首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
1. 1. The 31P-NMR characteristics of intact rat liver mitochondria, mitoplasts and isolated inner mitochondrial membranes, as well as mitochondrial phosphatidylethanolamine and phosphatidylcholine, have been examined.
2. 2. Rat liver mitochondrial phosphatidylethanolamine hydrated in excess aqueous buffer undergoes a bilayer-to-hexagonal (HII) polymorphic phase transition as the temperature is increased through 10°C, and thus prefers the HII) arrangement at 37°C. Rat liver mitochondrial phosphatidylcholine, on the other hand, adopts the bilayer phase at 37°C.
3. 3. Total inner mitochondrial membrane lipids, dispersed in an excess of aqueous buffer, exhibit 31P-NMR spectra consistent with a bilayer arrangement for the majority of the endogeneous phospholipids; the remainder exhibit spectra consistent with structure allowing isotropic motional averaging. Addition of Ca2+ results in hexagonal (HII) phase formation for a portion of the phospholipids, as well as formation of ‘lipidic particles’ as detected by freeze-fracture techniques.
4. 4. Preparations of inner mitochondrial membrane at 4 and 37°C exhibit 31P-NMR spectra consistent with a bilayer arrangement of the large majority of the endogenous phospholipids which are detected. Approx. 10% of the signal intensity has characteristics indicating isotropic motional averaging processes. Addition of Ca2+ results in an increase in the size of this component, which can become the dominant spectral feature.
5. 5. Intact mitochondria, at 4°C, exhibit 31P-NMR spectra arising from both phospholipid and small water-soluble molecules (ADP, Pi, etc.). The phospholipid spectrum is characteristic of a bilayer arrangement. At 37°C the phospholipids again give spectra consistent with a bilayer; however, the labile nature of these systems is reflected by increased isotropic motion at longer (at least 30 min) incubation times.
6. 6. It is suggested that the uncoupling action of high Ca2+ concentrations on intact mitochondria may be related to a Ca2+-induced disruption of the integrity of the inner mitochondrial phospholipid bilayer. Further, the possibility that non-bilayer lipid structures such as inverted micelles occur in the inner mitochondrial membrane cannot be excluded.
Keywords: 31P-NMR; Inner mitochondrial membrane; Phosphatidylethanolamine; Ca2+; Hexagonal (HII) phase; Lipidic particle  相似文献   

2.
F. Feo  R.A. Canuto  R. Garcea  O. Brossa 《BBA》1978,504(1):1-14
The phospholipid depletion of rat liver mitochondria, induced by acetone-extraction or by digestion with phospholipase A2 or phospholipase C, greatly inhibited the activity of NADH-cytochrome c reductase (rotenone-insensitive). A great decrease of the reductase activity also occurred in isolated outer mitochondrial membranes after incubation with phospholipase A2. The enzyme activity was almost completely restored by the addition of a mixture of mitochondrial phospholipids to either lipid-deficient mitochondria, or lipid-deficient outer membranes. The individual phospholipids present in the outer mitochondrial membrane induced little or no stimulation of the reductase activity. Egg phosphatidylcholine was the most active phospholipid, but dipalmitoyl phosphatidylcholine was almost ineffective. The lipid depletion of mitochondria resulted in the disappearance of the non-linear Arrhenius plot which characterized the native reductase activity. A non-linear plot almost identical to that of the native enzyme was shown by the enzyme reconstituted with mitochondrial phospholipids. Triton X-100, Tween 80 or sodium deoxycholate induced only a small activation of NADH-cytochrome c reductase (rotenone-insensitive) in lipiddeficient mitochondria. The addition of cholesterol to extracted mitochondrial phospholipids at a 1 : 1 molar ratio inhibited the reactivation of NADH-cytochrome c reductase (rotenone-insensitive) but not the binding of phospholipids to lipid-deficient mitochondria or lipid-deficient outer membranes.These results show that NADH-cytochrome c reductase (rotenone-insensitive) of the outer mitochondrial membrane requires phospholipids for its activity. A mixture of phospholipids accomplishes this requirement better than individual phospholipids or detergents. It also seems that the membrane fluidity may influence the reductase activity.  相似文献   

3.
Cytochrome P-450scc, which catalyses the conversion of cholesterol to pregnenolone in steroidogenic tissues, can be incorporated into artificial phospholipid vesicles and cholesterol binding to the cytochrome is affected by the composition of the vesicles. We have purified the phospholipids from the inner mitochondrial membrane fraction of the bovine corpus luteum where the cytochrome is located. The composition in mol % was 49% phosphatidylcholine, 34% phosphatidylethanolamine, 8.7% cardiolipin, 6.4% lysophosphatidylethanolamine and 1.5% phosphatidylinositol. The ratio of cholesterol to phospholipid (mol/mol) in the inner membrane fraction was 0.14 to 1. The Km for cholesterol of purified luteal cytochrome P-450scc incorporated into vesicles prepared from the total inner mitochondrial membrane phospholipids was 0.063 mol of cholesterol per mol of phospholipid. Removal of the cardiolipin component of the inner mitochondrial membrane phospholipids prior to preparation of vesicles caused a four fold increase in the Kd of cytochrome P-450 for cholesterol and a two fold increase in Km. The data suggests that in the inner mitochondrial membrane of the bovine corpus luteum the cholesterol concentration is less than saturating for cytochrome P-450scc.  相似文献   

4.
The effect of elevated heliox pressure (101 ATA) on activity of Na+,K+-ATP-ase and some characteristics of fatty acid composition was studied in membrane phospholipids of trout and rat brain synaptosomal and mitochondrial fractions. The Na+,K+-ATP-ase activity was shown to decrease by 25% in both fractions of the rat brain; in mitochondrial fraction of the trout brain it decreased by 47%, while in synaptosomal fraction, only by 11%. It has also been established that under experimental conditions, the unsaturation index of fatty acids of phosphatidylcholine and phosphatidylethanolamine of trout synaptosomes decreased, with no changes in these lipids in mitochondrial fraction. The phosphatidylcholine unsaturation index in rats did not practically change in both fractions, while in rat phosphatidylethanolamine it increased in mitochondrial fraction and slightly decreased in synaptosomal fraction. Thus, under conditions of high pressure the reduction of the enzyme activity is also determined, specifically, by peculiarities of the phospholipid fatty acid composition in the subcellular fractions studied. A possibility of changes of the enzyme activity as a result of transition of its lipid component from the liquid crystalline to the gel state under effect of an enhancement of lipid peroxidation under conditions of elevated pressure is discussed.  相似文献   

5.
The metabolism of phospholipids in mouse brain slices   总被引:1,自引:1,他引:0       下载免费PDF全文
1. Slices of mouse brain grey matter were incubated with [32P]phosphate and [1-14C]acetate. Doubly labelled phospholipids were extracted from subcellular fractions prepared from the slices in a mixture of metabolic inhibitors, under conditions where there was negligible change in radioactive labelling during the preparation. Two tissue fractions were studied in detail; one contained a high proportion of mitochondria and the other was mainly microsomal. 2. In all tissue fractions the highest incorporations of both [32P]phosphate and [1-14C]acetate occurred into phosphatidylcholine. 3. After incubation for 1hr., the 32P/14C ratios for phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid in the mitochondrial fraction were similar to those in the microsomal fraction. 4. The 32P/14C ratios were similar in phosphatidylcholine and phosphatidylethanolamine and much lower than those in phosphatidic acid and phosphatidylinositol.  相似文献   

6.
The phospholipid requirement of the (Ca2+ + Mg2+)-ATPase present in a membrane fraction from human platelets was studied using various purified phospholipases. Only those phospholipases, which hydrolyse the negatively charged phospholipids, inhibited the (Ca2+ + Mg2+)-ATPase activity. The ATPase activity could be restored by adding mixed micelles of Triton X-100 and phosphatidylserine or phosphatidylinositol. Micelles with phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine or sphingomyelin could not be used for reconstitution and inhibited the activity of the native enzyme.  相似文献   

7.
Sclerin (SCL) stimulated the oxidation and the incorporation into the phospholipids of Na-[1-14C]-oleate in mitochondria isolated from rat liver, preventing the depression of the phosphorylating functions and protecting 2,4-dinitrophenol (DNP)-activated ATPase in mitochondria during incubation with oleate. Also, SCL markedly enhanced the activity of phospholipase to hydrolyze endogenous substrates in mitochondria. The increase in the activity was due to reconstruction of phospholipids through esterification of oleate in mitochondrial membrane, but not to the de novo enzyme synthesis. It was concluded that the level of endogenous phospholipase in mitochondria during incubation reflects the energy- dependent reacylation of the lysophospholipids produced by the action of phospholipase in mitochondrial membrane.  相似文献   

8.
The phospholipids of intact microsomal membranes were hydrolysed 50% by phospholipase C of Clostridium welchii, without loss of the secretory protein contents of the vesicle, which are therefore not permeable to the phospholipase. Phospholipids extracted from microsomes and dispersed by sonication were hydrolysed rapidly by phospholipase C-Cl. welchii with the exception of phosphatidylinositol. Assuming that only the phospholipids of the outside of the bilayer of the microsomal membrane are hydrolysed in intact vesicles, the composition of this leaflet was calculated as 84% phosphatidylcholine, 8% phosphatidylethanolamine, 9% sphingomyelin and 4% phosphatidylserine, and that of the inner leaflet 28% phosphatidylcholine, 37% phosphatidylethanolamine, 6% phosphatidylserine and 5% sphingomyelin. Microsomal vesicles were opened and their contents released in part by incubation with deoxycholate (0.098%) lysophosphatidylcholine (0.005%) or treatment with the French pressure cell. Under these conditions, hydrolysis of the phospholipids by phospholipase C-Cl. welchii was increased and this was mainly due to increased hydrolysis of those phospholipids assigned to the inner leaflet of the bilayer, phosphatidylethanolamine and phosphatidylserine. Phospholipase A2 of bee venom and phospholipase C of Bacillus cereus caused rapid loss of vesicle contents and complete hydrolysis of the membrane phospholipids, with the exception of sphingomyelin which is not hydrolysed by the former enzyme.  相似文献   

9.
The incorporation of 1-[14C]-palmitate into the lipids of microsomal and mitochondrial membranes from peas (Pisum sativum L., var. Massey Gem) and the relative effects of ATP and coenzyme A(CoA) on the process have been examined. Both mitochondrial and microsomal pellets possessed acyltransferase capacity, which responded similarly to additions of ATP and CoA. Incorporation of 1-[14C]-palmitate into phospholipid was promoted by ATP alone, but incorporation into triacylglycerols was not. The addition of CoA alone did not promote incorporation. The addition of CoA and ATP further promoted incorporation into phospholipids and also stimulated incorporation into triacylglycerol. It was concluded that some CoA must be membrane-bound and available for phospholipid but not for triacylglycerol synthesis. Phospholipase A, treatment of microsomal and mitochondrial phospholipids, previously labelled with 1-[14C]-palmitate in the presence of ATP and coenzyme A, showed that incorporation occurred only into the 2-position of phosphatidyl choline and phosphatidyl ethanolamine. There was enough lyso-phosphatidyl choline in the phospholipids of microcomal membranes (obtained from a 100 000 g pellet) to account for the observed incorporations of palmitate. Using microsomal membranes whose fatty acyl groups were pre-labelled by incubation of tissue with 1-[14C]-acetate, no evidence of acyl exchange was found during subsequent incubations with unlabelled palmitate. Similar observations were made using oleate instead of palmitate. It was concluded that acyl-CoA: 1-acylglycerophosphocholine o-acyltransferase (E.C. 2.3.1.23) was responsible for the observed acyl transfer to phosphatidyl choline. Sucrose gradient analysis of whole homogenates and of the 10 000 g pellet showed that both mitochondrial and rough endoplasmic reticulum possessed acyltransferase capacity, with the bulk of this residing in the mitochondria. The possible significance of this widely distributed membrane activity is briefly discussed.  相似文献   

10.
The phospholipid composition, fatty acid pattern and cholesterol content are studied in mitochondria of red lateral muscle of carp acclimated to high and low environmental temperatures.The results of the experiments are: mitochondria from cold-acclimated carp contain higher proportions of ethanolamine phosphatides than mitochondria from warm-acclimated fish, the opposite is true for the choline phosphatides. Thus, at constant pH, the membrane phospholipids are slightly more negatively charged at low acclimation temperature. The total plasmalogen content is reduced in the cold; this reduction is caused by a decrease in the proportion of the choline plasmalogens. The ethanolamine phosphoglycerides contain approx. 20% of the alk-1-enyl acyl type, irrespective of the acclimation temperature. There is no temperature-dependent difference in the low proportion of cholesterol.The fatty acids of total mitochondrial phospholipids are characterized by large amounts of the n-3 and n-6 families. The ratio of unsaturated to saturated fatty acids and the unsaturation index are remarkably higher than those reported for comparable mammalian phospholipids. Cold acclimation of carp does not significantly increase the unsaturation of total phospholipids. A fatty acid analysis of the main isolated phospholipids, however, shows that cold acclimation considerably increases unsaturation of the neutral phosphatidylcholine, whereas it dramatically decreases unsaturation of the negatively charged cardiolipin. It is suggested that the observed fatty acid substitution in phosphatidylcholine indicates a temperature-induced fluidity adaptation within the mitochondrial lipid bilayer, whereas the inverse acclimation pattern of cardiolipin provides a suitable lipid to accommodate the temperature-dependent modifications in the dynamic surface shape of integral membrane proteins.  相似文献   

11.
The transfer of phospholipids from the endoplasmic reticulum to the inner mitochondrial membrane was investigated by pulse labeling invivo. With [3H]glycerol microsomal phosphatidylethanolamine and phosphatidylcholine were rapidly labeled during the first 30 min; while maximum incorporation into the inner mitochondrial membrane occurred only after about 5 hours. It appears that the invivo transfer of these phospholipids between the two membrane compartments is a relatively slow process.  相似文献   

12.
The role of the lamellar body of the type II pneumocyte in the synthesis and storage of the phospholipids of the surfactant lipoprotein lining the alveolar surface has been investigated. Electron microscopy has been used to establish the purity of the isolated lamellar body, microsomal, and mitochondrial fractions. Additional proof of lamellar body purity was obtained by enzyme marker studies. The phospholipid:protein ratio of each of the above fractions was determined as well as that of surfactant lipoprotein isolated from rat lung. Lamellar body phospholipid:protein ratio was highest, 3.7 μmol of lipid phosphorus/mg of lung protein. The phospholipid composition of the lamellar body fraction was found to be similar to that of the isolated surfactant lipoprotein. Lamellar body phosphatidylcholine and phosphatidylglycerol each contained over 90% saturated fatty acids. The lamellar body fraction was found to possess significant acyltransferase activity between [1-14C]palmitoyl-CoA and phosphatidylcholine. This activity was somewhat higher than in the microsomal fraction and much greater than in the mitochondrial fraction. The activity in all fractions was stimulated by Ca2+ and Mg2+. [1-14C]oleoyl-CoA did not serve as an effective acyl donor. When 1-palmitoyl-2-lysophosphatidylcholine was used as the acceptor molecule and [1-14C]palmitoyl-CoA the donor, acyltransferase activity was increased over that found with phosphatidylcholine as donor in all fractions. The microsomal fraction had the greatest activity and the lamellar body fraction the least. The data obtained support the hypothesis that the lamellar body is involved in the synthesis and storage of the phospholipids of the surfactant lipoprotein complex.  相似文献   

13.
The effect of the bacterial cytolytic toxin, streptolysin S, on liposomes composed of various phospholipids was investigated. Large unilamellar vesicles containing [14C]sucrose were prepared by reverse-phase evaporation, and membrane damage produced by the toxin was measured by following the release of labeled marker. The net charge of the liposomes had little or no effect on their susceptibility to steptolysin S and the toxin was about equally effective on liposomes composed of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylglycerol. Experiments with liposomes composed of synthetic phospholipids showed that the ability of the toxin to produce membrane damage depended on the degree of unsaturation of the fatty acyl chains. The order of sensitivity was C18 : 2 phosphatidylcholine > C18 : 1 phosphatidylcholine > C18 : 0 phosphatidylcholine = C16 : 0 phosphatidylcholine. Liposomes containing the latter two phospholipids were virtually unaffected by streptolysin S, and experiments with C18 : 0 phosphatidylcholine suggested that toxin activity does not bind to liposomes composed of phospholipids with saturated fatty acyl chains. The inclusion of 40 mol% cholesterol in C16 : 0 phosphatidylcholine and C18 : 0 phosphatidylcholine liposomes made these vesicles sensitive to streptolysin S. Egg phosphatidylcholine liposomes, which were unaffected at 0°C and 4°C became susceptible to the toxin at these temperatures when cholesterol was included. Liposomes composed of C14 : 0 phosphatidylcholine were unaffected by streptolysin S at temperatures below the chain-melting transition temperature (23°C) of this phospholipid, but became increasingly susceptible above this temperature. The results suggest that the fluidity of the phospholipid hydrocarbon chains in the membrane is important in streptolysin S action.  相似文献   

14.
Summary The effects of temperature and pressure on Na+/K+-adenosine triphosphatases (Na+/K+-ATPases) from gills of marine teleost fishes were examined over a range of temperatures (10–25°C) and pressures (1–680 atm). The relationship between gill membrane fluidity and Na+/K+-ATPase activity was studied using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The increase in temperature required to offset the membrane ordering effects of high pressure was 0.015–0.025°C·atm-1, the same coefficient that applied to Na+/K+-ATPase activities. Thus, temperature-pressure combinations yielding the same Na+/K+-ATPase activity also gave similar estimates of membrane fluidity. Substituion of endogenous lipids with lipids of different composition altered the pressure responses of Na+/K+-ATPase. Na+/K+-adenosine triphosphatase became more sensitive to pressure in the presence of chicken egg phosphatidylcholine, but phospholipids isolated from fish gills reduced the inhibition by pressure of Na+/K+-ATPase. Cholesterol increased enzyme pressure sensitivity. Membrane fluidity and pressure sensitivity of Na+/K+-ATPase were correlated, but the effects of pressure also dependent on the source of the enzyme. Our results suggest that pressure adaptation of Na+/K+-ATPase is the result of both changes in the primary structure of the protein and homeoviscous adaptation of the lipid environment.Abbreviations EDTA; DPH 1,6-diphenyl-1,3,5-hexatriene - PC phosphatidylcholine - PL phospholipid - SDH succinate dehydrogenase  相似文献   

15.
The influence of cholesterol on ADP-ATP exchange activity was measured in the reconstituted system, submitochondrial (sonic) particles and mitoplasts (isolated inner mitochondrial membranes). In the reconstituted system, cholesterol markedly enhanced the nucleotide-uptake rate, when added to membranes of various compositions i.e., pure phosphatidylcholine, phosphatidylcholine/phosphatidylethanolamine mixtures and crude egg yolk phospholipids. The stimulation was linearly dependent on the amount of incorporated cholesterol up to 7–13% added sterol, depending on the type of phospholipids. Cholesterol influenced neither the amount of actively reconstituted carrier proteins nor the affinity of the carrier towards nucleotides nor the breakpoint of temperature dependence in the Arrhenius plot. The stimulation could be correlated with an increase in the molecular activity of the carrier protein. The influence of cholesterol was also measured in the natural environment of the carrier protien, i.e., the inner mitochondrial membrane. Both with submitochondrial particles from beef heart and especially with mitoplasts from rat liver, incorporation of cholesterol by fusion with sterol-containing liposomes led to a stimulation of ADP-ATP exchange activity, comparable to the effect in the reconstituted system. These results are discussed in relation to the absence of cholesterol in the inner mitochondrial membrane and in the view of the generally accepted ordering effect of cholesterol on phospholipid bilayers.  相似文献   

16.
Plasma membranes were isolated from roots of bean (Phaseolus vulgaris L.) plants cultured on phosphate sufficient or phosphate deficient medium. The phospholipid composition of plasma membranes was analyzed and compared with that of the microsomal fraction. Phosphate deficiency had no influence on lipid/protein ratio in microsomal as well as plasma membrane fraction. In phosphate deficient roots phospholipid content was lower in the plasma membrane, but did not change in the microsomal fraction. Phosphatidylcholine and phosphatidylethanolamine were two major phospholipids in plasmalemma and microsomal membranes (80 % of the total). After two weeks of phosphate starvation a considerable decrease (about 50 %) in phosphatidylcholine and phosphatidylethanolamine in microsomal membranes was observed. The decline in two major phospholipids was accompanied by an increase in phosphatidic acid and lysophosphatidylcholine content. The effect of alterations in plasma membrane phospholipids on membrane function e.g. nitrate uptake is discussed.  相似文献   

17.
It is generally recognized nowadays that active lipid metabolism takes place in the nucleus of a mammalian cell. Experimental data testify to the biosynthesis of polyphosphoinositides and phosphatidylcholine and reveal corresponding enzymes within nuclei of mammalian cells. These findings suggest that lipidmediated signaling pathways in nuclei operate independently of lipid-mediated regulatory mechanisms functioning in membranes and cytosol. To explore the pathways of intranuclear lipid biosynthesis, we studied incorporation of 2-14C-acetate into lipids of cytosol and isolated nuclei of rat thymus cells after separate and combined incubation with the labeled precursor. The most efficient incorporation of 2-14C-acetate into lipids (cholesterol, free fatty acids, and phospholipids) was observed in a reaction mixture containing cytosol. When the reaction mixture contained only nuclei, incorporation of the radioactive precursor into lipids also took place, but specific radioactivity of the lipids was essentially lower than in the cytosol. In both cases, 2-14C-acetate incorporated into phosphatidylethanolamine, sphingomyelin, phosphatidylserine, phosphatidylinositol, and cardiolipin. Phosphatidylcholine, the most abundant membrane phospholipid, demonstrated the lowest radioactivity, which was significantly lower than that of phosphatidylethanolamine. Incorporation of newly synthesized free fatty acids in nuclear phospholipids was inhibited, if nuclei were incubated with cytosol. As a result, radioactive free fatty acids were accumulated in nuclei, while in cytosol they were efficiently incorporated into phospholipids. The levels of phospholipids and cholesterol remained constant regardless of incubation protocol, while the overall yield of free fatty acids decreased after combined incubation of nuclear and cytosolic fractions or after incubation of cytosol without nuclei. Putative mechanisms underlying the appearance of radioactive lipids in isolated nuclei of thymus cells are discussed.  相似文献   

18.
Unilamellar liposomes composed of natural phospholipids provide a new promising class of protective agents for hypothermic storage, cryopreservation, or freeze-drying of red blood cells (RBCs). In this study, FTIR spectroscopy, MALDI-TOF MS, and colorimetric assays were used to investigate the effects of liposomes composed of a homologous series of linear saturated phosphatidylcholine phospholipids (18:0; 16:0; 14:0; 12:0) on RBC membranes. RBCs were incubated with liposomes at 37°C and both the liposomal and the RBC fraction were analyzed after incubation. FTIR studies showed that liposomes composed of short acyl chain length lipids cause an increase in RBC membrane conformational disorder at suprazero temperatures, whereas long acyl chain length lipids were found to have little effects. The increased lipid conformational disorder in the RBC membranes coincided with a decrease in the cholesterol-to-phospholipid ratio. The opposite effects were found in the liposomes after incubation with RBCs. MALDI-TOF MS analysis showed the presence of short acyl chain length lipids (14:0 and 12:0) in RBC membranes after incubation, which was not observed after incubation with liposomes containing long acyl chain length lipids (18:0 and 16:0). Liposomes alter RBC membrane properties by cholesterol depletion and lipid addition.  相似文献   

19.
Midgut mitochondria from fifth larval instar Manduca sexta exhibit a membrane-associated transhydrogenase that catalyzes hydride ion transfer between NADP(H) and NAD(H). The NADPH-forming transhydrogenations occur as nonenergy- and energy-linked activities. The energy-linked activities couple with electron transport-dependent utilization of NADH/succinate, or with Mg2+-dependent ATPase. These energy-linked transhydrogenations have been shown to be physiologically and developmentally significant with respect to insect larval/pupal maturation. In the present study, isolated mitochondrial membranes were lyophilized and subjected to organic solvent or phospholipase treatments. Acetone extraction and addition of Phospholipase A2 proved to be effective inhibitors of the insect transhydrogenase. Liberation of phospholipids was reflected by measured phosphorous release. Addition of phospholipids to organic solvent- and phospholipase-treated membranes was without effect. Employing a partially lipid-depleted preparation, phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine were reintroduced and transhydrogenase activity assessed. Of the phospholipids tested, only phosphatidylcholine significantly stimulated transhydrogenase activity. The results of this study suggest a phospholipid dependence of the M. sexta mitochondrial transhydrogenase.  相似文献   

20.
Summary Transfer of radiolabeled lipids from dictyosome-like structures (DLS) from testis tubules of the guinea pig as donor to unlabeled plasma membrane from testis tubules immobilized on nitrocellulose as acceptor was studied in a completely cell-free system. As a general label for lipids of the donor DLS, isolated testis tubules were incubated with [14C]acetate. Time- and temperature-dependent transfer of [14C]acetate labeled constituents was observed in the cellfree system. However, despite the fact that phospholipids and other constituents were highly labeled in the donor fraction, primarily radioactive sterols were transferred to the plasma membrane acceptor vesicles. Transfer at 37°C represented 0.4 to 0.7% of the total radiolabeled cholesterol at 37°C but little or no transfer occurred at 4°C. The sterols transferred exhibited Chromatographic mobilities corresponding to those of cholesterol and lanosterol. Similar results were obtained with [14C]mevalonic acid. In subsequent experiments, cholesterol transfer from DLS to plasma membrane was demonstrated by incubation of DLS with [3H]squalene which was converted into sterol or with [14C]cholesterol. Transfer of sterols required ATP, but not cytosol, and was both time- and temperature-dependent. DLS were more effective than either endoplasmic reticulum or plasma membrane as the donor fraction. The results from the cell-free analysis suggest a possible functional role of the DLS in sterol biogenesis and transfer to the plasma membrane during spermatid development.Abbreviations DLS dictyosome-like structure(s) - PBS phosphatebuffered saline - HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - BSA bovine serum albumin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号