首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genus Curcuma L. is commonly used as spices, medicines, dyes and ornamentals. Owing to its economic significance and lack of clear‐cut morphological differences between species, this genus is an ideal case for developing DNA barcodes. In this study, four chloroplast DNA regions (matK, rbcL, trnH‐psbA and trnL‐F) and one nuclear region (ITS2) were generated for 44 Curcuma species and five species from closely related genera, represented by 96 samples. PCR amplification success rate, intra‐ and inter‐specific genetic distance variation and the correct identification percentage were taken into account to assess candidate barcode regions. PCR and sequence success rate were high in matK (89.7%), rbcL (100%), trnH‐psbA (100%), trnL‐F (95.7%) and ITS2 (82.6%) regions. The results further showed that four candidate chloroplast barcoding regions (matK, rbcL, trnH‐psbA and trnL‐F) yield no barcode gaps, indicating that the genus Curcuma represents a challenging group for DNA barcoding. The ITS2 region presented large interspecific variation and provided the highest correct identification rates (46.7%) based on BLASTClust method among the five regions. However, the ITS2 only provided 7.9% based on NJ tree method. An increase in discriminatory power needs the development of more variable markers.  相似文献   

2.
Abstract One application of DNA barcoding is species identification based on sequences of a short and standardized DNA region. In plants, various DNA regions, alone or in combination, have been proposed and investigated, but consensus on a universal plant barcode remains elusive. In this study, we tested the utility of four candidate barcoding regions (rbcL, matK, trnHpsbA, and internal transcribed spacer (ITS)) as DNA barcodes for discriminating species in a large and hemiparasitic genus Pedicularis (Orobanchaceae). Amplification and sequencing was successful using single primer pairs for rbcL, trnH‐psbA, and ITS, whereas two primer pairs were required for matK. Patterns of sequence divergence commonly showed a “barcoding gap”, that is, a bimodal frequency distribution of pairwise distances representing genetic diversity within and between species, respectively. Considering primer universality, ease of amplification and sequencing, and performance in discriminating species, we found the most effective single‐region barcode for Pedicularis to be ITS, and the most effective two‐region barcode to be rbcL + ITS. Both discriminated at least 78% of the 88 species and correctly identified at least 89% of the sequences in our sample, and were effective in placing unidentified samples in known species groups. Our results suggest that DNA barcoding has the potential to aid taxonomic research in Pedicularis, a species‐rich cosmopolitan clade much in need of revision, as well as ecological studies in its center of diversity, the Hengduan Mountains region of China.  相似文献   

3.
The aim of this work was to evaluate the suitability of selected DNA regions in the barcoding of plants, based on the species belonging to the genus Lamium (Lamiaceae). For this purpose, nine chloroplast barcodes, that is, accD, matK, rbcL, rpoA, rpoB, rpoC1, rpoC2, trnH‐psbA, trnL‐trnF, as well as ITS nuclear region, and intron of mitochondrial nad5 gene were tested. Among the single‐locus barcodes, most effective in the identification of Lamium species was the trnH‐psbA spacer and matK gene. The high level of variability and resolving power was also observed in the case of rpoA and rpoC2 genes. Despite the high interspecies variability of ITS region, it turned out to be inapplicable in Lamium identification. An important disadvantage of ITS as a barcode is a limitation of its use in polyploid plants, samples contaminated with fungal material or samples with partially degraded DNA. We have also evaluated five‐two‐locus and two‐three‐locus barcode regions created from a combination of most effective single loci. The best‐performing barcode combinations were matK + trnH‐psbA and matK + rpoA. Both of them had equally high discriminative power to identify Lamium species.  相似文献   

4.
Abstract Four DNA barcoding loci, chloroplast loci rbcL, matK, trnH‐psbA, and nuclear locus internal transcribed spacer (ITS), were tested for the accurate discrimination of the Chinese species of Gaultheria by using intraspecific and interspecific pairwise P‐distance, Wilcoxon signed rank test, and tree‐based analyses. This study included 186 individuals from 89 populations representing 30 species. For all individuals, single locus markers showed high levels of sequencing universality but were ineffective for species resolvability. Polymerase chain reaction amplification and sequencing were successful for all four loci. Both ITS and matK showed significantly higher levels of interspecific species delimitation than rbcL and trnH‐psbA. A combination of matK and ITS was the most efficient DNA barcode among all studied regions, however, they do not represent an appropriate candidate barcode for Chinese Gaultheria, by which only 11 out of 30 species can be separated. Loci rbcL, matK, and trnH‐psbA, which were recently proposed as universal plant barcodes, have a very poor capacity for species separation for Chinese Gaultheria. DNA barcodes may be reliable tools to identify the evolutionary units of this group, so further studies are needed to develop more efficient DNA barcodes for Gaultheria and other genera with complicated evolutionary histories.  相似文献   

5.
DNA barcoding aims to develop an efficient tool for species identification based on short and standardized DNA sequences. In this study, the DNA barcode paradigm was tested among the genera of the tribe Sisyrinchieae (Iridoideae). Sisyrinchium, with more than 77% of the species richness in the tribe, is a taxonomically complex genus. A total of 185 samples belonging to 98 species of Sisyrinchium, Olsynium, Orthrosanthus and Solenomelus were tested using matK, trnHpsbA and internal transcribed spacer (ITS). Candidate DNA barcodes were analysed either as single markers or in combination. Detection of a barcoding gap, similarity‐based methods and tree‐based analyses were used to assess the discrimination efficiency of DNA barcodes. The levels of species identification obtained from plastid barcodes were low and ranged from 17.35% to 20.41% for matK and 5.11% to 7.14% for trnH‐psbA. The ITS provided better results with 30.61–38.78% of species identified. The analyses of the combined data sets did not result in a significant improvement in the discrimination rate. Among the tree‐based methods, the best taxonomic resolution was obtained with Bayesian inference, particularly when the three data sets were combined. The study illustrates the difficulties for DNA barcoding to identify species in evolutionary complex lineages. Plastid markers are not recommended for barcoding Sisyrinchium due to the low discrimination power observed. ITS gave better results and may be used as a starting point for species identification.  相似文献   

6.
Although DNA barcoding has been widely used to identify plant species composition in temperate and tropical ecosystems, relatively few studies have used DNA barcodes to document both herbaceous and woody components of forest plot. A total of 201 species (72 woody species and 129 herbaceous species) representing 135 genera distributed across 64 families of seed plants were collected in a 25 ha CForBio subalpine forest dynamics plot. In total, 491 specimens were screened for three DNA regions of the chloroplast genome (rbcL, matK, and trnHpsbA) as well as the internal transcribed spacers (ITS) of nuclear ribosomal DNA. We quantified species resolution for each barcode separately or in combination using a ML tree‐based method. Amplification and sequencing success were highest for rbcL, followed by trnH‐psbA, which performed better than ITS and matK. The rbcL + ITS barcode had slightly higher species resolution rates (88.60%) compared with rbcL + matK (86.60%) and rbcL + trnH‐psbA (86.01%). The addition of trnH‐psbA or ITS to the rbcL + matK barcode only marginally increased species resolution rates, although in combination the four barcodes had the highest discriminatory power (90.21%). The situations where DNA barcodes did not discriminate among species were typically associated with higher numbers of co‐occurring con‐generic species. In addition, herbaceous species were much better resolved than woody species. Our study represents one of the first applications of DNA barcodes in a subalpine forest dynamics plot and contributes to our understanding of patterns of genetic divergence among woody and herbaceous plant species.  相似文献   

7.
Invasive plants have aroused attention globally for causing ecological damage and having a negative impact on the economy and human health. However, it can be extremely challenging to rapidly and accurately identify invasive plants based on morphology because they are an assemblage of many different families and many plant materials lack sufficient diagnostic characteristics during border inspections. It is therefore urgent to evaluate candidate loci and build a reliable genetic library to prevent invasive plants from entering China. In this study, five common single markers (ITS, ITS2, matK, rbcL and trnH‐psbA) were evaluated using 634 species (including 469 invasive plant species in China, 10 new records to China, 16 potentially invasive plant species around the world but not introduced into China yet and 139 plant species native to China) based on three different methods. Our results indicated that ITS2 displayed largest intra‐ and interspecific divergence (1.72% and 91.46%). Based on NJ tree method, ITS2, ITS, matK, rbcL and trnH‐psbA provided 76.84%, 76.5%, 63.21%, 52.86% and 50.68% discrimination rates, respectively. The combination of ITS + matK performed best and provided 91.03% discriminatory power, followed by ITS2 + matK (85.78%). For identifying unknown individuals, ITS + matK had 100% correct identification rate based on our database, followed by ITS/ITS2 (both 93.33%) and ITS2 + matK (91.67%). Thus, we propose ITS/ITS2 + matK as the most suitable barcode for invasive plants in China. This study also demonstrated that DNA barcoding is an efficient tool for identifying invasive species.  相似文献   

8.
In plants, matK and rbcL have been selected as core barcodes by the Consortium for the Barcode of Life (CBOL) Plant Working Group (PWG), and ITS/ITS2 and psbA‐trnH were suggested as supplementary loci. Yet, research on DNA barcoding of non‐flowering seed plants has been less extensive, and the evaluation of DNA barcodes in this division has been limited thus far. Here, we evaluated seven markers (psbA‐trnH, matK, rbcL, rpoB, rpoC1, ITS and ITS2) from non‐flowering seed plants. The usefulness of each region was assessed using four criteria: the success rate of PCR amplification, the differential intra‐ and inter‐specific divergences, the DNA barcoding gap and the ability to discriminate species. Among the seven loci tested, ITS2 produced the best results in the barcoding of non‐flowering seed plants. In addition, we compared the abilities of the five most‐recommended markers (psbA‐trnH, matK, rbcL, ITS and ITS2) to identify additional species using a large database of gymnosperms from GenBank. ITS2 remained effective for species identification in a wide range of non‐flowering seed plants: for the 1531 samples from 608 species of 80 diverse genera, ITS2 correctly authenticated 66% of them at the species level. In conclusion, the ITS2 region can serve as a useful barcode to discriminate non‐flowering seed plants, and this study will contribute valuable information for the barcoding of plant species.  相似文献   

9.
Apiaceae (Umbelliferae) is a large angiosperm family that includes many medicinally important species. The ability to identify these species and their adulterants is important, yet difficult to do so because of their subtle fruit morphological differences and often lack of diagnostic features in preserved specimens. Moreover, dried roots are often the official medical organs, making visual identification to species almost impossible. DNA barcoding has been proposed as a powerful taxonomic tool for species identification. The Consortium for the Barcode of Life (CBOL) Plant Working Group has recommended the combination of rbcL+matK as the core plant barcode. Recently, the China Plant BOL Group proposed that the nuclear ribosomal DNA internal transcribed spacer (ITS), as well as a subset of this marker (ITS2), be incorporated alongside rbcL+matK into the core barcode for seed plants, particularly angiosperms. In this study, we assess the effectiveness of these four markers plus psbA‐trnH as Apiaceae barcodes. A total of 6032 sequences representing 1957 species in 385 diverse genera were sampled, of which 211 sequences from 50 individuals (representing seven species) were newly obtained. Of these five markers, ITS and ITS2 showed superior results in intra‐ and interspecific divergence and DNA barcoding gap assessments. For the matched data set (173 samples representing 45 species in five genera), the ITS locus had the highest identification efficiency (73.3%), yet ITS2 also performed relatively well with 66.7% identification efficiency. The identification efficiency increased to 82.2% when using an ITS+psbA‐trnH marker combination (ITS2+psbA‐trnH was 80%), which was significantly higher than that of rbcL+matK (40%). For the full sample data set (3052 ITS sequences, 3732 ITS2 sequences, 1011 psbA‐trnH sequences, 567 matK sequences and 566 rbcL sequences), ITS, ITS2, psbA‐trnH, matK and rbcL had 70.0%, 64.3%, 49.5%, 38.6% and 32.1% discrimination abilities, respectively. These results confirm that ITS or its subset ITS2 be incorporated into the core barcode for Apiaceae and that the combination of ITS/ITS2+psbA‐trnH has much potential value as a powerful, standard DNA barcode for Apiaceae identification.  相似文献   

10.
Applications of DNA barcoding include identifying species, inferring ecological and evolutionary relationships between species, and DNA metabarcoding. These applications require reference libraries that are not yet available for many taxa and geographic regions. We collected, identified, and vouchered plant specimens from Mpala Research Center in Laikipia, Kenya, to develop an extensive DNA‐barcode library for a savanna ecosystem in equatorial East Africa. We amassed up to five DNA barcode markers (rbcL, matK, trnL‐F, trnHpsbA, and ITS) for 1,781 specimens representing up to 460 species (~92% of the known flora), increasing the number of plant DNA barcode records for Africa by ~9%. We evaluated the ability of these markers, singly and in combination, to delimit species by calculating intra‐ and interspecific genetic distances. We further estimated a plant community phylogeny and demonstrated its utility by testing if evolutionary relatedness could predict the tendency of members of the Mpala plant community to have or lack “barcode gaps”, defined as disparities between the maximum intra‐ and minimum interspecific genetic distances. We found barcode gaps for 72%–89% of taxa depending on the marker or markers used. With the exception of the markers rbcL and ITS, we found that evolutionary relatedness was an important predictor of barcode‐gap presence or absence for all of the markers in combination and for matK, trnL‐F, and trnH–psbA individually. This plant DNA barcode library and community phylogeny will be a valuable resource for future investigations.  相似文献   

11.
12.
DNA barcoding has been proposed to be one of the most promising tools for accurate and rapid identification of taxa. However, few publications have evaluated the efficiency of DNA barcoding for the large genera of flowering plants. Dendrobium, one of the largest genera of flowering plants, contains many species that are important in horticulture, medicine and biodiversity conservation. Besides, Dendrobium is a notoriously difficult group to identify. DNA barcoding was expected to be a supplementary means for species identification, conservation and future studies in Dendrobium. We assessed the power of 11 candidate barcodes on the basis of 1,698 accessions of 184 Dendrobium species obtained primarily from mainland Asia. Our results indicated that five single barcodes, i.e., ITS, ITS2, matK, rbcL and trnH-psbA, can be easily amplified and sequenced with the currently established primers. Four barcodes, ITS, ITS2, ITS+matK, and ITS2+matK, have distinct barcoding gaps. ITS+matK was the optimal barcode based on all evaluation methods. Furthermore, the efficiency of ITS+matK was verified in four other large genera including Ficus, Lysimachia, Paphiopedilum, and Pedicularis in this study. Therefore, we tentatively recommend the combination of ITS+matK as a core DNA barcode for large flowering plant genera.  相似文献   

13.
DNA barcoding is a well-established tool for rapid species identification and biodiversity monitoring. A reliable and traceable DNA barcode reference library with extensive coverage is necessary but unavailable for many geographical regions. The arid region in northwestern China, a vast area of about 2.5 million km2, is ecologically fragile and often overlooked in biodiversity studies. In particular, DNA barcode data from the arid region in China are lacking. We develop and evaluate the efficacy of an extensive DNA barcode library for native flowering plants in the arid region of northwestern China. Plant specimens were collected, identified and vouchered for this purpose. The database utilized four DNA barcode markers, namely rbcL, matK, ITS and ITS2, for 1816 accessions (representing 890 species from 385 genera and 72 families), and consisted of 5196 barcode sequences. Individual barcodes varied in resolution rates: species- and genus-level rates for rbcL, matK, ITS and ITS2 were 79.9%–51.1%/76.1%, 79.9%–67.2%/88.9%, 85.0%–72.0%/88.2% and 81.0%–67.4%/84.9%, respectively. The three-barcode combination of rbcL + matK + ITS (RMI) revealed a higher species- and genus-level resolution (75.5%/92.1%, respectively). A total of 110 plastomes were newly generated as super-barcodes to increase species resolution for seven species-rich genera, namely Astragalus, Caragana, Lactuca, Lappula, Lepidium, Silene and Zygophyllum. Plastomes revealed higher species resolution compared to standard DNA barcodes and their combination. We suggest future databases include super-barcodes, especially for species-rich and complex genera. The plant DNA barcode library in the current study provides a valuable resource for future biological investigations in the arid regions of China.  相似文献   

14.
Abstract Bambusoideae is an important subfamily of the grass family Poaceae that has considerable economic, ecologic and cultural value. In addition, Bambusoideae species are important constituents of the forest vegetation in China. Because of the paucity of flower‐bearing specimens and homoplasies of morphological characters, it is difficult to identify species of Bambusoideae using morphology alone, especially in the case of temperate woody bamboos (i.e. Arundinarieae). To this end, DNA barcoding has shown great potential in identifying species. The present study is the first attempt to test the feasibility of four proposed DNA barcoding markers (matK, rbcL, trnHpsbA, and internal transcribed spacer [ITS]) in identifying 27 species of the temperate woody bamboos. Three plastid markers showed high levels of universality, whereas the universality of ITS was comparatively low. A single plastid marker provided low levels of discrimination success at both the genus and species levels (<12%). Among the combinations of plastid markers, the highest discriminatory power was obtained using the combination of rbcL+matK (14.8%). Using a combination of three markers did not increase species discrimination. The nuclear region ITS alone could identify 66.7% of species, although fewer taxa were included in the ITS analyses than in the plastid analyses. When ITS was integrated with a single or combination of plastid markers, the species discriminatory power was significantly improved. We suggest that a combination of rbcL+ ITS, which exhibited the highest species identification power of all combinations in the present study, could be used as a potential DNA barcode for temperate woody bamboos.  相似文献   

15.
Species of Orchidaceae are under severe threat of extinction mainly due to overcollection and habitat destruction; accurate identification of orchid species is critical in conservation biology and sustainable utilization of orchids as plant resources. We examined 647 sequences of the cpDNA regions rbcL, matK, atpFatpH IGS, psbKpsbI IGS and trnHpsbA IGS from 89 orchid species (95 taxa) and four outgroup taxa to develop an efficient DNA barcode for Orchidaceae in Korea. The five cpDNA barcode regions were successfully amplified and sequenced for all chlorophyllous taxa, but the amplification and sequencing of the same regions in achlorophyllous taxa produced variable results. psbKpsbI IGS showed the highest mean interspecific K2P distance (0.1192), followed by matK (0.0803), atpFatpH IGS (0.0648), trnHpsbA IGS (0.0460) and rbcL (0.0248). The degree of species resolution for individual barcode regions ranged from 60.5% (rbcL) to 83.5% (trnH‐psbA IGS). The degree of species resolution was significantly enhanced in multiregion combinations of the five barcode regions. Of the 26 possible combinations of the five regions, six provided the highest degree of species resolution (98.8%). Among these, a combination of atpF‐atpH IGS, psbK‐psbI IGS and trnH‐psbA IGS, which comprises the least number of DNA regions, is the best option for barcoding of the Korean orchid species.  相似文献   

16.
秋海棠属植物种类繁多,形态变异多样,导致种类的系统放置混乱,近缘种类鉴定困难。利用DNA条形码实现物种快速准确的鉴定技术具有不受形态特征约束的优势,为秋海棠属植物的分类鉴定提供了新的方法。本研究选择4个DNA条形码候选片段(rbcL,matK,trnH psbA,ITS)对中国秋海棠属26种136个个体进行了分析。结果显示:叶绿体基因rbcL,matK和trnH psbA种内和种间变异小,对秋海棠属植物的鉴别能力有限;ITS/ITS2种内和种间变异大,在本研究中物种正确鉴定率达到100%/96%,可考虑作为秋海棠属DNA条形码鉴定的候选片段。研究结果支持中国植物条形码研究组建议将核基因ITS/ITS2纳入种子植物DNA条形码核心片段中的观点。  相似文献   

17.
Recently it was decided that portions of rbcL and matK gene regions are approved and required standard barcode regions for land plants. Ideally, DNA barcoding can provide a fast and reliable way to identify species. Compiling a library of barcodes can be enhanced by the numerous specimens available in botanic gardens, museums and herbaria and in other ex situ conservation collections. Barcoding can strengthen ongoing efforts of botanic gardens and ex situ conservation collections to preserve Earth’s biodiversity. Our study aimed to detect the usability of the universal primers of the standard DNA barcode, to produce standard barcodes for species identification and to detect the discriminatory power of the standard barcode in a set of different groups of plant and fungal taxa. We studied Betula species originating from different parts of the world, and Salix taxa, bryophytes and edible and poisonous fungal species originating from Finland. In Betula and Salix, the standard DNA barcode regions, portions of matK and rbcL, were able to identify species to genus level, but did not show adequate resolution for species discrimination. Thus, supplementary barcode regions are needed for species identification. In Salix, the trnH-psbA spacer was also used, and it proved to have more resolution but, yet, not adequate levels of interspecific divergence for all studied taxa. In a set of bryophyte species, the rbcL gene region was found to possess adequate resolution for species discrimination for most genera studied. In bryophytes, matK failed to amplify properly. In fungi, the combination of ITS1 and ITS2 proved to be effective for species discrimination, although alignment difficulties were encountered. In general, closely related or recently diverged species are the greatest challenge, and the problem is most difficult in plants, both in terms of a suitable combination of barcoding regions and the universality of used primers.  相似文献   

18.
A DNA barcoding study was conducted to determine the optimal combination of loci needed for successful species‐level molecular identification in three extant cycad genera—Ceratozamia, Dioon, and Zamia—that occur in Mexico. Based on conclusions of a previous multigene study in representative species of all genera in the Cycadales, we tested the DNA barcoding performance of seven chloroplast coding (matK, rpoB, rpoC1, and rbcL) and non‐coding (atpF/H, psbK/I, and trnH‐psbA) regions, plus sequences of the nuclear internal transcribed spacer. We analysed data under the assumptions of the “character attributes organization system” (CAOS), a character‐based approach in which species are identified through the presence of ‘DNA diagnostics’. In Ceratozamia, four chloroplast regions and one nuclear region were needed to achieve > 70% unique species identification. In contrast, the two‐gene combination atpF/H + psbK/I and the four‐gene combination atpF/H + psbK/I + rpoC1 + ITS2 were needed to reach 79% and 75% unique species identification in Dioon and Zamia, respectively. The combinations atpF/H + psbK/I and atpF/H + psbK/I + rpoC1 + ITS2 include loci previously considered by the international DNA barcoding community. However, none of the three combinations of potential DNA barcoding loci found to be optimal with a character‐based approach in the Mexican cycads coincides with the ‘core barcode’ of chloroplast markers (matK + rbcL) recently proposed for universal use in the plant kingdom.  相似文献   

19.

Background

The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL + matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over.

Methodology/Principal Findings

Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level.

Conclusions

The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.  相似文献   

20.
Many species of Schisandraceae are used in traditional Chinese medicine and are faced with contamination and substitution risks due to inaccurate identification. Here, we investigated the discriminatory power of four commonly used DNA barcoding loci (ITS, trnH-psbA, matK, and rbcL) and corresponding multi-locus combinations for 135 individuals from 33 species of Schisandraceae, using distance-, tree-, similarity-, and character-based methods, at both the family level and the genus level. Our results showed that the two spacer regions (ITS and trnH-psbA) possess higher species-resolving power than the two coding regions (matK and rbcL). The degree of species resolution increased with most of the multi-locus combinations. Furthermore, our results implied that the best DNA barcode for the species discrimination at the family level might not always be the most suitable one at the genus level. Here we propose the combination of ITS+trnH-psbA+matK+rbcL as the most ideal DNA barcode for discriminating the medicinal plants of Schisandra and Kadsura, and the combination of ITS+trnH-psbA as the most suitable barcode for Illicium species. In addition, the closely related species Schisandra rubriflora Rehder & E. H. Wilson and Schisandra grandiflora Hook.f. & Thomson, were paraphyletic with each other on phylogenetic trees, suggesting that they should not be distinct species. Furthermore, the samples of these two species from the southern Hengduan Mountains region formed a distinct cluster that was separated from the samples of other regions, implying the presence of cryptic diversity. The feasibility of DNA barcodes for identification of geographical authenticity was also verified here. The database and paradigm that we provide in this study could be used as reference for the authentication of traditional Chinese medicinal plants utilizing DNA barcoding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号