首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil organic matter (SOM) dynamics ultimately govern the ability of soil to provide long‐term C sequestration and the nutrients required for ecosystem productivity. Predicting belowground responses to elevated CO2 requires an integrated understanding of SOM transformations and the microbial activity that governs them. It remains unclear how the microorganisms upon which these transformations depend will function in an elevated CO2 world. This study examines SOM transformations and microbial metabolism in soils from the Duke Free Air Carbon Enrichment site in North Carolina, USA. We assessed microbial respiration and net nitrogen (N) mineralization in soils with and without elevated CO2 exposure during a 100‐day incubation. We also traced the depleted C isotopic signature of the supplemental CO2 into SOM and the soils' phospholipid fatty acids (PLFA), which serve as biomarkers for living cells. Cumulative net N mineralization in elevated CO2 soils was 50% that in control soils after a 100‐day incubation. Respiration was not altered with elevated CO2. C : N ratios of bulk SOM did not change with elevated CO2, but incubation data suggest that the C : N ratios of mineralized organic matter increased with elevated CO2. Values of SOM δ13C were depleted with elevated CO2 (?26.7±0.2 vs. ?30.2±0.3‰), reflecting the depleted signature of the supplemental CO2. We compared δ13C of individual PLFA with the δ13C of SOM to discern incorporation of the depleted C isotopic signature into soil microbial groups in elevated CO2 plots. PLFA i15:0, a15:0, and 10Met18:0 reflected significant incorporation of recently produced photosynthate, suggesting that the bacterial groups defined by these biomarkers are active metabolizers in elevated CO2 soils. At least one of these groups (actinomycetes, 10Met18:0) specializes in metabolizing less labile substrates. Because control plots did not receive an equivalent 13C tracer, we cannot determine from these data whether this group of organisms was stimulated by elevated CO2 compared with these organisms in control soils. Stimulation of this group, if it occurred in the elevated CO2 plot, would be consistent with a decline in the availability of mineralizable organic matter with elevated CO2, which incubation data suggest may be the case in these soils.  相似文献   

2.
Carbon isotope ratios (δ13C) of heterotrophic and rhizospheric sources of soil respiration under deciduous trees were evaluated over two growing seasons. Fluxes and δ13C of soil respiratory CO2 on trenched and untrenched plots were calculated from closed chambers, profiles of soil CO2 mole fraction and δ13C and continuous open chambers. δ13C of respired CO2 and bulk carbon were measured from excised leaves and roots and sieved soil cores. Large diel variations (>5‰) in δ13C of soil respiration were observed when diel flux variability was large relative to average daily fluxes, independent of trenching. Soil gas transport modelling supported the conclusion that diel surface flux δ13C variation was driven by non‐steady state gas transport effects. Active roots were associated with high summertime soil respiration rates and around 1‰ enrichment in the daily average δ13C of the soil surface CO2 flux. Seasonal δ13C variability of about 4‰ (most enriched in summer) was observed on all plots and attributed to the heterotrophic CO2 source.  相似文献   

3.
Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long‐term experiment offered a unique opportunity to evaluate assumptions about C cycling under elevated CO2 made in coupled climate–soil organic matter (SOM) models. Trifolium repens and Lolium perenne plant materials, produced under elevated (60 Pa) and ambient CO2 at two levels of N fertilizer (140 vs. 560 kg ha?1 yr?1), were incubated in soil for 90 days. Soils and plant materials used for the incubation had been exposed to ambient and elevated CO2 under free air carbon dioxide enrichment conditions and had received the N fertilizer for 9 years. The rate of decomposition of L. perenne and T. repens plant materials was unaffected by elevated atmospheric CO2 and rate of N fertilization. Increases in L. perenne plant material C : N ratio under elevated CO2 did not affect decomposition rates of the plant material. If under prolonged elevated CO2 changes in soil microbial dynamics had occurred, they were not reflected in the rate of decomposition of the plant material. Only soil respiration under L. perenne, with or without incorporation of plant material, from the low‐N fertilization treatment was enhanced after exposure to elevated CO2. This increase in soil respiration was not reflected in an increase in the microbial biomass of the L. perenne soil. The contribution of old and newly sequestered C to soil respiration, as revealed by the 13C‐CO2 signature, reflected the turnover times of SOM–C pools as described by multipool SOM models. The results do not confirm the assumption of a negative feedback induced in the C cycle following an increase in CO2, as used in coupled climate–SOM models. Moreover, this study showed no evidence for a positive feedback in the C cycle following additional N fertilization.  相似文献   

4.
We measured respiration and 13C values of respiredand soil carbon in long-term incubations of soils from two forests andthree pastures along an altitudinal gradient in Hawaii. CO2fluxes early in the incubations decreased rapidly, and then stabilizedat approximately 20% of initial values for sevenmonths. We suggest that the rapid drop and subsequent stabilizationof respiration reflects a change in the dominant source of theCO2 from labile (active) to much more recalcitrantpools of soil organic matter (SOM). Estimates of active SOM weremade by integrating all of the carbon respired in excess of thatattributable to respiration of the intermediate SOM pool; thesevalues ranged from 0.7–4.3% of total soil C.13C values for carbon respired from the pasturesoils showed that older, forest-derived C contributed an increasingfraction of total soil respiration with time. Initial and late-stagerespiration responded similarly to changes in temperature, suggestingthat intermediate SOM is as sensitive to temperature as the activefraction.  相似文献   

5.
We assessed the potential of using 14C contents of soil respired CO2 to calculate the contributions of heterotrophic and autotrophic respiration to total soil respiration. The partitioning of these fluxes is of utmost importance to evaluate implications of environmental change on soil carbon cycling and sequestration. At three girdled forest stands in Sweden and Germany, where the tree root (autotrophic) respiration had been eliminated, we measured both flux rates and 14C contents of soil respired CO2 in girdled and control plots in the summers of 2001 or 2002. At all stands, CO2 flux rates were slightly higher in the control plots, whereas the 14C contents of respired CO2 tended to be higher in the girdled plots. This was expected and confirmed that heterotrophically respired CO2 cycles more slowly through the forest ecosystem than autotrophically respired CO2. On the basis of these data, the contributions of hetero‐ and autotrophic respiration to total soil respiration were calculated using two separate approaches (i.e. based on flux rates or 14C). Fractions of heterotrophic respiration ranged from 53% to 87%. Values calculated by both approaches did not differ significantly from each other. Finally, we compared the 14C contents of soil respired CO2 in the girdled plots with the 14C contents of heterotrophically respired CO2 calculated by three different 14C models. None of the models matched the measured data sufficiently. In addition, we suspect that inherent effects of girdling may cause the 14C content of CO2 respired in the girdled plots to be lower than ‘true’ heterotrophically respired CO2 in an undisturbed plot. Nevertheless, we argue that measurements and modeling of 14C can be developed into a valuable tool for separating heterotrophic and autotrophic soil respiration (e.g. when girdling cannot be performed).  相似文献   

6.
The fate of immobilized N in soils is one of the great uncertainties in predicting C sequestration at increased CO2 and N deposition. In a dual isotope tracer experiment (13C, 15N) within a 4‐year CO2 enrichment (+200 ppmv) study with forest model ecosystems, we (i) quantified the effects of elevated CO2 on the partitioning of N; (ii) traced immobilized N into physically separated pools of soil organic matter (SOM) with turnover rates known from their 13C signals; and (iii) estimated the remobilization and thus, the bio‐availability of newly sequestered C and N. (1) CO2 enrichment significantly decreased NO3? concentrations in soil waters and export from 1.5 m deep lysimeters by 30–80%. Consequently, elevated CO2 increased the overall retention of N in the model ecosystems. (2) About 60–80% of added 15NH415NO3 were retained in soils. The clay fraction was the greatest sink for the immobilized 15N sequestering 50–60% of the total new soil N. SOM associated with clay contained only 25% of the total new soil C pool and had small C/N ratios (<13), indicating that it consists of humified organic matter with a relatively slow turn over rate. This implies that added 15N was mainly immobilized in stable mineral‐bound SOM pools. (3) Incubation of soils for 1 year showed that the remobilization of newly sequestered N was three to nine times smaller than that of newly sequestered C. Thus, inorganic inputs of N were stabilized more effectively in soils than C. Significantly less newly sequestered N was remobilized from soils previously exposed to elevated CO2. In summary, our results show firstly that a large fraction of inorganic N inputs becomes effectively immobilized in relative stable SOM pools and secondly that elevated CO2 can increase N retention in soils and hence it may tighten N cycling and diminish the risk of nitrate leaching to groundwater.  相似文献   

7.
Increased partitioning of carbon (C) to fine roots under elevated [CO2], especially deep in the soil profile, could alter soil C and nitrogen (N) cycling in forests. After more than 11 years of free‐air CO2 enrichment in a Liquidambar styraciflua L. (sweetgum) plantation in Oak Ridge, TN, USA, greater inputs of fine roots resulted in the incorporation of new C (i.e., C with a depleted δ13C) into root‐derived particulate organic matter (POM) pools to 90‐cm depth. Even though production in the sweetgum stand was limited by soil N availability, soil C and N contents were greater throughout the soil profile under elevated [CO2] at the conclusion of the experiment. Greater C inputs from fine‐root detritus under elevated [CO2] did not result in increased net N immobilization or C mineralization rates in long‐term laboratory incubations, possibly because microbial biomass was lower in the CO2‐enriched plots. Furthermore, the δ13CO2 of the C mineralized from the incubated soil closely tracked the δ13C of the labile POM pool in the elevated [CO2] treatment, especially in shallower soil, and did not indicate significant priming of the decomposition of pre‐experiment soil organic matter (SOM). Although potential C mineralization rates were positively and linearly related to total SOM C content in the top 30 cm of soil, this relationship did not hold in deeper soil. Taken together with an increased mean residence time of C in deeper soil pools, these findings indicate that C inputs from relatively deep roots under elevated [CO2] may increase the potential for long‐term soil C storage. However, C in deeper soil is likely to take many years to accrue to a significant fraction of total soil C given relatively smaller root inputs at depth. Expanded representation of biogeochemical cycling throughout the soil profile may improve model projections of future forest responses to rising atmospheric [CO2].  相似文献   

8.
Accurate estimates of the δ13C value of CO2 respired from roots (δ13CR_root) and leaves (δ13CR_leaf) are important for tracing and understanding changes in C fluxes at the ecosystem scale. Yet the mechanisms underlying temporal variation in these isotopic signals are not fully resolved. We measured δ13CR_leaf, δ13CR_root, and the δ13C values and concentrations of glucose and sucrose in leaves and roots in the C4 grass Sporobolus wrightii and the C3 tree Prosopis velutina in a savanna ecosystem in southeastern Arizona, USA. Night‐time variation in δ13CR_leaf of up to 4.6 ± 0.6‰ in S. wrightii and 3.0 ± 0.6‰ in P. velutina were correlated with shifts in leaf sucrose concentration, but not with changes in δ13C values of these respiratory substrates. Strong positive correlations between δ13CR_root and root glucose δ13C values in P. velutina suggest large diel changes in δ13CR_root (were up to 3.9‰) influenced by short‐term changes in δ13C of leaf‐derived phloem C. No diel variation in δ13CR_root was observed in S. wrightii. Our findings show that short‐term changes in δ13CR_leaf and δ13CR_root were both related to substrate isotope composition and concentration. Changes in substrate limitation or demand for biosynthesis may largely control short‐term variation in the δ13C of respired CO2 in these species.  相似文献   

9.
The variations of δ13C in leaf metabolites (lipids, organic acids, starch and soluble sugars), leaf organic matter and CO2 respired in the dark from leaves of Nicotiana sylvestris and Helianthus annuus were investigated during a progressive drought. Under well‐watered conditions, CO2 respired in the dark was 13C‐enriched compared to sucrose by about 4‰ in N. sylvestris and by about 3‰ and 6‰ in two different sets of experiments in H. annuus plants. In a previous work on cotyledonary leaves of Phaseolus vulgaris, we observed a constant 13C‐enrichment by about 6‰ in respired CO2 compared to sucrose, suggesting a constant fractionation during dark respiration, whatever the leaf age and relative water content. In contrast, the 13C‐enrichment in respired CO2 increased in dehydrated N. sylvestris and decreased in dehydrated H. annuus in comparison with control plants. We conclude that (i) carbon isotope fractionation during dark respiration is a widespread phenomenon occurring in C3 plants, but that (ii) this fractionation is not constant and varies among species and (iii) it also varies with environmental conditions (water deficit in the present work) but differently among species. We also conclude that (iv) a discrimination during dark respiration processes occurred, releasing CO2 enriched in 13C compared to several major leaf reserves (carbohydrates, lipids and organic acids) and whole leaf organic matter.  相似文献   

10.
It has been hypothesized that greater production of total nonstructural carbohydrates (TNC) in foliage grown under elevated atmospheric carbon dioxide (CO2) will result in higher concentrations of defensive compounds in tree leaf litter, possibly leading to reduced rates of decomposition and nutrient cycling in forest ecosystems of the future. To evaluate the effects of elevated atmospheric CO2 on litter chemistry and decomposition, we performed a 111 day laboratory incubation with leaf litter of trembling aspen (Populus tremuloides Michaux) produced at 36 Pa and 56 Pa CO2 and two levels of soil nitrogen (N) availability. Decomposition was quantified as microbially respired CO2 and dissolved organic carbon (DOC) in soil solution, and concentrations of nonstructural carbohydrates, N, carbon (C), and condensed tannins were monitored throughout the incubation. Growth under elevated atmospheric CO2 did not significantly affect initial litter concentrations of TNC, N, or condensed tannins. Rates of decomposition, measured as both microbially respired CO2 and DOC did not differ between litter produced under ambient and elevated CO2. Total C lost from the samples was 38 mg g?1 litter as respired CO2 and 138 mg g?1 litter as DOC, suggesting short‐term pulses of dissolved C in soil solution are important components of the terrestrial C cycle. We conclude that litter chemistry and decomposition in trembling aspen are minimally affected by growth under higher concentrations of CO2.  相似文献   

11.
The contribution of leaf litter decomposition to total soil CO2 efflux (FL/F) was evaluated in a beech (Fagus sylvatica L.) forest in eastern France. The Keeling‐plot approach was applied to estimate the isotopic composition of respired soil CO2 from soil covered with either control (?30.32‰) or 13C‐depleted leaf litter (?49.96‰). The δ13C of respired soil CO2 ranged from ?25.50‰ to ?22.60‰ and from ?24.95‰ to ?20.77‰, respectively, with depleted or control litter above the soil. The FL/F ratio was calculated by a single isotope linear mixing model based on mass conservation equations. It showed seasonal variations, increasing from 2.8% in early spring to about 11.4% in mid summer, and decreasing to 4.2% just after leaf fall. Between December 2001 and December 2002, cumulated F and FL reached 0.98 and 0.08 kgC m?2, respectively. On an annual basis, decomposition of fresh leaf litter accounted for 8% of soil respiration and 80% of total C loss from fresh leaf litter. The other fraction of carbon loss during leaf litter decomposition that is assumed to have entered the soil organic matter pool (i.e. 20%) represents only 0.02 kgC m?2.  相似文献   

12.
The carbon isotope composition (δ13C) of C3 ecosystems is sensitive to water availability, and provides important information for the assessment of terrestrial carbon (C) sink/source activity. Here, we report the effects of plant available soil water (PAW) on community 13C signatures of temperate humid grassland. The 5‐year study was conducted on pastures exhibiting a large range of PAW capacity that were located on two site types: peat and mineral soils. The data set included the centennial drought year 2003, and data from wet years (2000 and 2002). Seasonal variation of PAW was modeled using PAW capacity of each pasture, precipitation inputs and evapotranspiration estimates. Community 13C signatures were derived from the δ13C of vegetation and segments of tail switch hair of cattle grown while grazing pastures. Hair 13C signatures provided an assimilation‐weighted 13C signal that integrated both spatial (paddock‐scale) and temporal (grazing season) variation of 13C signatures on a pasture. The δ13C of hair and vegetation increased with decreasing modeled PAW in the same way on mineral and peat soils. But, at a given PAW, the δ13C of hair was 2.6‰ less negative than that of vegetation, reflecting the diet‐hair isotopic shift. Furthermore, the δ13C of hair and vegetation on peat soil pastures was 0.5‰ more negative than on pastures situated on mineral soil. This may have resulted from a ~10 ppm CO2 enrichment of canopy air derived from ongoing peat mineralization. Community‐scale season‐mean 13C discrimination (Δ) exhibited a saturation‐type response towards season‐mean modeled PAW (r2=0.78), and ranged between 19.8‰ on soils with low PAW capacity during the drought year of 2003, and 21.4‰ on soils with high PAW capacity in a wet year. This indicated relatively small variation in season‐mean assimilation‐weighted pi/pa (0.68–0.75) between contrasting sites and years. However, this range is similar to that reported in other studies, which encompass the range from subtropical arid to humid temperate grassland. Furthermore, the tight relationship between season‐mean Δ and modeled mean PAW suggests that PAW may be used as proxy for Δ.  相似文献   

13.
Global warming, increasing CO2 concentration, and environmental disturbances affect grassland communities throughout the world. Here, we report on variations in the C3/C4 pattern of Inner Mongolian grassland derived from soil and vegetation. Soil samples from 149 sites covering an area of approximately 250 000 km2 within Inner Mongolia, People's Republic of China were analyzed for the isotopic composition (δ13C) of soil organic carbon (SOC). The contrast in δ13C between C3 and C4 plants allowed for calculation of the C3/C4 ratio from δ13C of SOC with a two‐member mixing model, which accounted for influences of aridity and altitude on δ13C of the C3 end‐member and for changes in δ13C of atmospheric CO2. Maps were created geostatistically, and showed a substantially lower C4 abundance in soil than in recent vegetation (?10%). The difference between soil and vegetation varied regionally and was most pronounced within an E–W belt along 44°N and in a mountainous area, suggesting a spread of C4 plants toward northern latitudes (about 1°) and higher altitudes. The areas of high C4 abundance for present vegetation and SOC were well delineated by the isotherms of crossover temperature based on the climatic conditions of the respective time periods. Our study indicates that change in the patterns of C3/C4 composition in the Inner Mongolia grassland was mainly triggered by increasing temperature, which overrode the antagonistic effect of rising CO2 concentrations.  相似文献   

14.
We aimed to quantify the separate effects of photosynthetic and postphotosynthetic carbon isotope discrimination on δ13C of the fast‐turn‐over carbon pool (water soluble organic carbon and CO2 emitted from heterotrophic tissues), including their diel variation, along the pathway of carbon transport from the foliage to the base of the stem. For that purpose, we determined δ13C in total and water‐soluble organic matter of the foliage plus δ13C and δ18O in phloem organic matter of twigs and at three heights along the stem of Pinus sylvestris over a nine‐day period, including four measurements per day. These data were related to meteorological and photosynthesis parameters and to the δ13C of stem‐emitted CO2. In the canopy (foliage and twigs), the δ13C of soluble organic matter varied diurnally with amplitudes of up to 1.9‰. The greatest 13C enrichment was recorded during the night/early morning, indicating a strong influence of starch storage and remobilization on the carbon isotope signatures of sugars exported from the leaves. 13C enrichment of soluble organic matter from the leaves to the twig phloem and further on to the phloem of the stem was supposed to be a result of carbon isotope fractionation associated with metabolic processes in the source and sink tissues. CO2 emitted from the stem was enriched by 2.3–5.2‰ compared with phloem organic matter. When day‐to‐day variation was addressed, water‐soluble leaf δ13C and twig phloem δ18O were strongly influenced by ci/ca and stomatal conductance (Gs), respectively. These results show that both photosynthetic and postphotosynthetic carbon isotope fractionation influence δ13C of organic matter over time, and over the length of the basipetal transport pathway. Clearly, these influences on the δ13C of respired CO2 must be considered when using the latter for partitioning of ecosystem CO2 fluxes or when the assessment of δ13C in organic matter is applied to estimate environmental effects in ci/ca.  相似文献   

15.
The δ13C values of atmospheric carbon dioxide (CO2) can be used to partition global patterns of CO2 source/sink relationships among terrestrial and oceanic ecosystems using the inversion technique. This approach is very sensitive to estimates of photosynthetic 13C discrimination by terrestrial vegetation (ΔA), and depends on δ13C values of respired CO2 fluxes (δ13CR). Here we show that by combining two independent data streams – the stable isotope ratios of atmospheric CO2 and eddy‐covariance CO2 flux measurements – canopy scale estimates of ΔA can be successfully derived in terrestrial ecosystems. We also present the first weekly dataset of seasonal variations in δ13CR from dominant forest ecosystems in the United States between 2001 and 2003. Our observations indicate considerable summer‐time variation in the weekly value of δ13CR within coniferous forests (4.0‰ and 5.4‰ at Wind River Canopy Crane Research Facility and Howland Forest, respectively, between May and September). The monthly mean values of δ13CR showed a smaller range (2–3‰), which appeared to significantly correlate with soil water availability. Values of δ13CR were less variable during the growing season at the deciduous forest (Harvard Forest). We suggest that the negative correlation between δ13CR and soil moisture content observed in the two coniferous forests should represent a general ecosystem response to the changes in the distribution of water resources because of climate change. Shifts in δ13CR and ΔA could be of sufficient magnitude globally to impact partitioning calculations of CO2 sinks between oceanic and terrestrial compartments.  相似文献   

16.
We examined the effects of elevated atmospheric CO2 on soil carbon decomposition in an experimental anaerobic wetland system. Pots containing either bare C4‐derived soil or the C3 sedge Scirpus olneyi planted in C4‐derived soil were incubated in greenhouse chambers at either ambient or twice‐ambient atmospheric CO2. We measured CO2 flux from each pot, quantified soil organic matter (SOM) mineralization using δ13C, and determined root and shoot biomass. SOM mineralization increased in response to elevated CO2 by 83–218% (P<0.0001). In addition, soil redox potential was significantly and positively correlated with root biomass (P= 0.003). Our results (1) show that there is a positive feedback between elevated atmospheric CO2 concentrations and wetland SOM decomposition and (2) suggest that this process is mediated by the release of oxygen from the roots of wetland plants. Because this feedback may occur in any wetland system, including peatlands, these results suggest a limitation on the size of the carbon sink presented by anaerobic wetland soils in a future elevated‐CO2 atmosphere.  相似文献   

17.
The carbon isotope composition of an animals breath reveals the composition of the nutrients that it catabolizes for energy. Here we describe the use of Keeling plots, a method widely applied in ecosystem ecology, to measure the 13C of respired CO2 of small vertebrates. We measured the 13C of Rufous Hummingbirds (Selasphorus rufus) in the laboratory and of Mourning (Zenaida macroura) and White-winged (Z. asiatica) Doves in the field. In the laboratory, when hummingbirds were fed a sucrose based C3 diet, the 13C of respired CO2 was not significantly different from that of their diet (13CC3 diet). The 13C of respired CO2 for C3 fasted birds was slightly, albeit significantly, depleted in 13C relative to 13CC3 diet. Six hours after birds were shifted to a sucrose based C4 diet, the isotopic composition of their breath revealed that birds were catabolizing a mixture of nutrients derived from both the C3 and the C4 diet. In the field, the 13C of respired CO2 from Mourning and White-winged Doves reflected that of their diets: the CAM saguaro cactus (Carnegeia gigantea) and C3 seeds, respectively. Keeling plots are an easy, effective and inexpensive method to measure 13C of respired CO2 in the lab and the field.  相似文献   

18.
While there is currently intense effort to examine the 13C signal of CO2 evolved in the dark, less is known on the isotope composition of day‐respired CO2. This lack of knowledge stems from technical difficulties to measure the pure respiratory isotopic signal: day respiration is mixed up with photorespiration, and there is no obvious way to separate photosynthetic fractionation (pure ci/ca effect) from respiratory effect (production of CO2 with a different δ13C value from that of net‐fixed CO2) at the ecosystem level. Here, we took advantage of new simple equations, and applied them to sunflower canopies grown under low and high [CO2]. We show that whole mesocosm‐respired CO2 is slightly 13C depleted in the light at the mesocosm level (by 0.2–0.8‰), while it is slightly 13C enriched in darkness (by 1.5–3.2‰). The turnover of the respiratory carbon pool after labelling appears similar in the light and in the dark, and accordingly, a hierarchical clustering analysis shows a close correlation between the 13C abundance in day‐ and night‐evolved CO2. We conclude that the carbon source for respiration is similar in the dark and in the light, but the metabolic pathways associated with CO2 production may change, thereby explaining the different 12C/13C respiratory fractionations in the light and in the dark.  相似文献   

19.
CO2 efflux from soil depends on the availability of organic substances respired by roots and microorganisms. Therefore, photosynthetic activity supplying carbohydrates from leaves to roots and rhizosphere is a key driver of soil CO2. This fact has been overlooked in most soil CO2 studies because temperature variations are highly correlated with solar radiation and mask the direct effect of photosynthesis on substrate availability in soil. This review highlights the importance of photosynthesis for rhizosphere processes and evaluates the time lag between carbon (C) assimilation and CO2 release from soil. Mechanisms and processes contributing to the lag were evaluated. We compared the advantages and shortcomings of four main approaches used to estimate this time lag: (1) interruption of assimilate flow from leaves into the roots and rhizosphere, and analysis of the decrease of CO2 efflux from soil, (2) time series analysis (TSA) of CO2 fluxes from soil and photosynthesis proxies, (3) analysis of natural δ13C variation in CO2 with photosynthesis‐related parameters or δ13C in the phloem and leaves, and (4) pulse labeling of plants in artificial 14CO2 or 13CO2 atmosphere with subsequent tracing of 14C or 13C in CO2 efflux from soil. We concluded that pulse labeling is the most advantageous approach. It allows clear evaluation not only of the time lag, but also of the label dynamics in soil CO2, and helps estimate the mean residence time of recently assimilated C in various above‐ and belowground C pools. The impossibility of tracing the phloem pressure–concentration waves by labeling approach may be overcome by its combination with approaches based on TSA of CO2 fluxes and its δ13C with photosynthesis proxies. Numerous studies showed that the time lag for grasses is about 12.5±7.5 (SD) h. The time lag for mature trees was much longer (~4–5 days). Tree height slightly affected the lag, with increasing delay of 0.1 day m?1. By evaluating bottle‐neck processes responsible for the time lag, we conclude that, for trees, the transport of assimilates in phloem is the rate‐limiting step. However, it was not possible to predict the lag based on the phloem transport rates reported in the literature. We conclude that studies of CO2 fluxes from soil, especially in ecosystems with a high contribution of root‐derived CO2, should consider photosynthesis as one of the main drivers of C fluxes. This calls for incorporating photosynthesis in soil C turnover models.  相似文献   

20.
We report an analysis of both the long‐ and short‐term drivers of the carbon (C) isotope composition (δ13C) values of current year needles of Pinus sylvestris L. linked to changing atmospheric carbon dioxide (CO2) concentrations (ca) and climate using data from a uniquely long‐term nitrogen (N) fertilization experiment in the north of Sweden (consisting of three N dosage levels and a control treatment) from 1970 until 2002. N loading produced trees with less negative δ13C of foliage, by around 0.45‰ on average, with the difference in δ13C between control and N treatments not dependant upon N dosage. The average δ13C values decreased at a rate of around 0.03‰ yr−1, even after accounting for the Suess effect (the decrease in the atmospheric CO2δ13C due to anthropogenic emissions of isotopically light CO2). This decrease is large enough to cause a significant, progressive change in the δ13C down through a soil profile. Modelled values of plant intrinsic water use efficiency (WUEi) and the ratio of leaf internal to external [CO2] (ci/ca) showed that this was the result of ci increasing in parallel with ca (while ci/ca increased), thus causing little change in WUEi over the 32 years of study. The residuals from the relationships between year and δ13C were used to examine the impact of climate on the interannual variation of C isotope composition of needles. This included the use of a fire hazard index (FHI) model, which integrates climatic factors known to influence plant stomatal conductance and hence δ13C. The FHI produced the best fit with δ13C values when climate data were averaged over the whole growth season (for control plots) and for July for all the N treatments, explaining ca. 60% of the total interannual variation in δ13C. Further, trees from the N treatments appeared more susceptible to air‐humidity‐based climate parameters, as seen from higher correlation coefficients, than were control trees. Thus, our data suggest the possibility of increased susceptibility to drought conditions in ecosystems with moderate to high N deposition rates. Also, there is the possibility that, because there was no apparent change in WUEi of P. sylvestris in this ecosystem over the last 32 years, the rate of sequestration of C into boreal ecosystems may not increase with ca, as has been predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号