首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report describes the structural analyses of the O- and N-linked oligosaccharides contained in glycoproteins synthesized by 48-hr-old Schistosoma mansoni schistosomula. Schistosomula were prepared by mechanical transformation of cercariae and were then incubated in media containing either [2-3H] mannose, [6-3H]glucosamine, or [6-3H]galactose to metabolically radiolabel the oligosaccharide moieties of newly synthesized glycoproteins. Analysis by SDS-polyacrylamide gel electrophoresis and fluorography demonstrated that many glycoproteins were metabolically radiolabeled with the radioactive mannose and glucosamine precursors, whereas few glycoproteins were labeled by the radioactive galactose precursor. Glycopeptide were prepared from the radiolabeled glycoproteins by digestion with pronase and fractionated by chromatography on columns of concanavalin A-Sepharose and pea lectin-agarose. The structures of the oligosaccharide chains in the glycopeptides were analyzed by a variety of techniques. The major O-linked sugars were not bound by concanavalin A-Sepharose and consisted of simple O-linked monosaccharides that were terminal O-linked N-acetylgalactosamine, the minor type, and terminal O-linked N-acetylglucosamine, the major type. The N-linked oligosaccharides were found to consist of high mannose- and complex-type chains. The high mannose-type N-linked chains, which were bound with high affinity by concanavalin A-Sepharose, ranged in size from Man6GlcNAc2 to Man9GlcNAc2. The complex-type chains contained mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. No sialic acid was present in any metabolically radiolabeled glycoproteins from schistosomula.  相似文献   

2.
The processing of asparagine-linked oligosaccharides on the alpha- chains of an immunoglobulin A (IgA) has been investigated using MOPC 315 murine plasmacytoma cells. These cells secrete IgA containing complex-type oligosaccharides that were not sensitive to endo-beta-N- acetylglucosaminidase H. In contrast, oligosaccharides present on the intracellular alpha-chain precursor were of the high mannose-type, remaining sensitive to endo-beta-N-acetylglucosaminidase H despite a long intracellular half-life of 2-3 h. The major [3H]mannose-labeled alpha-chain oligosaccharides identified after a 20-min pulse were Man8GlcNAc2 and Man9GlcNAc2. Following chase incubations, the major oligosaccharide accumulating intracellularly was Man6GlcNAc2, which was shown to contain a single alpha 1,2-linked mannose residue. Conversion of Man6GlcNAc2 to complex-type oligosaccharides occurred at the time of secretion since appreciable amounts of Man5GlcNAc2 or further processed structures could not be detected intracellularly. The subcellular locations of the alpha 1,2-mannosidase activities were studied using carbonyl cyanide m-chlorophenylhydrazone and monensin. Despite inhibiting the secretion of IgA, these inhibitors of protein migration did not effect the initial processing of Man9GlcNAc2 to Man6GlcNAc2. Furthermore, no large accumulation of Man5GlcNAc2 occurred, indicating the presence of two subcellular locations of alpha 1,2-mannosidase activity involved in oligosaccharide processing in MOPC 315 cells. Thus, the first three alpha 1,2-linked mannose residues were removed shortly after the alpha-chain was glycosylated, most likely in rough endoplasmic reticulum, since this processing occurred in the presence of carbonyl cyanide m-chlorophenylhydrazone. However, the removal of the final alpha 1,2-linked mannose residue as well as subsequent carbohydrate processing occurred just before IgA secretion, most likely in the trans Golgi complex since processing of Man6GlcNAc2 to Man5GlcNAc2 was greatly inhibited in the presence of monensin.  相似文献   

3.
Processing of the asparagine-linked oligosaccharides at the known glycosylation sites on the mu-chain of IgM secreted by MOPC 104E murine plasmacytoma cells was investigated. Oligosaccharides present on intracellular mu-chain precursors were of the high mannose type, remaining susceptible to endo-beta-N-acetylglucosaminidase H. However, only 26% of the radioactivity was released from [3H]mannose-labeled secreted IgM glycopeptides, consistent with the presence of high mannose-type and complex-type oligosaccharides on the mature mu-chain. [3H]Mannose-labeled cyanogen bromide glycopeptides derived from mu-chains of secreted IgM were isolated and analyzed to identify the glycopeptide containing the high mannose-type oligosaccharide from those containing complex-type structures. [3H]Mannose-labeled intracellular mu-chain cyanogen bromide glycopeptides corresponding to those from secreted IgM were isolated also, and the time courses of oligosaccharide processing at the individual glycosylation sites were determined. The major oligosaccharides on all intracellular mu-chain glycopeptides after 20 min of pulse labeling with [3H]mannose were identified as Man8GlcNAc2, Man9GlcNAc2, and Glc1Man9GlcNAc2. Processing of the oligosaccharide destined to become the high mannose-type structure on the mature protein was rapid. After 30 min of chase incubation the predominant structures of this oligosaccharide were Man5GlcNAc2 and Man6GlcNAc2 which were also identified on the high mannose-type oligosaccharide of the secreted mu-chain. In contrast, processing of oligosaccharides destined to become complex type was considerably slower. Even after 180 min of chase incubation, Man7GlcNAc2 and Man8GlcNAc2 were the predominant structures at some of these glycosylation sites. The isomeric structures of Man8GlcNAc2 obtained from all of the glycosylation sites were identical. Thus, the different rates of processing were not the result of a different sequence of alpha 1,2-mannose removal.  相似文献   

4.
N-Glycans linked to the human secreted form of epidermal growth factor receptor were isolated from A431 cells after swainsonine treatment. Analysis of the oligosaccharides by (1)H NMR spectroscopy and mass spectrometry shows the presence of oligomannose- and (alpha2-3)-sialylated hybrid-type glycans. The major hybrid-type oligosaccharide chains are fucosylated at the Asn-bound GlcNAc residue. Smaller amounts of the hybrid-type structures are also fucosylated at peripheral GlcNAc residues, constituting the sialyl-Le(x) antigen. No complex-type glycans are found, suggesting the absence of alpha-mannosidase III. An assay for alpha-mannosidase III on the A431 cells in the absence and presence of 6 microM swainsonine shows that Man(5)GlcNAc(2) is not converted into Man(3)GlcNAc(2), thereby confirming that these cells do not contain alpha-mannosidase III activity.  相似文献   

5.
Human transferrin receptor contains O-linked oligosaccharides   总被引:2,自引:0,他引:2  
We have investigated the oligosaccharides in the human transferrin receptor from three different cell lines. During our studies on the structures of the N-linked oligosaccharides of the receptor, we discovered that the receptor contains O-linked oligosaccharides. This report describes the isolation and characterization of these O-linked oligosaccharides. Three different human cell lines--K562, A431, and BeWo--were grown in media containing either [2-3H] mannose or [6-3H]glucosamine. The newly synthesized and radiolabeled transferrin receptors were purified by immunoprecipitation from cell extracts and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The receptor was proteolytically digested or treated directly with mild base/borohydride. The released radiolabeled glycopeptides and oligosaccharides were separated by a variety of chromatographic techniques, and their structures were analyzed. The transferrin receptor from all three cell types contains O-linked oligosaccharides that are released from peptide by mild base/borohydride treatment. The receptor from K562 cells contains at least one O-linked oligosaccharide having two sialic acid residues and a core structure of the disaccharide galactose-N-acetyl-galactosamine. In contrast, the O-linked oligosaccharides in the transferring receptors from both A431 and BeWo cell lines are not as highly sialylated and were identified as both the neutral disaccharide galactose-N-acetylgalactosamine and the neutral monosaccharide N-acetylgalactosamine. In addition, the receptors from all three cell lines contain both complex-type and high mannose-type N-linked oligosaccharides. The complex-type chains in the receptor from A431 cells have properties of blood group A antigens, whereas oligosaccharides in receptors from both BeWo and K562 cells lack these properties. These results are interesting since both A431 and BeWo cells, but not K562 cells, are positive for blood group A antigens. Thus, our results demonstrate that the human transferrin receptor contains O-linked oligosaccharides and that there are differences in the structures of both the O-linked and complex-type N-linked oligosaccharides on the receptors synthesized by different cell types.  相似文献   

6.
In human fibroblasts, the receptor for low density lipoprotein (LDL) is synthesized as a precursor of apparent Mr = 120,000 which is converted to a mature form of apparent Mr = 160,000, as determined by migration in sodium dodecyl sulfate (SDS)-polyacrylamide gels (Tolleshaug, H., Goldstein, J. L., Schneider, W. J., and Brown, M. S. (1982) Cell 30, 715-724). The current paper describes the relationship of N- and O-glycosylation to this post-translational modification. Oligosaccharides were analyzed from precursor and mature forms of LDL receptors that had been immunoprecipitated from cells grown in media containing radioactive sugars. In human epidermoid carcinoma A-431 cells, the receptor precursor appears to contain one N-linked high mannose oligosaccharide and approximately 6-9 N-acetylgalactosamine residues linked O-glycosidically to Ser/Thr residues. In the mature receptor, the O-linked oligosaccharides are mono- and disialylated species having the core structure of galactose leads to N-acetylgalactosamine leads to Ser/Thr. The single N-linked oligosaccharide of the mature receptor can either be a tri- or tetraantennary complex-type species. Similar results were obtained with normal human fibroblast receptor except that the O-linked oligosaccharides on the precursor are neutral disaccharides, of which one component is GalNAc and the N-linked complex type unit on the mature receptor is less branched. Since the addition of GalNAc residues to Ser/Thr residues precedes the conversion of N-linked high mannose-type oligosaccharides to complex-type structures, the transfer of N-acetylgalactosamine must occur prior to the entry of glycoproteins into the region of the Golgi containing the processing enzyme alpha-mannosidase I. We also studied the receptor from tunicamycin-treated cells and after treatment with neuraminidase. In addition, we analyzed the receptor synthesized by a lectin-resistant clone of Chinese hamster ovary cells that is deficient in adding galactose residues to both N- and O-linked oligosaccharides. These studies suggest that the apparent differences in molecular weight between the precursor and mature forms of the LDL receptor are largely, if not entirely, due to the addition of sialic acid and galactose residues to the O-linked GalNAc residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The asparagine-linked sugar chains of the membrane of baby hamster kidney cells and their polyoma transformant were quantitatively released as oligosaccharides by hydrazinolysis and labeled by NaB3H4 reduction. The radioactive oligosaccharides thus obtained were fractionated by paper electrophoresis. The neutral oligosaccharides of both cells were exclusively of high mannose type. The acidic oligosaccharides were bi-, tri-, and tetraantennary complex-type sugar chains with Man alpha 1----6 (Man alpha 1----3) Man beta 1----4 GlcNAc beta 1----4 (+/- Fuc alpha 1----6) GlcNAc as their cores and Gal beta 1----4 GlcNAc and various lengths of Gal beta 1----4 GlcNAc repeating chains in their outer-chain moieties. Prominent features of these acidic oligosaccharides are that all sialic acid residues were N-acetylneuraminic acid and were linked exclusively at C-3 of the nonreducing terminal galactose residues of the outer chains. Comparative study of oligosaccharides of the two cells by Bio-Gel P-4 column chromatography revealed that transformation of baby hamster kidney cells leads to a reduction in high mannose-type oligosaccharides and an increase in tetraantennary oligosaccharides. Increase of the outer chains linked at C-6 of the Man alpha 1----6 residue of the core is the cause of increase in the relative amount of highly branched oligosaccharides in the polyoma transformant.  相似文献   

8.
The structural analysis of high mannose-type Asn-linked (N-linked) oligosaccharides of the human transferrin receptor (hTR) from D-[2-3H]mannose metabolic-radiolabeled human cells--A431, K562, BeWo, and HL60--was investigated. The radiolabeled hTR glycopeptides were prepared and fractionated by a lectin chromatography of Concanavalin A-Sepharose. The composition analysis of hTR glycopeptides revealed that Con A-I contains both mannose and fucose, whereas Con A-III has mannose exclusively. The Con A-III glycopeptides were treated with Endo H. The released oligosaccharides were charge-fractionated by QAE-Sephadex. The neutral oligosaccharides were further size-fractionated by an amine absorption high performance liquid chromatography (HPLC). Our results demonstrate that the high mannose-type oligosaccharides of hTR ranged in size from Man5-R to Man9-R with cell-type specific patterns. A relative amount of each component was found to be differentially heterogeneous among the four different human cell lines.  相似文献   

9.
This report describes the structure of novel complex-type Asn-linked oligosaccharides in glycoproteins synthesized by the human blood fluke, Schistosoma mansoni. Adult schistosome worm pairs (male and female) isolated from infected hamsters were metabolically radiolabelled with either [3H]glucosamine, [3H]mannose or [3H]galactose. The glycopeptides prepared by pronase digestion of the total glycoprotein fraction were isolated by affinity chromatography on columns of immobilized Concanavalin A (Con A) and Wisteria floribunda agglutinin (WFA). A subset of glycopeptides, designated IIb, that bound to both Con A and WFA was isolated. WFA has been shown to have affinity for oligosaccharides containing beta 1,4-linked N-acetylgalactosamine (GalNAc) at their non-reducing termini. Compositional analysis of IIb glycopeptides demonstrated that they contained N-acetylglucosamine (GlcNAc), GalNAc, mannose (Man) and fucose (Fuc), but no galactose (Gal) or N-acetylneuraminic acid (NeuAc). Methylation analyses and exoglycosidase digestions indicated that IIb glycopeptides were complex-type biantennary structures with branches containing the sequence GalNAc beta 1-4-[+/- Fuc alpha 1-3]GlcNAc beta 1-2Man alpha 1-R. The discovery of these unusual oligosaccharides synthesized by a human parasite, which appear to be similar to some newly discovered mammalian cell-derived oligosaccharides, may shed light on future studies related to the role oligosaccharides may play in host-parasite interactions.  相似文献   

10.
The asparagine-linked sugar chains of blood coagulation factor VIII preparations purified from human plasma of blood group A donors and from the culture media of recombinant BHK cells were released as oligosaccharides by hydrazinolysis. These sugar chains were converted to radioactive oligosaccharides by reduction with sodium borotritide and separated into neutral and acidic fractions by paper electrophoresis. Most of the acidic oligosaccharides were converted to neutral ones by sialidase digestion, indicating that they are sialyl derivatives. The neutral and sialidase-treated acidic oligosaccharides were fractionated by serial chromatography on immobilized lectin columns and Bio-Gel P-4 column. Structural study of each oligosaccharide by sequential exo- and endoglycosidase digestion and by methylation analysis revealed that both factor VIII preparations contain mainly high mannose-type and bi-, tri-, and tetra-antennary complex-type sugar chains. Some of the biantennary complex-type sugar chains from human plasma factor VIII contain blood group A and/or H determinant, while those from recombinant product do not. Some of the bi-, tri- and tetra-antennary complex-type sugar chains of the recombinant factor VIII contain the Gal alpha 1----3Gal group. A small number of the triantennary complex-type sugar chains from both preparations was found to contain the Gal beta 1----4(Fuc alpha 1----3)GlcNAc beta 1----4 (Gal beta 1----4GlcNAc beta 1----2)Man group. Studies of pharmacokinetic parameters of the recombinant factor VIII infused into baboons revealed that its half-life in blood circulation is similar to that of plasma derived factor VIII, suggesting that the oligosaccharide structural differences between them do not affect the fate of factor VIII in vivo.  相似文献   

11.
The structures of the sugar chains present in two human monoclonal IgM molecules purified from the serum of a patient with Waldenstr?m's macroglobulinemia have been determined. The asparagine-linked sugar chains were liberated as oligosaccharides by hydrazinolysis and labeled by reduction with NaB3H4 after N-acetylation. Their structures were studied by serial lectin column chromatography and sequential exoglycosidase digestion in combination with methylation analysis. These two IgM's were shown to contain almost the same sugar chains. The sugar chains were a mixture of a series of high-mannose-type and biantennary complex-type oligosaccharides. The complex-type oligosaccharides contain Man alpha 1----6(+/- GlcNAc beta 1----4)(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAc as their core and GlcNAc beta 1----, Gal beta 1----4GlcNAc beta 1---- and Neu5Ac alpha 2----6Gal beta 1----4GlcNAc beta 1---- groups in their outer chain moieties.  相似文献   

12.
Immature and mature forms of glycoprotein gC were purified by immunoadsorbent from herpes simplex virus type 1-infected BHK cells labeled with [3H]mannose for a 20-min pulse or for 11 h followed by a 3-h chase. The nature of N-asparagine-linked oligosaccharides carried by the immature form, pgC (molecular weight = 92,000), and the mature gC (molecular weight = 120,000) has been investigated. All pronase-digested glycopeptides of pgC were susceptible to endo-beta-N-acetylglucosaminidase H treatment; thus they have a high-mannose structure. Using thin-layer chromatography to separate endo-beta-N-acetylglucosaminidase H-cleaved oligosaccharides, polymannosyl chains of different sizes, ranging from Man9GlcNAc to Man5GlcNAc, were separated. The major components were Man8GlcNAc and Man7GlcNAc, suggesting that pgC labeled in a 20-min pulse represents the form of glycoprotein already routed to the Golgi apparatus. Analysis of glycopeptides of mature gC showed that the majority (95%) of N-linked glycans were converted to complex-type glycans. Ion-exchange chromatography and affinity chromatography on concanavalin A-Sepharose and leucoagglutinin-agarose revealed that diantennary and triantennary glycans predominated, whereas tetrantennary chains were not present. Parts of the di- and triantennary chains were not fully sialylated. The high heterogeneity of complex-type chains found in mature gC may be related to the high number of N-glycosylation sites of the glycoprotein as predicted by DNA sequencing studies (Frink et al., J. Virol. 45:634-647, 1983).  相似文献   

13.
Baby-hamster kidney (BHK) cells were labelled with [2-3H]mannose for 1-2 days in media containing 1-deoxynojirimycin, N-methyl-1-deoxynojirimycin or 1-deoxymannojirimycin. Glycopeptides obtained by Pronase digestion of disrupted cells were analysed by lectin affinity chromatography, by Bio-Gel P4 gel filtration and by paper chromatography of oligosaccharides released by endo-beta-N-acetylglucosaminidase H. Biosynthesis of complex-type oligosaccharides was diminished but not abolished, the greatest effect being obtained by continuous culture of cells with 1-deoxymannojirimycin. Under these conditions cells contained only 20-30% of the concentration of complex-type chains found in control cells and correspondingly increased amounts of oligomannose-type chains. Similar concentrations of asparagine-linked Man6-GlcNAc2 and Man5GlcNAc2 were present in 1-deoxymannojirimycin-treated cells and control cells, indicating that the inhibition of complex-type chain formation was not related simply to an inability of inhibitor-treated cells to carry out extensive mannosidase-catalysed processing. N-Methyl-1-deoxynojirimycin induced accumulation of oligomannose-type chains containing three glucose residues, and cells treated with 1-deoxynojirimycin contained oligosaccharides with one to three glucose residues. Cells cultured in the presence of the inhibitors retained sensitivity towards the galactose-binding lectins ricin and modeccin.  相似文献   

14.
The insulin proreceptor is a 190-kDa glycoprotein that is processed to mature alpha (135-kDa) and beta (95-kDa) subunits. In order to determine the role of carbohydrate chain processing in insulin receptor biogenesis, we investigated the effect of inhibiting glucose removal from core oligosaccharides of the insulin proreceptor with glucosidase inhibitors, castanospermine and 1-deoxynojirimycin. Cultured IM-9 lymphocytes treated with inhibitors had 50% reduction in surface insulin receptors as demonstrated by ligand binding, affinity cross-linking with 125I-insulin, and lactoperoxidase/Na 125I labeling studies. Degradation rates of surface labeled receptors were similar in both control and inhibitor-treated cells (t1/2 = 5 h); thus, accelerated receptor degradation could not account for this reduction. Biosynthetic labeling experiments with [3H]leucine and [3H]mannose identified an apparently higher molecular size proreceptor (approximately 205 kDa) that failed to show the characteristic decline with time as seen in the normal 190-kDa proreceptor. Along with this finding, the biosynthetic label appearing in the mature subunits was reduced in these inhibitor-treated cells. Endoglycosidase H treatment of both precursors produced identical 170-kDa bands. Carbohydrate chains released from the 205-kDa precursor by endoglycosidase H migrated in the same position as the Glc2-3Man9GlcNAc standards when separated by high performance liquid chromatography, whereas the 190-kDa proreceptor oligosaccharides migrated similar to the Man7-9GlcNAc chains. Although the mature subunits of control and inhibitor-treated cells demonstrated equal electrophoretic mobility, the endoglycosidase H-sensitive oligosaccharides of the mature subunits in treated cells also contained residues that migrated similar to the Glc2-3Man9GlcNAc standards. Thus, glucose removal from core oligosaccharides is apparently not necessary for the cleavage of the insulin proreceptor, but does delay processing of this precursor, which probably accounts for the reduction in cell-surface receptors.  相似文献   

15.
The asparagine-linked sugar chains of the plasma membrane glycoproteins of rat erythrocytes were released as oligosaccharides by hydrazinolysis and labeled by NaB3H4 reduction. The radioactive oligosaccharides were separated into a neutral and at least four acidic fractions by paper electrophoresis. The neutral oligosaccharide fraction was separated into at least 11 peaks upon Bio-Gel P-4 column chromatography. Structural studies of them by sequential exoglycosidase digestion in combination with methylation analysis revealed that they were a mixture of three high mannose-type oligosaccharides and at least 11 complex type oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAc as their cores and Galβ1 → 4GlcNAc, Galβ1 → 3Galβ1 → 4GlcNAc, and various lengths of Galβ1 → 4GlcNAc repeating chains in their outer chain moieties. Most of the complex-type Oligosaccharides were biantennary, and the tri- and tetraantennary Oligosaccharides contain only the Galβ1 → 3Galβ1 → 4GlcNAc group in their outer chain moieties.  相似文献   

16.
Six monoclonal antibodies, three each of human IgG1 and IgG2 subclasses, were obtained from human-mouse hybridomas. Structural study of their asparagine-linked sugar chains was performed to elucidate the regulatory mechanism of secreted monoclonal IgG glycosylation. The sugar moieties were quantitatively released as oligosaccharides from the polypeptide backbone by hydrazinolysis. They were converted into radioactive oligosaccharides by NaB3H4 reduction after N-acetylation. Structural study of each oligosaccharide by lectin affinity column chromatography, sequential exoglycosidase digestion, and methylation analysis indicated that almost all of them were biantennary complex-type sugar chains containing Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4 (+/- Fuc alpha 1----6)GlcNAc as core structures. Bisecting N-acetylglucosamine residue, which is present in human IgG but not in mouse IgG, could not be detected at all. The molar ratio of each oligosaccharide from the six IgG samples was different. However, no subclass specificity was detected except that all IgG1 contained neutral, mono-, and disialylated sugar chains, whereas IgG2 did not contain disialylated ones. The molar ratio of N-acetylneuraminic acid to N-glycolylneuraminic acid was also different for each IgG. All six IgGs contained monoantennary complex-type and high mannose-type oligosaccharides which had never been detected in serum IgGs of various mammals so far investigated. These results indicated that the processing of asparagine-linked sugar chains of IgG is less complete in human-mouse hybridoma than in human or mouse B cells, and that the glycosylation machinery of the mouse cells is dominant in the hybrid cells.  相似文献   

17.
We had shown previously that all major glycoproteins of pigeon egg white contain Galalpha1-4Gal epitopes (Suzuki, N., Khoo, K. H., Chen, H. C., Johnson, J. R., and Lee, Y. C. (2001) J. Biol. Chem. 276, 23221-23229). We now report that Galalpha1-4Gal-bearing glycoproteins are also present in pigeon serum, lymphocytes, and liver, as probed by Western blot with Griffonia simplicifolia-I lectin (specific for terminal alpha-Gal) and anti-P1 (specific for Galalpha1-4Galbeta1-4GlcNAcbeta1-) monoclonal antibody. One of the major glycoproteins from pigeon plasma was identified as IgG (also known as IgY), which has Galalpha1-4Gal in its heavy chains. High pressure liquid chromatography, mass spectrometric (MS), and MS/MS analyses revealed that N-glycans of pigeon serum IgG included (i) high mannose-type (33.3%), (ii) disialylated biantennary complex-type (19.2%), and (iii) alpha-galactosylated complex-type N-glycans (47.5%). Bi- and tri-antennary oligosaccharides with bisecting GlcNAc and alpha1-6 Fuc on the Asn-linked GlcNAc were abundant among N-glycans possessing terminal Galalpha1-4Gal sequences. Moreover, MS/MS analysis identified Galalpha1-4Galbeta1-4Galbeta1-4GlcNAc branch terminals, which are not found in pigeon egg white glycoproteins. An additional interesting aspect is that about two-thirds of high mannose-type N-glycans from pigeon IgG were monoglucosylated. Comparison of the N-glycan structures with chicken and quail IgG indicated that the presence of high mannose-type oligosaccharides may be a characteristic of these avian IgG.  相似文献   

18.
In this report, we demonstrate a novel post-translational modification of the epidermal growth factor (EGF) receptor. This modification involves the presence of phosphate, previously thought to exist only on amino acid residues in the EGF receptor, on oligosaccharides of the receptor. We have utilized several independent approaches to determine that mannose phosphate is present on the EGF receptor in A-431 cells. Following metabolic labeling with 32P, immunoisolation of the EGF receptor, and digestion with Pronase radioactivity was determined to be present on high mannose type oligosaccharides by concanavalin A chromatography. Also, after acid hydrolysis of in vivo 32P-labeled EGF receptor, radioactivity was detected that co-migrated with mannose 6-phosphate on two-dimensional thin layer electrophoresis. This radiolabeled material co-eluted with a mannose 6-phosphate standard from a high pressure liquid chromatography anion exchange column. Last, an acid hydrolysate of [3H]mannose-labeled EGF receptor contained two radiolabeled fractions, as analyzed by thin layer electrophoresis, and the radioactivity in one of these fractions was substantially reduced by alkaline phosphatase treatment prior to electrophoresis. These experiments indicate that the mature EGF receptor in A-431 cells contains mannose phosphate. This is a novel modification for membrane receptors and has only been reported previously for lysosomal enzymes and a few secreted proteins.  相似文献   

19.
Many studies have shown that the human blood fluke Schistosoma mansoni contains glycoproteins whose oligosaccharide side chains are antigenic in infected hosts. We report here that adult male schistosomes synthesize glycoproteins containing complex-type N-linked chains that have structural features not commonly found in mammalian glycoproteins. Adult male worms were incubated in media containing either [3H]mannose, [3H]glucosamine, or [3H]galactose, and the metabolically radiolabeled oligosaccharides on newly synthesized glycoproteins were analyzed. Schistosomes synthesize triantennary- and biantennary-like complex-type asparagine-linked chains that contain mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. Interestingly, none of the complex-type chains contain sialic acid, and few of the chains contain galactose. Since N-acetylgalactosamine is not a common constituent of mammalian-derived N-linked chains, we investigated the position and linkage of this residue in the schistosome-derived glycopeptides. Virtually all of the N-acetylgalactosamine was beta-linked and in a terminal position. The unusual features of the S. mansoni glycoprotein oligosaccharides support the possibility that they may be involved in the host immune response to infection.  相似文献   

20.
The asparagine-linked sugar chains of fibronectin purified from human placenta were quantitatively released as oligosaccharides by hydrazinolysis. After N-acetylation, they were converted to radioactive oligosaccharides by NaB3H4 reduction. The radioactive oligosaccharides were fractionated by their charge on an anion-exchange column chromatography. All of the acidic oligosaccharides could be converted to neutral oligosaccharides by sialidase digestion. These oligosaccharides were then fractionated by serial affinity chromatography using immobilized lectin columns. Study of each oligosaccharide by sequential exoglycosidase digestion and methylation analysis revealed the following information as to the structures of the sugar chains of human placental fibronectin: 1) nine sugar chains are included in one molecule; 2) all sialic acid residues are exclusively linked at the C-3 position of the galactose residues; 3) bi-, tri-, and tetraantennary complex-type oligosaccharides with the Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4 (+/- Fuc alpha 1----6)-GlcNac as their cores were found; 4) the bisecting N-acetylglucosamine residue and the Gal beta 1----4GlcNAc beta 1----repeating groups are included in some of the sugar chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号