelium (HBE) expressing wild-type (wt HBE) and F508(F-HBE) cystic fibrosis transmembrane conductance regulator. In wtHBE, the baseline short-circuit current (Isc)averaged 27.0 ± 0.6 µA/cm2 (n = 350). Amiloride reduced this Isc by 13.5 ± 0.5 µA/cm2 (n = 317). In F-HBE,baseline Isc was 33.8 ± 1.2 µA/cm2 (n = 200), and amiloride reducedthis by 29.6 ± 1.5 µA/cm2 (n = 116), demonstrating the characteristic hyperabsorption of Na+ associated with cystic fibrosis (CF). In wt HBE,subsequent to amiloride, forskolin induced a sustained,bumetanide-sensitive Isc(Isc = 8.4 ± 0.8 µA/cm2; n = 119). Addition ofacetazolamide, 5-(N-ethyl-N-isopropyl)-amiloride, and serosal 4,4'-dinitrostilben-2,2'-disulfonic acid further reduced Isc, suggesting forskolin also stimulatesHCO3 secretion. This was confirmed by ionsubstitution studies. The forskolin-induced Iscwas inhibited by 293B, Ba2+, clofilium, and quinine,whereas charybdotoxin was without effect. In F-HBE the forskolinIsc response was reduced to 1.2 ± 0.3 µA/cm2 (n = 30). In wt HBE, mucosal UTPinduced a transient increase in Isc ( Isc = 15.5 ± 1.1 µA/cm2;n = 44) followed by a sustained plateau, whereas inF-HBE the increase in Isc was reduced to5.8 ± 0.7 µA/cm2 (n = 13). In wtHBE, 1-EBIO, NS004, 8-MOP, and genistein increased Isc by 11.6 ± 0.9 (n = 20), 10.8 ± 1.7 (n = 18), 10.0 ± 1.6 (n = 5), and 7.9 ± 0.8 µA/cm2(n = 17), respectively. In F-HBE, 1-EBIO, NS004, and8-MOP failed to stimulate Cl secretion. However, additionof NS004 subsequent to forskolin induced a sustained Clsecretory response (2.1 ± 0.3 µA/cm2,n = 21). In F-HBE, genistein alone stimulatedCl secretion (2.5 ± 0.5 µA/cm2,n = 11). After incubation of F-HBE at 26°C for24 h, the responses to 1-EBIO, NS004, and genistein were allpotentiated. 1-EBIO and genistein increased Na+ absorptionacross F-HBE, whereas NS004 and 8-MOP had no effect. Finally,Ca2+-, but not cAMP-mediated agonists, stimulatedK+ secretion across both wt HBE and F-HBE in aglibenclamide-dependent fashion. Our results demonstrate thatpharmacological agents directed at both basolateral K+ andapical Cl conductances directly modulate Clsecretion across HBE, indicating they may be useful in ameliorating theion transport defect associated with CF.

  相似文献   

2.
We reported previously that inhibition ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) by bumetanide abolishes high extracellular K+concentration ([K+]o)-induced swelling andintracellular Cl accumulation in rat cortical astrocytes.In this report, we extended our study by using cortical astrocytes fromNKCC1-deficient (NKCC1/) mice. NKCC1 protein andactivity were absent in NKCC1/ astrocytes.[K+]o of 75 mM increased NKCC1 activityapproximately fourfold in NKCC1+/+ cells (P < 0.05) but had no effect in NKCC1/ astrocytes.Intracellular Cl was increased by 70% inNKCC1+/+ astrocytes under 75 mM[K+]o (P < 0.05) butremained unchanged in NKCC1/ astrocytes. Baselineintracellular Na+ concentration([Na+]i) in NKCC1+/+ astrocyteswas 19.0 ± 0.5 mM, compared with 16.9 ± 0.3 mM[Na+]i in NKCC1/ astrocytes(P < 0.05). Relative cell volume ofNKCC1+/+ astrocytes increased by 13 ± 2% in 75 mM[K+]o, compared with a value of 1.0 ± 0.5% in NKCC1/ astrocytes (P < 0.05).Regulatory volume increase after hypertonic shrinkage was completelyimpaired in NKCC1/ astrocytes.High-[K+]o-induced 14C-labeledD-aspartate release was reduced by ~30% inNKCC1/ astrocytes. Our study suggests that stimulationof NKCC1 is required for high-[K+]o-inducedswelling, which contributes to glutamate release from astrocytes underhigh [K+]o.

  相似文献   

3.
HumanNa+-K+-ATPase11,21, and 31heterodimers were expressed individually in yeast, and ouabainbinding and ATP hydrolysis were measured in membrane fractions. Theouabain equilibrium dissociation constant was 13-17 nM for11 and 31at 37°C and 32 nM for 21, indicatingthat the human -subunit isoforms have a similar high affinity forcardiac glycosides. K0.5 values for antagonism of ouabain binding by K+ were ranked in order as follows:2 (6.3 ± 2.4 mM) > 3(1.6 ± 0.5 mM)  1 (0.9 ± 0.6 mM),and K0.5 values for Na+ antagonismof ouabain binding to all heterodimers were 9.5-13.8 mM. Themolecular turnover for ATP hydrolysis by11 (6,652 min1) was abouttwice as high as that by 31 (3,145 min1). These properties of the human heterodimersexpressed in yeast are in good agreement with properties of the humanNa+-K+-ATPase expressed in Xenopusoocytes (G Crambert, U Hasler, AT Beggah, C Yu, NN Modyanov, J-DHorisberger, L Lelievie, and K Geering. J Biol Chem275: 1976-1986, 2000). In contrast to Na+ pumpsexpressed in Xenopus oocytes, the21 complex in yeast membranes wassignificantly less stable than 11 or31, resulting in a lower functionalexpression level. The 21 complex was also more easily denatured by SDS than was the11 or the31 complex.

  相似文献   

4.
These experiments were performed to determine the effects ofreducing Ca2+ influx(Cain) onK+ currents(IK) inmyocytes from rat small mesenteric arteries by1) adding externalCd2+ or2) lowering externalCa2+ to 0.2 mM. When measured froma holding potential (HP) of 20 mV(IK20),decreasing Cain decreasedIK at voltageswhere it was active (>0 mV). When measured from a HP of 60 mV(IK60),decreasing Cain increasedIK at voltagesbetween 30 and +20 mV but decreased IK at voltagesabove +40 mV. Difference currents(IK) weredetermined by digital subtraction of currents recorded under controlconditions from those obtained whenCain was decreased. At testvoltages up to 0 mV,IK60 exhibitedkinetics similar to controlIK60, with rapidactivation to a peak followed by slow inactivation. At 0 mV, peakIK60 averaged75 ± 13 pA (n = 8) withCd2+ and 120 ± 20 pA(n = 9) with lowCa2+ concentration. At testvoltages from 0 to +60 mV,IK60 always had an early positive peak phase, but its apparent "inactivation" increased with voltage and its steady value became negative above +20mV. At +60 mV, the initial peakIK60 averaged115 ± 18 pA with Cd2+ and 187 ± 34 pA with low Ca2+. With 10 mM pipette BAPTA, Cd2+ produced asmall inhibition ofIK20 but stillincreased IK60 between 30 and +10 mV. InCa2+-free external solution,Cd2+ only decreased bothIK20 andIK60. In thepresence of iberiotoxin (100 nM) to inhibitCa2+-activatedK+ channels(KCa),Cd2+ increasedIK60 at allvoltages positive to 30 mV while BAY K 8644 (1 µM) decreasedIK60. Theseresults suggest that Cain, through L-type Ca2+ channels and perhapsother pathways, increases KCa(i.e., IK20) and decreases voltage-dependent K+currents in this tissue. This effect could contribute to membrane depolarization and force maintenance.

  相似文献   

5.
Blood flow-associatedshear stress may modulate cellular processes through its action on theplasma membrane. We quantified the spatial and temporal aspects of theeffects of shear stress () on the lipid fluidity of1,1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate [DiIC16(13)]-stained plasma membranesof bovine aortic endothelial cells in a flow chamber. A confocalmicroscope was used to determine the DiI diffusion coefficient(D) by fluorescence recovery after photobleaching on cellsunder static conditions, after a step- of 10 or 20 dyn/cm2, and after the cessation of . The methodallowed the measurements of D on the upstream and downstreamsides of the cell taken midway between the respective cell borders andthe nucleus. In <10 s after a step- of 10 dyn/cm2,D showed an upstream increase and a downstream decrease, and both changes disappeared rapidly. There was a secondary, larger increase in upstream D, which reached a peak at 7 min and decreased thereafter, despite the maintenance of .D returned to near control values within 5 s aftercessation of . Downstream D showed little secondarychanges throughout the 10-min shearing, as well as after its cessation.Further investigations into the early phase, with simultaneousmeasurements of upstream and downstream D, confirmed that astep- of 10 dyn/cm2 elicited a rapid (5-s) but transientincrease in upstream D and a concurrent decrease indownstream D, yielding a significant difference between thetwo sites. A step- of 20 dyn/cm2 caused D toincrease at both sites at 5 s, but by 30 s and 1 min theupstream D became significantly higher than the downstream D. These results demonstrate shear-induced changes inmembrane fluidity that are time dependent and spatially heterogeneous. These changes in membrane fluidity may have important implications inshear-induced membrane protein modulation.

  相似文献   

6.
An HEK-293 cell line stably expressing the humanrecombinant ClC-2 Cl channel was used in patch-clampstudies to study its regulation. The relative permeabilityPx/PCl calculated fromreversal potentials was I > Cl = NO3 = SCNBr. Theabsolute permeability calculated from conductance ratios wasCl = Br = NO3  SCN > I. The channel was activatedby cAMP-dependent protein kinase (PKA), reduced extracellular pH, oleicacid (C:18 cis9), elaidic acid (C:18trans9), arachidonic acid (AA; C:20cis5,8,11,14), and by inhibitors of AA metabolism,5,8,11,14-eicosatetraynoic acid (ETYA; C:20trans5,8,11,14),-methyl-4-(2-methylpropyl)benzeneacetic acid (ibuprofen), and2-phenyl-1,2-benzisoselenazol-3-[2H]-one (PZ51, ebselen). ClC-2Cl channels were activated by a combination of forskolinplus IBMX and were inhibited by the cell-permeant myristoylated PKAinhibitor (mPKI). Channel activation by reduction of bath pH wasincreased by PKA and prevented by mPKI. AA activation of the ClC-2Cl channel was not inhibited by mPKI or staurosporine andwas therefore independent of PKA or protein kinase C activation.

  相似文献   

7.
We usedsingle-channel recording techniques to identify and characterize alarge-conductance,Ca2+-independentK+ channel in the colonicsecretory cell line T84. In symmetric potassium gluconate, this channelhad a linear current-voltage relationship with a single-channelconductance of 161 pS. Channel open probability(Po) wasincreased at depolarizing potentials. Partial substitution of bathK+ withNa+ indicated a permeability ratioof K+ toNa+ of 25:1. ChannelPo was reduced byextracellular Ba2+. Event-durationanalysis suggested a linear kinetic model for channel gating having asingle open state and three closed states: C3C2C1O.Arachidonic acid (AA) increased thePo of thechannel, with an apparent stimulatory constant(Ks)of 1.39 µM. Neither channel open time (O) nor the fast closed time(C1) was affected by AA. Incontrast, AA dramatically reduced mean closed time by decreasing bothC3 andC2. Thecis-unsaturated fatty acid linoleate increased Poalso, whereas the saturated fatty acid myristate and thetrans-unsaturated fatty acid elaidatedid not affectPo. This channelis activated also by negative pressure applied to the pipette duringinside-out recording. Thus we determined the effect of thestretch-activated channel blockers amiloride and Gd3+ on theK+ channel after activation by AA.Amiloride (2 mM) on the extracellular side reduced single-channelamplitude in a voltage-dependent manner, whereasGd3+ (100 µM) had no effect onchannel activity. Activation of this K+ channel may be important duringstimulation of Cl secretionby agonists that use AA as a second messenger (e.g., vasoactiveintestinal polypeptide, adenosine) or during the volume regulatoryresponse to cell swelling.

  相似文献   

8.
Cell-attached recordings revealedK+ channel activity in basolateral membranes ofguinea pig distal colonic crypts. Inwardly rectified currents wereapparent with a pipette solution containing 140 mM K+.Single-channel conductance () was 9 pS at the resting membrane potential. Another inward rectifier with  of 19 pS was observed occasionally. At a holding potential of 80 mV,  was 21 and 41 pS,respectively. Identity as K+ channels was confirmed afterpatch excision by changing the bath ion composition. From reversalpotentials, relative permeability of Na+ overK+ (PNa/PK)was 0.02 ± 0.02, withPRb/PK = 1.1 andPCl/PK < 0.03. Spontaneous open probability (Po) of the 9-pSinward rectifier (gpKir) was voltageindependent in cell-attached patches. Both a low(Po = 0.09 ± 0.01) and a moderate(Po = 0.41 ± 0.01) activity mode wereobserved. Excision moved gpKir to the mediumactivity mode; Po ofgpKir was independent of bath Ca2+activity and bath acidification. Addition of Cl andK+ secretagogues altered Po ofgpKir. Forskolin or carbachol (10 µM)activated the small-conductance gpKir inquiescent patches and increased Po inlow-activity patches. K+ secretagogues, either epinephrine(5 µM) or prostaglandin E2 (100 nM), decreasedPo of gpKir in activepatches. This gpKir may be involved inelectrogenic secretion of Cl and K+ acrossthe colonic epithelium, which requires a large basolateral membraneK+ conductance during maximal Cl secretionand, presumably, a lower K+ conductance during primaryelectrogenic K+ secretion.

  相似文献   

9.
Investigation of the role ofindividual protein kinase C (PKC) isozymes in the regulation ofNa+ channels has been largely limited by the lack ofisozyme-selective modulators. Here we used a novel peptide-specificactivator (V1-7) of PKC and other peptide isozyme-specificinhibitors in addition to the general PKC activator phorbol12-myristate 13-acetate (PMA) to dissect the role of individual PKCs inthe regulation of the human cardiac Na+ channel hH1,heterologously expressed in Xenopus oocytes. Peptides wereinjected individually or in combination into the oocyte. Whole cellNa+ current (INa) was recorded usingtwo-electrode voltage clamp. V1-7 (100 nM) and PMA (100 nM)inhibited INa by 31 ± 5% and 44 ± 8% (at 20 mV), respectively. These effects were not seen with thescrambled peptide for V1-7 (100 nM) or the PMA analog4-phorbol 12,13-didecanoate (100 nM). However, V1-7-and PMA-induced INa inhibition was abolished byV1-2, a peptide-specific antagonist of PKC. Furthermore,PMA-induced INa inhibition was not altered by100 nM peptide-specific inhibitors for -, -, -, or PKC. PMAand V1-7 induced translocation of PKC from soluble toparticulate fraction in Xenopus oocytes. This translocationwas antagonized by V1-2. In native rat ventricular myocytes,PMA and V1-7 also inhibited INa; thisinhibition was antagonized by V1-2. In conclusion, the resultsprovide evidence for selective regulation of cardiac Na+channels by PKC isozyme.

  相似文献   

10.
The role of the Na+ pump2-subunit in Ca2+ signaling was examined inprimary cultured astrocytes from wild-type(2+/+ = WT) mouse fetuses and thosewith a null mutation in one [2+/ = heterozygote (Het)] or both [2/ = knockout (KO)] 2 genes. Na+ pump catalytic() subunit expression was measured by immunoblot; cytosol[Na+] ([Na+]cyt) and[Ca2+] ([Ca2+]cyt) weremeasured with sodium-binding benzofuran isophthalate and fura 2 byusing digital imaging. Astrocytes express Na+ pumpswith both 1- (80% of total ) and2- (20% of total ) subunits. Het astrocytesexpress 50% of normal 2; those from KO express none.Expression of 1 is normal in both Het and KO cells.Resting [Na+]cyt = 6.5 mM in WT, 6.8 mMin Het (P > 0.05 vs. WT), and 8.0 mM in KO cells(P < 0.001); 500 nM ouabain (inhibits only2) equalized [Na+]cyt at 8 mMin all three cell types. Resting[Ca2+]cyt = 132 nM in WT, 162 nM in Het,and 196 nM in KO cells (both P < 0.001 vs. WT).Cyclopiazonic acid (CPA), which inhibits endoplasmic reticulum (ER)Ca2+ pumps and unloads the ER, induces transient (inCa2+-free media) or sustained (in Ca2+-repletemedia) elevation of [Ca2+]cyt. TheseCa2+ responses to 10 µM CPA were augmented in Het as wellas KO cells. When CPA was applied in Ca2+-free media, thereintroduction of Ca2+ induced significantly largertransient rises in [Ca2+]cyt (due toCa2+ entry through store-operated channels) in Het and KOcells than in WT cells. These results correlate with published evidencethat 2 Na+ pumps andNa+/Ca2+ exchangers are confined to plasmamembrane microdomains that overlie the ER. The data suggest thatselective reduction of 2 Na+ pump activitycan elevate local [Na+] and, viaNa+/Ca2+ exchange, [Ca2+] in thetiny volume of cytosol between the plasma membrane and ER. This, inturn, augments adjacent ER Ca2+ stores and therebyamplifies Ca2+ signaling without elevating bulk[Na+]cyt.

  相似文献   

11.
The neuronal K-Cl cotransporter isoform (KCC2) was functionallyexpressed in human embryonic kidney (HEK-293) cell lines. Two stablytransfected HEK-293 cell lines were prepared: one expressing anepitope-tagged KCC2 (KCC2-22T) and another expressing theunaltered KCC2 (KCC2-9). The KCC2-22T cells produced aglycoprotein of ~150 kDa that was absent from HEK-293 control cells.The 86Rb influx in both cell lineswas significantly greater than untransfected control HEK-293 cells. TheKCC2-9 cells displayed a constitutively active86Rb influx that could beincreased further by 1 mMN-ethylmaleimide (NEM) but not by cellswelling. Both furosemide [inhibition constant (Ki) ~25µM] and bumetanide (Ki~55 µM) inhibited the NEM-stimulated 86Rb influx in the KCC2-9cells. This diuretic-sensitive86Rb influx in theKCC2-9 cells, operationally defined as KCC2 mediated, required external Clbut not external Na+ and exhibiteda high apparent affinity for externalRb+(K+)[Michaelis constant(Km) = 5.2 ± 0.9 (SE) mM; n = 5] but alow apparent affinity for externalCl(Km >50 mM). Onthe basis of thermodynamic considerations as well as the unique kineticproperties of the KCC2 isoform, it is hypothesized that KCC2 may servea dual function in neurons: 1) themaintenance of low intracellularCl concentration so as toallow Cl influx vialigand-gated Cl channelsand 2) the buffering of externalK+ concentration([K+]o) in the brain.

  相似文献   

12.
Chloride release from nonpigmented ciliary epithelial (NPE)cells is a final step in forming aqueous humor, and adenosine stimulates Cl transport by these cells. Whole cell patchclamping of cultured human NPE cells indicated that theA3-selective agonist1-deoxy-1-(6-[([3-iodophenyl]methyl)amino]-9H-purin-9-yl)-N-methyl--D-ribofuranuronamide (IB-MECA) stimulated currents (IIB-MECA) by~90% at +80 mV. Partial replacement of external Clwith aspartate reduced outward currents and shifted the reversal potential (Vrev) from 23 ± 2 mV to0.0 ± 0.7 mV. Nitrate substitution had little effect. Perfusionwith the Cl channel blockers5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and niflumic acidinhibited the currents. Partial Cl replacement withaspartate and NO3, and perfusion with NPPB, hadsimilar effects on the swelling-activated whole cell currents(ISwell). Partial cyclamate substitution for external Cl inhibited inward and outward currents of bothIIB-MECA and ISwell. Bothsets of currents also showed outward rectification and inactivation atlarge depolarizing potentials. The results are consistent with theconcept that A3-subtype adenosine agonists and swellingactivate a common population of Cl channels.

  相似文献   

13.
We investigated theeffects of epidermal growth factor (EGF) on activeNa+ absorption by alveolarepithelium. Rat alveolar epithelial cells (AEC) were isolated andcultivated in serum-free medium on tissue culture-treated polycarbonatefilters. mRNA for rat epithelial Na+ channel (rENaC) -, -,and -subunits and Na+ pump1- and1-subunits were detected inday 4 monolayers by Northern analysisand were unchanged in abundance in day5 monolayers in the absence of EGF. Monolayerscultivated in the presence of EGF (20 ng/ml) for 24 h fromday 4 to day5 showed an increase in both1 and1Na+ pump subunit mRNA but noincrease in rENaC subunit mRNA. EGF-treated monolayers showed parallelincreases in Na+ pump1- and1-subunit protein by immunoblotrelative to untreated monolayers. Fixed AEC monolayers demonstratedpredominantly membrane-associated immunofluorescent labeling withanti-Na+ pump1- and1-subunit antibodies, withincreased intensity of cell labeling for both subunits seen at 24 hfollowing exposure to EGF. These changes inNa+ pump mRNA and protein precededa delayed (>12 h) increase in short-current circuit (measure ofactive transepithelial Na+transport) across monolayers treated with EGF compared with untreated monolayers. We conclude that EGF increases activeNa+ resorption across AECmonolayers primarily via direct effects onNa+ pump subunit mRNA expressionand protein synthesis, leading to increased numbers of functionalNa+ pumps in the basolateralmembranes.

  相似文献   

14.
The effects of serotonin[5-hydroxytryptamine (5-HT)] on the transepithelial electricalproperties of the short-circuited rabbit conjunctiva were examined.With this epithelium, the short-circuit current(Isc) measures Cl secretion plusan amiloride-resistant Na+ absorptive process. Apicaladdition of 5-HT (10 µM) elicited a prompt Iscreduction from 14.2 ± 1.2 to 10.9 ± 1.2 µA/cm2 and increased transepithelial resistance from0.89 ± 0.05 to 1.03 ± 0.06 k · cm2(means ± SE, n = 21, P < 0.05).Similar changes were obtained with conjunctivae bathed withoutNa+ in the apical bath, as well as with conjunctivaepreexposed to bumetanide with the Cl-dependentIsc sustained by the parallel activities ofbasolateral Na+/H+ andCl/HCO exchangers. In contrast, the5-HT-evoked effects were attenuated by the absence of Cl(Isc = 0.5 ± 0.2, n = 5), suggesting that reduced Clconductance(s) is an effect of 5-HT exposure. In amphotericin B-treatedconjunctiva and in the presence of a transepithelial K+gradient, 5-HT addition reduced K+ diffusion across thepreparation by 13% and increased transepithelial resistance by 4%(n = 6, P < 0.05), indicating that aninhibition in K+ conductance(s) was also detectable.Significant electrical responses also occurred under physiologicalconditions when 5-HT was introduced to epithelia pretreated withadrenergic agonists or protein kinase C, phospholipase C,phosphodiesterase, or adenylyl cyclase inhibitors or after perturbationof Ca2+ homeostasis. Briefly, the conjunctiva harbors theonly known Cl-secreting epithelium in which 5-HT evokesCl transport inhibition; receptor subtype and signaltransduction mechanism were not determined.

  相似文献   

15.
Calcium dependence of C-type natriuretic peptide-formed fast K+ channel   总被引:2,自引:0,他引:2  
The lipid bilayertechnique was used to characterize theCa2+ dependence of a fastK+ channel formed by a synthetic17-amino acid segment [OaCNP-39-(1-17)] ofa 39-amino acid C-type natriuretic peptide (OaCNP-39) found in platypus (Ornithorhynchusanatinus) venom (OaV). TheOaCNP-39-(1-17)-formed K+ channel was reversiblydependent on1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-buffered cis (cytoplasmic)Ca2+ concentration([Ca2+]cis).The channel was fully active when[Ca2+]ciswas >104 M andtrans (luminal)Ca2+ concentration was 1.0 mM, butnot at low[Ca2+]cis.The open probability of single channels increased from zero at1 × 106 McisCa2+ to 0.73 ± 0.17 (n = 22) at103 McisCa2+. Channel openings to themaximum conductance of 38 pS were rapidly and reversibly activated when[Ca2+]cis,but not transCa2+ concentration(n = 5), was increased to >5 × 104 M(n = 14). Channel openings to thesubmaximal conductance of 10.5 pS were dominant at5 × 104 MCa2+.K+ channels did not open whencisMg2+ orSr2+ concentrations were increasedfrom zero to 103 M or when[Ca2+]ciswas maintained at 106 M(n = 3 and 2). The Hill coefficientand the inhibition constant were 1 and 0.8 × 104 McisCa2+, respectively. Thisdependence of the channel on high[Ca2+]cissuggests that it may become active under1) physiological conditions whereCa2+ levels are high, e.g., duringcardiac and skeletal muscle contractions, and2) pathological conditions that leadto a Ca2+ overload, e.g., ischemicheart and muscle fatigue. The channel could modify a cascade ofphysiological functions that are dependent on theCa2+-activatedK+ channels, e.g., vasodilationand salt secretion.

  相似文献   

16.
The effect of chronic exposure to transforming growth factor-(TGF-) on bradykinin-stimulated acute prostanoid production and ionsecretion in monolayers of HCA-7 colony 29 colonic epithelial cells hasbeen studied. Monolayers synthesized prostaglandinE2 (PGE2) at a basal rate of 2.10 ± 0.31 pg · monolayer1 · min1over 24 h. Bradykinin(108-105M) dose dependently increased acutePGE2 release by three orders ofmagnitude. This was associated with a rise in cAMP from 1.60 ± 0.14 to 2.90 ± 0.1 pmol/monolayer (P < 0.02) and a dose-dependent increase in short-circuit current (SCC).When monolayers were primed by a 24-h exposure to TGF-, basalPGE2 release rose to 6.31 ± 0.38 pg · monolayer1 · min1(TGF- concn 10 ng/ml; P = 0.001).However, the stimulation of acute prostaglandin release, intracellularcAMP, and increased SCC by bradykinin was significantly reduced bypreincubation with TGF-. Priming withPGE2(108-106M) over 24 h mimicked the effect of TGF- on bradykinin-induced changes in cAMP and SCC. These data suggest that enhanced chronic release of prostaglandins in response to stimulation with TGF- maydownregulate acute responses to bradykinin. In vivo, TGF- could havean important modulatory function in regulating secretion underinflammatory conditions.  相似文献   

17.
We evaluated theeffects of acute hyperoxic exposure on alveolar epithelial cell (AEC)active ion transport and on expression ofNa+ pump(Na+-K+-ATPase)and rat epithelial Na+ channelsubunits. Rat AEC were cultivated in minimal defined serum-free medium(MDSF) on polycarbonate filters. Beginning on day5, confluent monolayers were exposedto either 95% air-5% CO2(normoxia) or 95% O2-5%CO2 (hyperoxia) for 48 h.Transepithelial resistance(Rt) andshort-circuit current(Isc) weredetermined before and after exposure.Na+ channel -, -, and-subunit andNa+-K+-ATPase1- and1-subunit mRNA levels werequantified by Northern analysis.Na+ pump1- and1-subunit protein abundance wasquantified by Western blotting. After hyperoxic exposure,Isc across AECmonolayers decreased by ~60% at 48 h relative to monolayersmaintained under normoxic conditions.Na+ channel -subunit mRNAexpression was reduced by hyperoxia, whereas - and -subunit mRNAexpression was unchanged. Na+ pump1-subunit mRNA was unchanged,whereas 1-subunit mRNA was decreased ~80% by hyperoxia in parallel with a reduction in1-subunit protein. Becausekeratinocyte growth factor (KGF) has recently been shown to upregulateAEC active ion transport and expression ofNa+-K+-ATPaseunder normoxic conditions, we assessed the ability of KGF to preventhyperoxia-induced changes in active ion transport by supplementingmedium with KGF (10 ng/ml) from day2. The presence of KGF prevented theeffects of hyperoxia on ion transport (as measured byIsc) relativeto normoxic controls. Levels of1 mRNA and protein wererelatively preserved in monolayers maintained in MDSF and KGF comparedwith those cultivated in MDSF alone. These results indicate that AECnet active ion transport is decreased after 48 h of hyperoxia, likelyas a result of a decrease in the number of functionalNa+ pumps per cell. KGF largelyprevents this decrease in active ion transport, at least in part, bypreserving Na+ pump expression.

  相似文献   

18.
We investigated the effects ofclinically relevant ethanol concentrations (5-20 mM) on thesingle-channel kinetics of bovine aortic smooth muscle maxi-K channelsreconstituted in lipid bilayers (1:1palmitoyl-oleoyl-phosphatidylethanolamine:palmitoyl-oleoyl-phosphatidylcholine). Ethanol at 10 and 20 mMdecreased the channel open probability (Po) by75 ± 20.3% mainly by increasing the mean closed time (+82 to+960%, n = 7). In some instances, ethanol alsodecreased the mean open time (40.8 ± 22.5%). ThePo-voltage relation in the presence of 20 mMethanol exhibited a rightward shift in the midpoint of voltageactivation (V1/2  17 mV), a slightlysteeper relationship (change in slope factor, k,  2.5 mV), and a decreased maximum Po (from~0.82 to ~0.47). Interestingly, channels inhibited by ethanol atlow Ca2+ concentrations (2.5 µM) were veryresistant to ethanol in the presence of increased Ca2+ ( 20 µM). Alcohol consumption in clinically relevant amounts may alterthe contribution of maxi-K channels to the regulation of arterial tone.

  相似文献   

19.
To investigate the biology of the malegenital duct epithelium, we have established cell cultures from theovine vas deferens and epididymis epithelium. These cells develop tightjunctions, high transepithelial electrical resistance, and alumen-negative transepithelial potential difference as a sign of activetransepithelial ion transport. In epididymis cultures the equivalentshort-circuit current (Isc) averaged 20.8 ± 0.7 µA/cm2 (n = 150) and was partially inhibited byapical application of amiloride with an inhibitor concentration of 0.64 µM. In vas deferens cultures, Isc averaged 14.4 ± 1.1 µA/cm2 (n = 18) and was also inhibited byapical application of amiloride with a half-maximal inhibitorconcentration (Ki) of 0.68 µM. The remainingamiloride-insensitive Isc component in epididymisand vas deferens cells was partially inhibited by apical application ofthe Cl channel blocker diphenylamine-2-carboxylicacid (1 mM). It was largely dependent on extracellularCl and, to a lesser extent, on extracellularHCO3. It was further stimulated bybasolateral application of forskolin (105 M), which increasedIsc by 3.1 ± 0.3 µA/cm2 (n=65) in epididymis and 0.9 ± 0.1 µA/cm2 (n =11) in vas deferens. These findings suggest that cultured ovine vasdeferens and epididymis cells absorb Na+ viaamiloride-sensitive epithelial Na+ channels (ENaC) andsecrete Cl and HCO3via apical cystic fibrosis transmembrane conductance regulator (CFTR)Cl channels. This interpretation is supported byRT-PCR data showing that vas deferens and epididymis cells express CFTRand ENaC mRNA.

  相似文献   

20.
The hypothesisthat amiloride-sensitive Na+channels (ENaC) are involved in cell volume regulation was tested.Anisosmotic ND-20 media (ranging from 70 to 450 mosM) were used tosuperfuse Xenopus oocytes expressing-rat ENaC (-rENaC). Whole cell currents werereversibly dependent on external osmolarity. Under conditions ofswelling (70 mosM) or shrinkage (450 mosM), current amplitude decreasedand increased, respectively. In contrast, there was no change incurrent amplitude of H2O-injectedoocytes to the above osmotic insults. Currents recorded from-rENaC-injected oocytes were not sensitive to externalCl concentration or to theK+ channel inhibitorBaCl2. They were sensitive toamiloride. The concentration of amiloride necessary to inhibit one-halfof the maximal rENaC current expressed in oocytes(Ki; apparentdissociation constant) decreased in swollen cells and increased inshrunken oocytes. The osmotic pressure-inducedNa+ currents showed propertiessimilar to those of stretch-activated channels, including inhibition byGd3+ andLa3+, and decreased selectivityfor Na+.-rENaC-expressing oocytes maintained a nearly constant cell volume in hypertonic ND-20. The present study is the firstdemonstration that -rENaC heterologously expressed inXenopus oocytes may contribute tooocyte volume regulation following shrinkage.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号