首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The signaling enzyme phospholipase D1 (PLD1) facilitates membrane vesicle trafficking. Here, we explore how PLD1 subcellular localization is regulated via Phox homology (PX) and pleckstrin homology (PH) domains and a PI4,5P2-binding site critical for its activation. PLD1 localized to perinuclear endosomes and Golgi in COS-7 cells, but on cellular stimulation, translocated to the plasma membrane in an activity-facilitated manner and then returned to the endosomes. The PI4,5P2-interacting site sufficed to mediate outward translocation and association with the plasma membrane. However, in the absence of PX and PH domains, PLD1 was unable to return efficiently to the endosomes. The PX and PH domains appear to facilitate internalization at different steps. The PH domain drives PLD1 entry into lipid rafts, which we show to be a step critical for internalization. In contrast, the PX domain appears to mediate binding to PI5P, a lipid newly recognized to accumulate in endocytosing vesicles. Finally, we show that the PH domain-dependent translocation step, but not the PX domain, is required for PLD1 to function in regulated exocytosis in PC12 cells. We propose that PLD1 localization and function involves regulated and continual cycling through a succession of subcellular sites, mediated by successive combinations of membrane association interactions.  相似文献   

2.
Cell survival depends on proper propagation of protective signals through intracellular signaling intermediates. We report here that calponin homology domain-containing integrin-linked kinase (ILK)-binding protein (CH-ILKBP), a widely expressed adaptor protein localized at plasma membrane-actin junctions, is essential for transmission of survival signals. Cells that are depleted of CH-ILKBP undergo extensive apoptosis despite the presence of cell-extracellular matrix contacts and soluble growth factors. The activating phosphorylation of protein kinase B (PKB/Akt), a key regulator of apoptosis, is impaired in the absence of CH-ILKBP. Importantly, loss of CH-ILKBP prevents the membrane translocation of PKB/Akt. Furthermore, forced membrane targeting of PKB/Akt bypasses the requirement of CH-ILKBP for the activating phosphorylation of PKB/Akt, suggesting that CH-ILKBP is required for the membrane translocation but not the subsequent phosphorylation of PKB/Akt. Finally, we show that loss of CH-ILKBP is also required for the full activation of extracellular signal-regulated kinase (ERK)1/2. However, restoration of the PKB/Akt activation is sufficient for protection of cells from apoptosis induced by the depletion of CH-ILKBP despite the persistent suppression of the ERK1/2 activation. Thus, CH-ILKBP is an important component of the prosurvival signaling pathway functioning primarily by facilitating the membrane translocation of PKB/Akt and consequently the activation of PKB/Akt in response to extracellular survival signals.  相似文献   

3.
4.
We measured the effects of two branched-chain analogs of distearoyl-phosphatidylcholine, containing either a methyl or an n-butyl group at the 8 position, on the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine. The former compound raised the bilayer to hexagonal phase transition temperature while the latter compound lowered it. The opposite effects of these amphiphiles on protein kinase C activity (inhibition and activation, respectively) correlated with their effects on lipid polymorphism. Because of the similarity of the structures of these two compounds, it seems likely that their opposite effects on the activity of protein kinase C is a result of their alteration of the lipid environment of the membrane rather than to binding to a specific site on the protein.We also compared the effects of hexachlorophene on lipid polymorphism and protein kinase C activity at high and at low calcium concentrations. We also found that the effect of hexachlorophene forming a complex with Ca2+ is to increase both the hexagonal phase forming propensity of the membrane as well as to increase the activity of protein kinase C, again demonstrating the correlation between lipid phase propensity and effects on protein kinase C activity.Abbreviations DSPC distearoylphosphatidylcholine - DSPC-8M and DSPC-8B the 8-methyl and 8-n-butyl derivatives of DSPC, respectively - PKC protein kinase C - DSC differential scanning calorimetry  相似文献   

5.
Protein kinase B (PKB, also named as Akt or RAC-protein kinase), that is activated by cellular stress such as heat shock and hyperosmotic treatment, was revealed to be activated by oxidative stress and by chemical stressors of CdCl2 and NaAsO2 by measuring the activity of the enzyme immunoprecipitated from the transfected COS-7 cells. Upon stress treatment, a 30-kDa phosphoprotein was co-immunoprecipitated with PKB from the cells metabolic labeled with [32P]orthophosphate. The phosphoprotein was identified as Hsp27, a small heat shock protein, by immunoblot analysis and co-immunoprecipitation. The association of Hsp27 was specific to PKB as the heat shock protein was not co-immunoprecipitated with other protein kinases such as protein kinase C and PKN. When the cells were treated with H2O2, PKB was activated gradually and the association of Hsp27 with PKB increased concurrently with the enhancement of PKB activity. In heat-shocked cells, activation of PKB and the association of Hsp27 were detected immediately after the treatment, and the association of the heat shock protein decreased while PKB kept stimulated activity when the cells were further incubated at 37°C. These results suggest that Hsp27 is involved in the activation process of PKB in the signal transduction pathway of various forms of stress.  相似文献   

6.
An enzyme-linked immunosorbent assay using bovine fibronectin as the substrate was used to demonstrate that Mannheimia haemolytica A1 binds to fibronectin. This binding to fibronectin was specific as no binding was observed with bovine fibrinogen. The binding to fibronectin was not observed if the M. haemolytica A1 cells were pretreated with trypsin or proteinase K, suggesting that it involved a protein molecule on the cell surface. Interestingly, the fibronectin-binding activity was found to be higher in an acapsular mutant compared with its parent strain. The fibronectin-binding protein was shown to be present in the outer membrane fraction of M. haemolytica A1. A 45 kDa outer membrane protein that binds to fibronectin was identified by Far-Western immunoblot analysis. This protein was purified and subjected to MS matrix-assisted laser desorption ionization time-of-flight analysis. The results identified it to be outer membrane OmpA based on comparison with the M. haemolytica A1 genomic sequence.  相似文献   

7.
Membranes from the buds of Pisum sativum L. contain a protein kinase which is activated 5- to 15-fold by micromolar levels of calcium. Best calcium activations were found with light-membrane fractions, and on density gradients these band at a similar position to the plasma membrane. Other heavier membranes, however, also contain a calcium-dependent protein kinase. The activity of the calcium-dependent protein kinase is inhibited by added phospholipids and phospholipase, in contrast to protein-kinase C. Calcium-dependent protein-kinase activity can be inhibited by 40% by low concentrations of the calmodulin inhibitor, trifluoperazine, but inhibitions are detected only after prior incubation of the membranes for some hours in ethylene glycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid. Substantial calcium-dependent protein-kinase activity remains uninhibited by trifluoperazine indicating that there may be calmodulin-dependent and calmodulin-independent, but calcium-activated, protein kinases in pea membranes. The calcium-activated protein kinase seems to be intrinsically bound to membranes and only slight or partial solubilisation is obtained by the detergents nonidet P-40, (3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate or octyl glucose. Better solubilisation is obtained by acetone treatment. There is some retention of calcium activation after partial solubilisation. A calcium-independent protein kinase has also been detected in membrane preparations; it has a substrate specificity different from that the calcium-dependent enzyme. Our results indicate, therefore, that there may be at least three protein kinases attached to pea shoot membranes.Abbreviations EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - TFP trifluoperazine  相似文献   

8.
The biochemical and biophysical characterization of the mitochondrial creatine kinase (Mi-CK) from chicken cardiac muscle is reviewed with emphasis on the structure of the octameric oligomer by electron microscopy and on its membrane binding properties. Information about shape, molecular symmetry and dimensions of the Mi-CK octamer, as obtained by different sample preparation techniques in combination with image processing methods, are compared. The organization of the four dimeric subunits into the Mi-CK complex as apparent in the end-on projections is discussed and the consistently observed high binding affinity of the four-fold symmetric end-on faces towards many support films and towards each other is outlined. A study on the oligomeric state of the enzyme in solution and in intact mitochondria, using chemical crosslinking reagents, is presented together with the results of a search for a possible linkage of Mi-CK with the adenine nucleotide translocator (ANT). The nature of Mi-CK binding to model membranes, demonstrating that rather the octameric than the dimeric subspecies is involved in lipid interaction and membrane contact formation, is resumed and put into relation to our structural observations. The findings are discussed in light of a possiblein vivo function of the Mi-CK octamer bridging the gap between outer and inner mitochondrial membranes at the contact sites.  相似文献   

9.
Phosphatidylinositol 3-kinase pathways play key regulatory roles in cell cycle progression into S phase. In this study, we demonstrated that Akt1/PKBα isoform plays an essential role in G1/S transition and proliferation. Cells lacking Akt1/PKBα showed an attenuated proliferation as well as G1/S transition, whereas cells lacking Akt2/PKBβ showed normal proliferation and G1/S transition. The effect of Akt1/PKBα on cell proliferation and G1/S transition was completely abolished by swapping pleckstrin homology (PH) domain with that of Akt2/PKBβ. Finally, full activation of Akt/PKB and cyclin D expression was achieved by the Akt1/PKBα or chimeric proteins containing the PH domain of Akt1/PKBα indicating that the PH domain of Akt1/PKBα provides full kinase activity and is necessary for the G1/S transition.  相似文献   

10.
NADPH oxidase 4 (NOX4) and the NOX4-related redox signaling are implicated in cardiac hypertrophy. NOX4 is interrelated with endoplasmic reticulum stress (ERS). Spliced X-box binding protein 1 (Xbp1s) is a key mediator of ERS while its role in cardiac hypertrophy is still poorly understood. Recently, receptor interacting protein kinase 1(RIPK1) has been increasingly reported to be associated with ERS. Therefore, we aimed to test the hypothesis that Xbp1s mediates NOX4-triggered cardiac hypertrophy via RIPK1 signaling. In the heart tissue of transverse aortic constriction (TAC) rats and in primary cultured neonatal cardiomyocytes(NCMs) treated with angiotensinII(AngII) or isoproterenol (ISO), NOX4 expression and reactive oxygen species (ROS) generation, and expression of Xbp1s as well as RIPK1-related phosphorylation of P65 subunit of NF-κB were elevated. Gene silencing of NOX4 by specific small interfering RNA (siRNA) significantly blocked the upregulation of NOX4, generation of ROS, splicing of Xbp1 and activation of the RIPK1-related NF-κB signaling, meanwhile attenuated cardiomyocyte hypertrophy. In addition, ROS scavenger (N-acetyl-L-cysteine, NAC) and NOX4 inhibitor GKT137831 reduced ROS generation and alleviated activation of Xbp1 and RIPK1-related NF-κB signaling. Furthermore, splicing of Xbp1 was responsible for the increase in RIPK1 expression in AngII or ISO-treated NCMs. Upregulated RIPK1 in turn activates NF-κB signaling in a kinase activity-independent manner. These findings suggest that Xbp1s plays an important role in NOX4-triggered cardiomyocyte hypertrophy via activating its downstream effector RIPK1, which may prove significant for the development of future therapeutic strategies.  相似文献   

11.
Heterogeneous nuclear ribonucleoprotein B1, an RNA binding protein, is overexpressed from the early stage of lung cancers; it is evident even in bronchial dysplasia, a premalignant lesion. We evaluated the proteins bound with hnRNP B1 and found that hnRNP B1 interacted with DNA-dependent protein kinase (DNA-PK) complex, and recombinant hnRNP B1 protein dose-dependently inhibited DNA-PK activity in vitro. To test the effect of hnRNP B1 on DNA repair, we performed comet assay after irradiation, using normal human bronchial epithelial (HBE) cells treated with siRNA for hnRNP A2/B1: reduction of hnRNP B1 treated with siRNA for hnRNP A2/B1 induced faster DNA repair in normal HBE cells. Considering these results, we assume that overexpression of hnRNP B1 occurring in the early stage of carcinogenesis inhibits DNA-PK activity, resulting in subsequent accumulation of erroneous rejoining of DNA double-strand breaks, causing tumor progression.  相似文献   

12.
The C1b domain of protein kinase Cδ (PKCδ), a potent receptor for ligands such as diacylglycerol and phorbol esters, was synthesized by utilizing native chemical ligation. With this synthetic strategy, the domain was efficiently constructed and shown to have high affinity ligand binding and correct folding. The C1b domain has been utilized for the development of novel ligands for the control of phosphorylation by PKC family members. This strategy will pave the way for the efficient construction of C1b domains modified with fluorescent dyes, biotin, etc. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Proteins of the Mob1/phocein family are found in all eukaryotic cells. In yeast, they are activating subunits of Dbf2-related protein kinases involved in cell cycle control. Despite the wide occurrence of these proteins, their biological functions remain poorly understood. Here we report the solution structure of the Mob1 protein from Xenopus laevis solved by heteronuclear multidimensional NMR. The structure reveals a fold constituted by a central left-handed four-helix bundle, one connecting helix, two flanking helices and a long flexible loop. The clustering of two Cys and two His residues, and zinc measurement by atomic absorption spectroscopy support the existence of a zinc ion binding site. Our NMR structure is in good agreement with the recently described X-ray structure of human Mob1-A. Chemical shift perturbations observed upon addition of a peptide encompassing the basic region of the N-terminal regulatory domain of NDR kinase were used to identify and map a specific interaction between Mob1 and this kinase. The chemical shift changes indicate that the main interaction occurs on the acidic and conserved surface of Mob1. This surface was previously hypothesized to be the interaction surface according to the X-ray structure and was identified as functionally important in yeast. Our data suggest that the NDR kinase is a functional Dbf2 homologue in animal cells and contributes to the understanding of the molecular function of Mob1 proteins.  相似文献   

14.
The serine/threonine protein kinase B (PKB)/Akt is a phosphoinositide 3-kinase (PI3K) effector that is thought to play an important roll in a wide variety of cellular events. The present study examined whether PKB activation in cortical neuronal cultures is coupled with synaptic activity. A 1-h incubation of neuronal cultures with tetrodotoxin (TTX), the PI3K inhibitor wortmannin, the NMDA receptor antagonist MK-801 or removal of extracellular calcium significantly reduced basal levels of phospho(Ser473)-PKB, indicating that activity-dependent glutamate release maintains PKB activation through an NMDA receptor-PI3K pathway. A 5-min exposure to NMDA (50 micro m) in the presence of TTX increased phospho-PKB back to levels observed in the absence of TTX. NMDA stimulation of phospho-PKB was blocked by wortmannin, the CaMKII inhibitor KN-93, MK-801, and removal of extracellular calcium. We have previously shown that NMDA receptors can bi-directionally regulate activation of extracellular-signal regulated kinase (ERK), and NMDA receptor stimulation of PKB in the present study appeared to mirror activation of ERK. These results suggest that in cultured cortical neurons, PKB activity is dynamically regulated by synaptic activity and is coupled to NMDA receptor activation. In addition, NMDA receptor activation of ERK and PKB may occur through overlapping signaling pathways that bifurcate at the level of Ras.  相似文献   

15.
The role of hyaluronan binding protein 1 (HABP1) in cell signaling was investigated and in vitro kinase assay demonstrated that it is a substrate for MAP kinase. Phosphorylation of endogenous HABP1 was also observed following treatment of J774 cells with PMA. HABP1 was coimmunoprecipitated with activated ERK, confirming their physical interaction in the cellular context. Upon PMA stimulation of normal rat fibroblast (F111) and transformed (HeLa) cells, the HABP1 level in the cytoplasm gradually decreased with a parallel increase in the nucleus. In HeLa cells, within 6 h of PMA treatment, HABP1 was completely translocated to the nucleus, which was prevented by PD98059, a selective inhibitor of ERK. We also observed that the nuclear translocation of HABP1 is concurrent with that of ERK, suggesting that ERK activation is a requirement for the translocation of HABP1. It is thus established for the first time that HABP1 is a substrate for ERK and an integral part of the MAP kinase cascade.  相似文献   

16.
Aberrant overexpression of antiapoptotic members of the Bcl-2 protein family contributes to resistance to anticancer therapeutic drugs. Thus, this protein represent attractive target for novel anticancer agents. In the present study, we determined the effect of the anti-apoptosis protein Bcl-2 on caspase-3 activation, PLC-γ1 degradation and Akt activation during the various anticancer agents-induced apoptosis. Treatment with chrysin for 12 h produced morphological features of apoptosis in U937 cells, which was associated with caspase-3 activation and PLC-γ1 degradation. Induction of apoptosis was also accompanied by down-regulation of XIAP and inactivation of Akt. Chrysin-induced caspase-3 activation, PLC-γ1 degradation and apoptosis were significantly attenuated in Bcl-2 overexpressing U937/Bcl-2 cells. Ectopic expression of Bcl-2 appeared to inhibit ceramide-, and Akt specific inhibitor (SH-6)-induced apoptosis by sustained Akt activation. Thus, our findings imply that some of the biological functions of Bcl-2 may be attributed to their ability to inhibit anticancer agents-induced apoptosis through the sustained Akt activation.  相似文献   

17.
Akt is a key mediator of cell proliferation, survival and metabolism. After translocation to the membrane and phosphorylation at T308 and S473, the activated Akt dissociates from the plasma membrane to cytoplasm, which is an important step to phosphorylate its downstream targets. In addition to its central role in regulating the kinase activity, phosphorylation of T308 in the kinase loop has been reported to be necessary for this dissociation process. However, it is not clear whether the membrane detachment requires further mechanisms. In the present report, we demonstrate that membrane dissociation of Akt requires phosphoinositide-dependent protein kinase 1 (PDK1) which directly phosphorylates not only T308 but also T34 in the pleckstrin homology (PH) domain. Like T308, T34 was phosphorylated in a phosphatidylinositol 3,4,5-trisphosphate- and phosphatidylserine-dependent manner. Phosphorylation of T34 also occurred in cells following growth factor stimulation, concurrently with T308 phosphorylation. Moreover, when T34 was mutated to aspartic acid (T34D) to mimic its phosphorylation, Akt-membrane association assessed by surface plasmon resonance spectroscopy was significantly reduced. In cells, this mutation impaired the IGF-induced Akt membrane translocation and subsequent phosphorylation at T308 and S473. Taken together, our results demonstrate that T34 phosphorylation by PDK1 promotes the membrane dissociation of activated Akt for its downstream action through attenuating membrane binding affinity. This membrane dissociation mechanism offers a new insight for Akt activation process and provides a potential new target for controlling the Akt-dependent cellular processes.  相似文献   

18.
cAMP-dependent protein kinase I and II (cAKI and cAKII) were incubated under near physiological conditions in the presence of various concentrations of 8-N3-c[3H]AMP or c[3H]AMP. Both types (A and B) of cyclic nucleotide binding sites of cAKI or cAKII were occupied to a similar extent and the degree of their occupation correlated with the degree of kinase activation. cAKI and cAKII bound cAMP in an apparent positively cooperative manner in the presence of Mg2+, ATP. 8-N3-c[3H]AMP dissociated several orders of magnitude faster from site A than site B of the regulatory moiety of cAKII, and was photo-incorporated only when bound to site B.  相似文献   

19.
Calcium-dependent protein kinases (CDPKs), the most abundant serine/threonine kinases in plants, are found in various subcellular localizations, which suggests that this family of kinases may be involved in multiple signal transduction pathways. A complete analysis to try to understand the molecular basis of the presence of CDPKs in various localizations in the cell has not been accomplished yet. It has been suggested that myristoylation may be responsible for membrane association of CDPKs. In this study, we used a rice CDPK, OSCPK2, which has a consensus sequence for myristoylation at the N-terminus, to address this question. We expressed wild-type OSCPK2 and various mutants in different heterologous systems to investigate the factors that affect its membrane association. The results show that OSCPK2 is myristoylated and palmitoylated and targeted to the membrane fraction. Both modifications are required, myristoylation being essential for membrane localization and palmitoylation for its full association. The fact that palmitoylation is a reversible modification may provide a mechanism for regulation of the subcellular localization. OSCPK2 is the first CDPK shown to be targeted to membranes by an src homology domain 4 (SH4) located at the N-terminus of the molecule.  相似文献   

20.
Akt (also known as PKB) is a survival kinase frequently up-regulated in cancer; three isoforms of Akt exist, and among them Akt1 and Akt2 are the most widely and highly expressed. They share the same structure and activation mechanism and have many overlapping functions; nevertheless isoform-specific roles and substrates have been reported, which are expected to rely on sequence diversities. In particular, a special role in differentiating Akt1 and Akt2 isoforms has been assigned to the linker region, a short segment between the PH and the catalytic domains. We have previously found that a residue in the linker region (Ser129) is directly phosphorylated by protein kinase CK2 in Akt1; the phosphorylation of the homologous residue in Akt2 (Ser131) has never been analyzed. Here we show that Akt2, endogenously or ectopically expressed in different cell lines, is not phosphorylated on Ser131 by CK2, while in vitro recombinant Akt2 is a CK2 substrate. These data support the hypothesis that in vivo a steric hindrance occurs which prevents the access to the CK2 site. Additionally, we have found that Ser129 phosphorylation is involved in the recognition of the Akt1-specific substrate palladin; this observation provides an explanation of why Akt2, lacking Ser131 phosphorylation in the linker region, has a low efficiency in targeting palladin. CK2-dependent phosphorylation is therefore a crucial event which, discriminating between Akt1 and Akt2, can account for different substrate specificities, and, more in general, for fine tuning of Akt activity in the control of isoform-dependent processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号