首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substantial synthesis of γ-aminobutyric acid occurs in rat renal cortex. Renal glutamate decarboxylase activity (24.3±2.9 (S.E.) nmols/mg protein per h) is 15% of that in brain; renal γ-aminobutyric acid content (39.5±5.3 (S.E.) nmols/g wet wt.) is 5% of the whole brain concentration. Properties of glutamate decarboxylase were studied in homogenates of rat renal cortex and rat brain under conditions for which γ-aminobutyric acid formation from [2,3-3H]glutamate and CO2 release from [1-14C]glutamate were equal. Several properties of renal glutamate decarboxylase distinguish it from the corresponding brain enzyme: (1) renal glutamate decarboxylase is selectively inhibited by cysteine sulfinic acid (Ki = 5·10?5 M) ; (20 renal glutamate decarboxylase is less sensitive (Ki = 3–5·10?5 M)_to inhibition by aminooxyacetic acid than is the brain enzyme (Ki = 1·10?6 M); (3) brain but not renal glutamate decarboxylase activity can be substantially stimulated in vitro by the addition of exogenous pyridoxal 5′-phosphate; (4) renal glutamate decarboxylase is significantly decreased in renal cortex from rats on a low-salt diet. Proximal tubules are enriched in glutamate decarboxylase compared to the activity in whole renal cortex or glomeruli (42, 22 and 14 nmols/mg protein per h, respectively). We speculate that renal γ-aminobutyric acid synthesis does not reflect the presence of GABAergic renal nerves, but may serve a function in proximal tubular cells.  相似文献   

2.
Previous studies from this laboratory have identified in bovine pineal gland a glutamate receptor site with a dissociation equilibrium constant (KD) value of 0.534 μM and a receptor density (Bmax) value of 4.84 pmol/mg protein. This pH- and temperature-dependent binding site showed stereospecificity, was activated by Ca2+ and displayed affinity for both glutamate receptor agonists and antagonists. The role of this glutamate receptor site was investigated by studying the effects of select glutamate receptor agonists and antagonists and of γ-aminobutyric acid on the basal- and on the norepinephrine-stimulated activity of arylalkylamine N-acetyltransferase in rat pineal glands that were incubated in Dulbecco's Modified Eagle Medium at 37°C for 20 min in an atmosphere of 5% CO2/95% O2. l-Glutamate, l-aspartate and glutamate receptor agonists such as γ-amino-3-hydroxy-5-methylisoxazole-4-propinonic acid and quisqualate were all also potent inhibitors of norepinephrine-induced stimulation of N-acetyltransferase. On the other hand, the known glutamate receptor antagonists such as d-glutamylaminomethylsulphonic acid and γ-d-glutamyltaurine stimulated the basal activity of N-acetyltransferase.Evidence of a high concentration of glutamic acid, the presence of glutamate receptors and the inhibition by glutamate receptor agonists of pineal N-acetyltransferase compel one to speculate that, in addition to its well-known metabolic roles, glutamate may modulate in an unknown fashion the activity of melatonin synthesizing enzyme, and the functions of mammalian pineal glands.  相似文献   

3.
—The effects of several anaesthetic and hypnotic compounds with well-defined excitatory side-effects on glutamate decarboxylase and γ-aminobutyric acid transaminase activity have been examined. The dissociative anaesthetics ketamine and γ-hydroxybutyric acid produced competitive inhibition of glutamate decarboxylase with respect to glutamate at concentrations which had no effect on GABA transaminase activity. The inhibitor constant (Ki) values were, ketamine: 13.3 mm , γ-hydroxybutyric acid; 8.8 mm . The steroid anaesthetic alphaxalone was also a potent competitive inhibitor of glutamate decarboxylase Ki= 4.1 mm ). Pentobarbitone, thiopentone and methohexitone non-competitively inhibited both glutamate decarboxylase and GABA-transaminase but only at high concentration (> 20 mm ). None of the drugs tested produced any significant change in brain GABA or glutamate levels following the injection of an hypnotic or anaesthetic dose. It is proposed that an alteration in the rate of GABA synthesis as a result of the inhibition of glutamate decarboxylase could explain the convulsive properties of the dissociative anaesthetics when given at high doses.  相似文献   

4.
To prepare membrane vesicles, nerve terminal preparations (synaptosomes) isolated from rat cerebral cortex were first subjected to hypotonic lysis. After collecting the membranes contained in this fraction by centrifugation, membrane vesicles were then reconstituted during incubation in a potassium salt solution at 37 °C. The transport of glutamate, aspartate, or γ-aminobutyric acid (GABA) was measured by transferring vesicles to 10 vol of 0.1 m NaCl solution containing the radioactive substrate. Transport was temperature dependent and exhibited saturation kinetics with an apparent Km of 2.5 μm. The rates and extent of l-glutamate and l-aspartate uptake were equivalent and were greater than those for GABA. Valinomycin increased the rate of uptake of each of these substances suggesting a role for an electrogenic component in transport. Consonant with this notion, external K+ and Rb+ decreased uptake of all three compounds. External thiocyanate also increases the rate of glutamate, aspartate, and GABA transport. Uptake of these neuroactive amino acids was absolutely dependent on external Na+; no other monovalent cation tested substitutes for it. Gramicidin D and nigericin inhibit glutamate transport by abolishing both the Na+ and K+ gradients. Monensin inhibits uptake by selectively dissipating the Na+ gradient. For both glutamate and GABA transport, the Na+ and K+ gradients are synergistic and not additive.  相似文献   

5.
Hydrophobic protein (H protein) was isolated from membrane fractions of Bacillus subtilis and constituted into artificial membrane vesicles with lipid of B. substilis. Glutamate was accumulated into the vesicle when a Na+ gradient across the membrane was imposed. The maximum effect of Na+ on the transport was achieved at a concentration of about 40 mM, while the apparent Km for Na+ was approximately 8 mM. On the other hand, Km for glutamate in the presence of 50 mM Na+ was about 8 μM. Increasing the concentration of Na+ resulted in a decrease in Km for glutamate, maximum velocity was not affected. The transport was sensitive to monensin (Na+ ionophore).Glutamate was also accumulated when pH gradient (interior alkaline) across the membrane was imposed or a membrane potential was induced with K+-diffusion potential. The pH gradient-driven glutamate transport was sensitive to carbonylcyanide m-chlorophenylhydrazone and the apparent Km for glutamate was approximately 25 μM.These results indicate that two kinds of glutamate transport system were present in H protein: one is Na+ dependent and the other is H+ dependent.  相似文献   

6.
Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3–10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution.  相似文献   

7.
Abstract— The experiments reported here confirm that glutamate can penetrate the inner membrane of isolated rat brain non-synaptosomal mitochondria, either on a glutamate-hydroxyl antiporter or on a glutamate-aspartate antiporter. An inhibition of respiratory activity of mitochondria with glutamate as substrate was obtained in the presence of avenaciolide or N-ethylmaleimide. Swelling of the mitochondria in iso-osmotic NH4+-l -glutamate was inhibited in the presence of avenaciolide and N-ethylmaleimide, but mersalyl, kainic acid, glisoxepide and amino-oxyacetic acid had no effect on the glutamate-hydroxyl exchange. Glutamate induced the reduction of intramitochondrial NAD(P), as estimated by double-beam spectrophotometry, and this reduction was inhibited on the one hand by N-ethylmaleimide, avenaciolide or fuscine, on the other hand by aminooxyacetic acid. A direct estimation of the penetration of l -[14C]glutamate into brain mitochondria was performed by using the centrifugation-stop procedure. This penetration followed saturation kinetics, with a mean apparent Km of 1.56 MM at pH 7.4 and at 20°C, the value of Knax was 4.34 nmol per min per mg protein in the same conditions. IV-Ethylmaleimide slowed down the initial rate of glutamate penetration, and this inhibition appeared to be non-competitive with a Ki of 0.7 Mm -at pH 7.4 and at 20°C. The entry of glutamate was pH-dependent and it increased 2-fold in the pH range of 7.4 to 6.4. A temperature-dependence of glutamate transport was also shown between 2 and 25°C; the Arrhenius plot was a straight line, with a calculated EA of 12.8 kCal per mol of glutamate and a Q10 of 2.16. The activity of γ-glutamyl transpeptidase was practically absent in these rat brain mitochondria. Oxidation of extramitochondrial NADH by the‘malate-aspartate shuttle’reconstituted in vitro was followed in rat brain non-synaptosomal mitochondria. In the absence of extramitochondrial malate or glutamate the ‘shuttle’ did not function, and in the absence of extramitochondrial aspartate the rate of NADH oxidation was low. Glutamine or γ-aminobutyrate did not replace glutamate efficiently. A high inhibition of the‘malate-aspartate shuttle’occurred in the presence of avenaciolide or mersalyl, and a moderate one in the presence of n-ethylmaleimide, glisoxepide or n-butylmalonate. Glutaminase activity in intact brain mitochondria was inhibited in the presence of extramitochondrial glutamate.  相似文献   

8.
The influence of a Donnan effect on the transport of glycine by hemolysed and restored pigeon red cells was examined. The Donnan effect was produced by replacing Cl? with 2,4-toluenedisulfonate or glutamate. The effects of the associated membrane potential and inside-outside pH difference on glycine entry and exit rates were examined. The effects of pH on entry and exit rates in the absence of a Donnan effect were also examined.In the absence of a Donnan effect, Na+-dependent glycine entry requires the protonated form of a group with a pKapp of 7.9 and the depronated form of another group with a pKapp of 6.8. Neither of these are required for exit but the deprotonated form of a group(s) with a pKapp of 6.2 is required. The pK 7.9 group and pK 6.2 group probably react with H+ at the inner face of the membrane and the pK 6.8 group probably reacts at the outer face.The V for glycine entry was determined for cells with their Cl? largely replaced by toluenedisulfonate and without such replacement. Between pH 6.1 and 7, the ratio of the respective V values, VT/VCl, was 1.5–1.7. VT/VCl rose above pH 7 to near 4 at pH 8.3. At pH 6.9, with glutamate replacing cell Cl?, the analogous ratio (VGlu/VCl) was 1.7. The increase of VT/VCl above pH 7 could be quantitatively accounted for by the increase in cell [H+]/medium [H+] caused by the Donnan effect together with the assumption that the pK 7.9 group reacts with H+ at the inner face of the membrane.When cell Cl? was replaced by toluenedisulfonate or glutamate there was a drop in the term in the glycine Km describing Na+ dependence of glycine entry. When cell Cl? was replaced by toluenedisulfonate there was a rise in the Na+-independent term in the glycine entry Km. By replacing varying amounts of cell Cl? with either toluenedisulfonate or glutamate, plots were obtained of entry rates vs. the cell [Cl?]/medium [Cl?] ratio consistent with the assumption that the Donnan-induced membrane potential acts on a “moving” charge. Glycine exit was only slightly accelerated by trans-toluenedisulfonate. The ratio, exit rate into toluenedisulfonate medium/exit rate into Cl? medium rose with decreasing pH. This rise could be accounted for by a Donnan-induced inside-outside pH difference which affects a pKapp 6.2 group reacting with internal H+.The observed influences of the Donnan effect on V(glycine entry), on both components of Km(glycine entry), on the shape of the plot of glycine entry rate vs. the cell [Cl?]/medium [Cl?] ratio and on glycine exit all fit the assumptions that when the empty porter reorients, one unit of negative charge accompanies it “across” the membrane and that no other steps involve charge movement.The properties of the system seem inconsistent with a translational (“ferry boar”) mobile carrier.  相似文献   

9.
The uptake of glutamate in nerve synapses is carried out by the excitatory amino acid transporters (EAATs), involving the cotransport of a proton and three Na+ ions and the countertransport of a K+ ion. In this study, we use an EAAT3 homology model to calculate the pKa of several titratable residues around the glutamate binding site to locate the proton carrier site involved in the translocation of the substrate. After identifying E374 as the main candidate for carrying the proton, we calculate the protonation state of this residue in different conformations of EAAT3 and with different ligands bound. We find that E374 is protonated in the fully bound state, but removing the Na2 ion and the substrate reduces the pKa of this residue and favors the release of the proton to solution. Removing the remaining Na+ ions again favors the protonation of E374 in both the outward- and inward-facing states, hence the proton is not released in the empty transporter. By calculating the pKa of E374 with a K+ ion bound in three possible sites, we show that binding of the K+ ion is necessary for the release of the proton in the inward-facing state. This suggests a mechanism in which a K+ ion replaces one of the ligands bound to the transporter, which may explain the faster transport rates of the EAATs compared to its archaeal homologs.  相似文献   

10.
The uptake of glutamate in nerve synapses is carried out by the excitatory amino acid transporters (EAATs), involving the cotransport of a proton and three Na+ ions and the countertransport of a K+ ion. In this study, we use an EAAT3 homology model to calculate the pKa of several titratable residues around the glutamate binding site to locate the proton carrier site involved in the translocation of the substrate. After identifying E374 as the main candidate for carrying the proton, we calculate the protonation state of this residue in different conformations of EAAT3 and with different ligands bound. We find that E374 is protonated in the fully bound state, but removing the Na2 ion and the substrate reduces the pKa of this residue and favors the release of the proton to solution. Removing the remaining Na+ ions again favors the protonation of E374 in both the outward- and inward-facing states, hence the proton is not released in the empty transporter. By calculating the pKa of E374 with a K+ ion bound in three possible sites, we show that binding of the K+ ion is necessary for the release of the proton in the inward-facing state. This suggests a mechanism in which a K+ ion replaces one of the ligands bound to the transporter, which may explain the faster transport rates of the EAATs compared to its archaeal homologs.  相似文献   

11.

Objective

To study the effect of Ca2+ on glutamate dehydrogenase (GDH) and its role in poly-γ-glutamic acid (γ-PGA) synthesis in Bacillus natto HSF 1410.

Results

When the concentration of Ca2+ varied from 0 to 0.1 g/l in the growth medium of B. natto HSF 1410, γ-PGA production increased from 6.8 to 9.7 g/l, while GDH specific activity and NH4Cl consumption improved from 183 to 295 U/mg and from 0.65 to 0.77 g/l, respectively. GDH with α-ketoglutarate as substrate primarily used NADPH as coenzyme with a K m of 0.08 mM. GDH was responsible for the synthesis of endogenous glutamate. The specific activity of GDH remained essentially unchanged in the presence of CaCl2 (0.05–0.2 g/l) in vitro. However, the specific activity of GDH and its expression was significantly increased by CaCl2 in vivo. Therefore, the regulation of GDH and PGA synthesis by Ca2+ is an intracellular process.

Conclusion

Calcium regulation may be an effective approach for producing γ-PGA on an industrial scale.
  相似文献   

12.
Preparations having properties resembling those of synaptosomes have been isolated from whole fly homogenates ofDrosophila melanogaster using ficoll gradient floatation technique. These have been characterized by marker enzymes and electron microscopy and binding of muscarinic antagenist3H Quinuclidinyl benzilate. An uptake system for neurotransmitter, ã-Aminobutyric acid has been demonstrated in these preparations. A high affinity uptake system for L-glutamate has also been studied in these subcellular fractions. This uptake of glutamate is transport into an osmotically sensitive compartment and not due to binding of glutamate to membrane components. The transport of glutamate has an obligatory requirements for either sodium or potassium ions. Kinetic experiments show that two transport systems, withK m values 0.33 X 10-6M and 2.0 X 10-6M, respectively, function in the accumulation of glutamate. ATP stimulates lower affinity transport of glutamate. Inhibition of glutamate uptake by L-aspartate but not by phenylalanine and tyrosine indicates that a common carrier mediates the transport of both glutamate and aspartate. β-N-oxalyl-L-β β-diamino propionic acid and kainic acid, both inhibitors of glutamate transport in mammalian brain preparations, strongly inhibited transport of glutamate inDrosophila preparations Comparison with uptake of ã-aminobutyric acid and glutamate in isolated larval brain is presented to show that the synaptosome-like preparations we have isolated are rich in central nervous system derived structures, and presynaptic endings from neuromuscular junctions.  相似文献   

13.
Exacerbated activation of glutamate receptor-coupled calcium channels and subsequent increase in intracellular calcium ([Ca2+]i) are established hallmarks of neuronal cell death in acute and chronic neurological diseases. Here we show that pathological [Ca2+]i deregulation occurring after glutamate receptor stimulation is effectively modulated by small conductance calcium-activated potassium (KCa2) channels. We found that neuronal excitotoxicity was associated with a rapid downregulation of KCa2.2 channels within 3 h after the onset of glutamate exposure. Activation of KCa2 channels preserved KCa2 expression and significantly reduced pathological increases in [Ca2+]i providing robust neuroprotection in vitro and in vivo. These data suggest a critical role for KCa2 channels in excitotoxic neuronal cell death and propose their activation as potential therapeutic strategy for the treatment of acute and chronic neurodegenerative disorders.  相似文献   

14.
l-Glutamate has an excitatory and cytotoxic effect on the central nervous system. It was shown previously that norepinephrine and dopamine uptake and release were affected by in vivo administration of glutamate to adult rats. The kinetic parameters, Km and Vmax of [14C]DA uptake and release were measured on synaptosomal and slices from caudate nucleus under in vitro conditions at different glutamate concentrations. Results showed an important increase in [14C]DA uptake on synaptosomal (> 100%) and slices by lower glutamate concentrations, the affinity for transport system was increased (100%) and its release of high potassium evoked was also increased at 0.5 μM of glutamate. The results suggest the possibility that glutamate may modify DA uptake and release interacting with the DA transporter complex at the synaptic level.  相似文献   

15.
Abstract: In rat hippocampal synaptosomes, adenosine decreased the K+ (15 mM) or the kainate (1 mM) evoked release of glutamate and aspartate. An even more pronounced effect was observed in the presence of the stable adenosine analogue, R-phenylisopropyladenosine. All these effects were reversed by the selective adenosine A1 receptor antagonist 8-cyclo-pentyltheophylline. In the same synaptosomal preparation, K+ (30 mM) strongly stimulated the release of the preloaded [3H]adenosine in a partially Ca2+-dependent and tetrodotoxin (TTX)-sensitive manner. Moreover, in the same experimental conditions, both l -glutamate and l -aspartate enhanced the release of [3H]adenosine derivatives ([3H]ADD). The gluta-mate-evoked release was dose dependent and appeared to be Ca2+ independent and tetrodotoxin insensitive. This effect was not due to metabolism because even the nonmetabolizable isomers d -glutamate and d -aspartate were able to stimulate [3H]ADD release. In contrast, the specific glutamate agonists N-methyl-d -aspartate, kainate, and quisqualate failed to stimulate [3H]ADD release, suggesting that glutamate and aspartate effects were not mediated by known excitatory amino acid receptors. Moreover, NMDA was also ineffective in the absence of Mg2+ and l -glutamate-evoked release was not inhibited by adding the specific antagonists 2-amino-5-phosphonovaleric acid or 6–7-dinitroquinoxaline-2, 3-dione. The stimulatory effect did not appear specific for only excitatory amino acids, as γ-anunobutyric acid stimulated [3H]ADD release in a dose-related manner. These results suggest that, at least in synaptosomal preparations from rat hippocampus, adenosine and glutamate modulate each other's release. The exact mechanism of such interplay, although still, unknown, could help in the understanding of excitatory amino acid neurotoxicity.  相似文献   

16.
Abstract: The Na+-glutamate cotransporters are believed to countertransport OH? and K+. Previous evidence that the velocity of glutamate uptake can exceed the acid extrusion capacity of astrocytes raised the question of whether intracellular pH can become rate limiting for glutamate uptake. Cytoplasmic buffering capacity and acid extrusion in astrocytes are partially HCO3? dependent. Also, it was reported recently that raising extracellular [K+] alkalinizes astrocyte cytoplasm by an HCO3?-dependent mechanism. Here, we have compared glutamate uptake in HCO3?-buffered and HCO3?-depleted solutions at varying [K+]. We observed a pronounced stimulation of glutamate uptake by extracellular K+ (3–24 mM) that was substantially HCO3? dependent and affected preferentially the uptake of high concentrations (>25 µM) of glutamate. Stimulation of uptake by low extracellular [K+] (1.5–3 mM) was less dependent on HCO3?. Potassium-induced stimulation of uptake was weaker in rat astrocyte cultures than in mouse. The effects of Ba2+ and amiloride on glutamate uptake, as well as the HCO3?-dependent stimulatory effects of K+ and the species difference, all related consistently to effects on intracellular pH. The effects on uptake, however, were much larger than predicted by the associated changes in electrochemical gradient of OH?. A “bimodal” scheme for glutamate transport can account qualitatively for the observed correlation between intracellular pH and velocity of glutamate uptake.  相似文献   

17.
The mitochondrial glutamate-aspartate exchange carrier catalyzes the electrogenic exchange of intramitochondrial aspartate for extramitochondrial glutamate. Protons are cotransported with glutamate in a 1:1 ratio. In the present study, the effects of pH and glutamate concentration on glutamate entry into intact mitochondria were determined. Hydrogen ions were found to decrease the Km for glutamate entry. In addition, using glutamate-loaded submitochondrial particles, aspartate transport into the particles was measured as a function of internal and external glutamate concentrations, pH, and electrical potential across the membrane. Glutamate, was a competitive inhibitor of aspartate transport when both amino acids were present on the same side of the membrane, while H+ was a noncompetitive inhibitor of aspartate entry into the particles. A decrease in glutamate concentration on the inside of the particles brought about a parallel decrease in V and Km for aspartate outside of the particles, thus suggesting a ping-pong mechanism for the carrier. The uncoupling agent, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP), lowered both the Km and V of aspartate transport, while the effect on V was somewhat larger. Data obtained in the presence of KSCN was similar to that obtained with FCCP, and therefore it is concluded that both Km and V changes are dependent on a change of electrical potential across the membrane. A model for the carrier is proposed, which is consistent with the data presented. The model includes a single binding site specific for either glutamate or aspartate, and a separate binding site for the cotransported proton. The affinity of the binding site for protons is increased by simultaneous glutamate binding, but decreased by aspartate binding. The data suggest that an increase in the membrane potential increases the mobility of the charged carrier-aspartate complex, but also facilitates some additional step in the exchange cycle involving subsequent return of the carrier to the matrix side of the membrane. The additional membrane-potential-dependent step could be proton binding on the cytosolic side of the carrier.  相似文献   

18.
To study the effect of agents interfering with the biosynthesis and/or the K+-evoked Ca2+-dependent release of neurotransmitter glutamate, rat cerebral slices were preincubated with Krebs-Ringer-HEPES-glucose-glutamine buffer (KRH buffer), loaded withd-[3H]aspartate and superfused with the preincubation medium in the presence or in the absence of Ca2+. The difference in radioactivity release divided by the basal release per min under the two conditions represented the K+-evoked Ca2+-dependent release. The agents used were: 1) Aminooxyacetic acid (AOAA), the inhibitor of transaminases, 2) Leucine (Leu), the inhibitor of phosphate activated glutaminase (PAG), 3) NH4 +, the inhibitor of PAG, 4) Phenylsuccinic acid (Phs), the inhibitor of the mitochondrial ketodicarboxylate carrier, 5) ketone bodies, the inhibitors of glycolysis, 6) the absence of glutamine, the substrate of PAG. The results show that Leu, NH4 +, Phs and the absence of Gln significantly increase the K+-evoked Ca2+-dependent release of radioactivity by 64%, 200%, 95% and 147% respectively, indicating that these agents are inhibitors of the K+-evoked Ca2+-dependent release of glutamate. Ketone bodies and AOAA had no effect. These results indicate that the major if not the exclusive biosynthetic pathway of neurotransmitter glutamate in rat cerebral cortex is through the PAG reaction and support a model for the pathway followed by neurotransmitter glutamate i.e. glutamate formed outside the inner mitochondrial membrane has to enter the mitochondrial matrix or is formed within it from where it can be extruded to supply the transmitter pool in exchange of GABA.  相似文献   

19.
(1) The in vitro metabolism of [U-14C]glucose and [U-14C]glutamate was compared in snail, octopus and locust ganglia, and in rat cerebral cortex. (2) The metabolic patterns are quantitatively similar. The major labelled metabolites formed from glucose or glutamate by rat cortex and the invertebrate systems were CO2, aspartate, glutamate, glutamine and alanine. γ-Aminobutyric acid (GABA) was formed in substantial amounts only by locust and rat. (3) A much larger proportion of labelled glucose and glutamate was converted to alanine by the invertebrates compared with rat cortex, although 14CO2 production was lower. (4) The effect of glucose in reducing aspartate formation and stimulating glutamine formation from [U-14C]glutamate in mammalian cortex was observed in the locust but not in the molluscs. (5) Labelled citric acid cycle intermediates were formed in substantial quantities from glucose and glutamate only by snail and locust.  相似文献   

20.
We have cloned, purified and characterized the γ-carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Antarctic bacterium Colwellia psychrerythraea, which is an obligate psychrophile. The enzyme shows a significant catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with the following kinetic parameters: kcat of 6.0 × 105 s−1 and a kcat/Km of 4.7 × 106 M−1 × s−1. This activity was inhibited by the sulfonamide CA inhibitor (CAI) acetazolamide, with a KI of 502 nM. A range of anions was also investigated for their inhibitory action against the new enzyme CpsCA. Perchlorate, tetrafluoroborate, fluoride and bromide were not inhibitory, whereas cyanate, thiocyanate, cyanide, hydrogensulfide, carbonate and bicarbonate showed KIs in the range of 1.4–4.4 mM. Diethyldithiocarbamate was a better inhibitor (KI of 0.58 mM) whereas sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid were the most effective inhibitors detected, with KIs ranging between 8 and 38 μM. The present study may shed some more light regarding the role that γ-CAs play in the life cycle of psychrophilic bacteria as the Antarctic one investigated here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号