首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An approach is described that enables the germ cell mutagenicity of chemicals to be assessed as part of an integrated assessment of genotoxic potential. It is recommended, first, that the genotoxicity of a chemical be defined by appropriate studies in vitro. This should involve use of the Salmonella mutation assay and an assay for the induction of chromosomal aberrations, but supplementary assays may be indicated in specific instances. If negative results are obtained from these 2 tests there is no need for the conduct of additional tests. Agents considered to be genotoxic in vitro should then be assessed for genotoxicity to rodents. This will usually involve the conduct of a bone marrow cytogenetic assay, and in the case of negative results, a genotoxicity test in an independent tissue. Agents found to be non-genotoxic in vivo are regarded as having no potential for germ cell mutagenicity. Agents found to be genotoxic in vivo may either be assumed to have potential as germ cell mutagens, or their status in this respect may be defined by appropriate germ cell mutagenicity studies. The basis of the approach, which is supported by the available experimental data, is that germ cell mutagens will be evident as somatic cell genotoxins in vivo, and that these will be detected as genotoxins in vitro given appropriate experimentation. The conduct of appropriate and adequate studies is suggested to be of more value than the conduct of a rigid set of prescribed tests.  相似文献   

2.
The European Scientific Committee on Cosmetics and Non-Food Products (SCCNFP) guideline for testing of hair dyes for genotoxic/mutagenic/carcinogenic potential has been reviewed. The battery of six in vitro tests recommended therein differs substantially from the batteries of two or three in vitro tests recommended in other guidelines. Our evaluation of the chemical types used in hair dyes and comparison with other guidelines for testing a wide range of chemical substances, lead to the conclusion that potential genotoxic activity may effectively be determined by the application of a limited number of well-validated test systems that are capable of detecting induced gene mutations and structural and numerical chromosomal changes. We conclude that highly effective screening for genotoxicity of hair dyes can be achieved by the use of three assays, namely the bacterial gene mutation assay, the mammalian cell gene mutation assay (mouse lymphoma tk assay preferred) and the in vitro micronucleus assay. These need to be combined with metabolic activation systems optimised for the individual chemical types. Recent published evidence [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] suggests that our recommended three tests will detect all known genotoxic carcinogens, and that increasing the number of in vitro assays further would merely reduce specificity (increase false positives). Of course there may be occasions when standard tests need to be modified to take account of special situations such as a specific pathway of biotransformation, but this should be considered as part of routine testing. It is clear that individual dyes and any other novel ingredients should be tested in this three-test battery. However, new products are formed on the scalp by reaction between the chemicals present in hair-dye formulations. Ideally, these should also be tested for genotoxicity, but at present such experiences are very limited. There is also the possibility that one component could mask the genotoxicity of another (e.g. by being more toxic), and so it is not practical at this time to recommend routine testing of complete hair-dye formulations as well. The most sensible approach would be to establish whether any reaction products within the hair-dye formulation penetrate the skin under normal conditions of use and test only those that penetrate at toxicologically relevant levels in the three-test in vitro battery. Recently published data [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] suggest the three-test battery will produce a significant number of false as well as real positives. Whilst we are aware of the desire to reduce animal experiments, determining the relevance of positive results in any of the three recommended in vitro assays will most likely have to be determined by use of in vivo assays. The bone marrow micronucleus test using routes of administration such as oral or intraperitoneal may be used where the objective is extended hazard identification. If negative results are obtained in this test, then a second in vivo test should be conducted. This could be an in vivo UDS in rat liver or a Comet assay in a relevant tissue. However, for hazard characterisation, tests using topical application with measurement of genotoxicity in the skin would be more appropriate. Such specific site-of-contact in vivo tests would minimise animal toxicity burden and invasiveness, and, especially for hair dyes, be more relevant to human routes of exposure, but there are not sufficient scientific data available to allow recommendations to be made. The generation of such data is encouraged.  相似文献   

3.
o-Aminoazotoluene (AAT) has been evaluated as a possible human carcinogen (Class 2B) by the International Agency for Research on Cancer (IARC). The Ames test found it to be mutagenic in the presence of a metabolic activation system, whereas it has little clastogenicity either in vitro or in vivo in the chromosomal aberration assay. AAT is also carcinogenic in the lung or liver of mice and rats given long-term administrations. Therefore, metabolites generated in the liver etc. may have gene mutation activity, and carcinogenesis would occur. We examined the mutagenicity of AAT in a gene mutation assay, using lacZ transgenic mice (MutaMice) and a positive selection method. AAT showed positive results for organs with metabolic functions, such as liver and colon and other organs. Positive results were also seen in an Ames test in the presence of metabolic activation and negative results seen in a chromosomal aberration test. Therefore, AAT had the potential to cause gene mutation in the presence of metabolic activation systems in vitro and the same reaction was confirmed in vivo with organs with metabolic function, such as liver and colon, but little clastogenicity in vitro or in vivo. Thus, metabolites with gene mutation activity may be responsible for the carcinogenicity of AAT. The transgenic mouse mutation assay proved to be useful for concurrent assessment of in vivo mutagenicity in multiple organs and to supplement the standard in vivo genotoxicity tests, such as the micronucleus assay which is limited to bone marrow as the only target organ.  相似文献   

4.
The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) has convened an expert working group which consisted of the authors of this paper and their respective committees, consulting groups and task forces. Two ICH guidances regarding genotoxicity testing have been issued: S2A, 'Guidance on Specific Aspects of Regulatory Genotoxicity Tests' and S2B, 'Genotoxicity: A Standard Battery for Genotoxicity Testing of Pharmaceuticals.' Together, these guidance documents now form the regulatory backbone for genotoxicity testing and assessment of pharmaceuticals in the European Union, Japan, and the USA. These guidances do not constitute a revolutionary new approach to genotoxicity testing and assessment, instead they are an evolution from preexisting regional guidelines, guidances and technical approaches. Both guidances describe a number of specific criteria as well as a general test philosophy in genotoxicity testing. Although these guidances were previously released within the participating regions in their respective regulatory communiqués, to ensure their wider distribution and better understanding, the texts of the guidances are reproduced here in their entirety (see Appendix A) and the background for the recommendations are described. The establishment of a standard battery for genotoxicity testing of pharmaceuticals was one of the most important issues of the harmonisation effort. This battery currently consists of: (i) a test for gene mutation in bacteria, (ii) an in vitro test with cytogenetic evaluation of chromosomal damage with mammalian cells or an in vitro mouse lymphoma tk assay, (iii) an in vivo test for chromosomal damage using rodent hematopoietic cells. A major change in testing philosophy is the acceptance of the interchangeability of testing for chromosomal aberrations in mammalian cells and the mouse lymphoma tk assay. This agreement was reached on the basis of the extensive review of databases and newly generated experimental data which are in part described in this publication. The authors are fully aware of the fact that some of the recommendations given in these ICH guidances are transient in nature and that the dynamic qualities and ongoing evolution of genetic toxicology makes necessary a continuous maintenance process that would serve to update the guidance as necessary.  相似文献   

5.
The European Scientific Committee on Cosmetics and Non-Food Products (SCCNFP) guideline for testing of hair dyes for genotoxic/mutagenic/carcinogenic potential has been reviewed. The battery of six in vitro tests recommended therein differs substantially from the batteries of two or three in vitro tests recommended in other guidelines. Our evaluation of the chemical types used in hair dyes and comparison with other guidelines for testing a wide range of chemical substances, lead to the conclusion that potential genotoxic activity may effectively be determined by the application of a limited number of well-validated test systems that are capable of detecting induced gene mutations and structural and numerical chromosomal changes.We conclude that highly effective screening for genotoxicity of hair dyes can be achieved by the use of three assays, namely the bacterial gene mutation assay, the mammalian cell gene mutation assay (mouse lymphoma tk assay preferred) and the in vitro micronucleus assay. These need to be combined with metabolic activation systems optimised for the individual chemical types.Recent published evidence [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1–256] suggests that our recommended three tests will detect all known genotoxic carcinogens, and that increasing the number of in vitro assays further would merely reduce specificity (increase false positives). Of course there may be occasions when standard tests need to be modified to take account of special situations such as a specific pathway of biotransformation, but this should be considered as part of routine testing.It is clear that individual dyes and any other novel ingredients should be tested in this three-test battery. However, new products are formed on the scalp by reaction between the chemicals present in hair-dye formulations. Ideally, these should also be tested for genotoxicity, but at present such experiences are very limited. There is also the possibility that one component could mask the genotoxicity of another (e.g. by being more toxic), and so it is not practical at this time to recommend routine testing of complete hair-dye formulations as well. The most sensible approach would be to establish whether any reaction products within the hair-dye formulation penetrate the skin under normal conditions of use and test only those that penetrate at toxicologically relevant levels in the three-test in vitro battery.Recently published data [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1–256] suggest the three-test battery will produce a significant number of false as well as real positives. Whilst we are aware of the desire to reduce animal experiments, determining the relevance of positive results in any of the three recommended in vitro assays will most likely have to be determined by use of in vivo assays. The bone marrow micronucleus test using routes of administration such as oral or intraperitoneal may be used where the objective is extended hazard identification. If negative results are obtained in this test, then a second in vivo test should be conducted. This could be an in vivo UDS in rat liver or a Comet assay in a relevant tissue. However, for hazard characterisation, tests using topical application with measurement of genotoxicity in the skin would be more appropriate. Such specific site-of-contact in vivo tests would minimise animal toxicity burden and invasiveness, and, especially for hair dyes, be more relevant to human routes of exposure, but there are not sufficient scientific data available to allow recommendations to be made. The generation of such data is encouraged.  相似文献   

6.
The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) has convened an expert working group which consisted of the authors of this paper and their respective committees, consulting groups and task forces. Two ICH guidances regarding genotoxicity testing have been issued: S2A, `Guidance on Specific Aspects of Regulatory Genotoxicity Tests' and S2B, `Genotoxicity: A Standard Battery for Genotoxicity Testing of Pharmaceuticals.' Together, these guidance documents now form the regulatory backbone for genotoxicity testing and assessment of pharmaceuticals in the European Union, Japan, and the USA. These guidances do not constitute a revolutionary new approach to genotoxicity testing and assessment, instead they are an evolution from preexisting regional guidelines, guidances and technical approaches. Both guidances describe a number of specific criteria as well as a general test philosophy in genotoxicity testing. Although these guidances were previously released within the participating regions in their respective regulatory communiqués, to ensure their wider distribution and better understanding, the texts of the guidances are reproduced here in their entirety (see Appendix A) and the background for the recommendations are described. The establishment of a standard battery for genotoxicity testing of pharmaceuticals was one of the most important issues of the harmonisation effort. This battery currently consists of: (i) a test for gene mutation in bacteria, (ii) an in vitro test with cytogenetic evaluation of chromosomal damage with mammalian cells or an in vitro mouse lymphoma tk assay, (iii) an in vivo test for chromosomal damage using rodent hematopoietic cells. A major change in testing philosophy is the acceptance of the interchangeability of testing for chromosomal aberrations in mammalian cells and the mouse lymphoma tk assay. This agreement was reached on the basis of the extensive review of databases and newly generated experimental data which are in part described in this publication. The authors are fully aware of the fact that some of the recommendations given in these ICH guidances are transient in nature and that the dynamic qualities and ongoing evolution of genetic toxicology makes necessary a continuous maintenance process that would serve to update the guidance as necessary.  相似文献   

7.
Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently--the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development.  相似文献   

8.
This survey is a compendium of genotoxicity and carcinogenicity information of antihypertensive drugs. Data from 164 marketed drugs were collected. Of the 164 drugs, 65 (39.6%) had no retrievable genotoxicity or carcinogenicity data; this group was comprised largely of drugs marketed in a limited number of countries. The remaining 99 (60.4%) had at least one genotoxicity or carcinogenicity test result. Of these 99, 48 (48.5%) had at least one positive finding: 32 tested positive in at least one genotoxicity assay, 26 in at least one carcinogenicity assay, and 10 gave a positive result in both at least one genotoxicity assay and at least one carcinogenicity assay. In terms of correlation between results of the various genotoxicity assays and absence of carcinogenic activity in both mice and rats 2 of 44 non-carcinogenic drugs tested positive in the in vitro bacterial mutagenesis assay, 2 of 9 tested positive in the mouse lymphoma assay, none of 14 tested positive for gene mutation at the hprt locus, 5 of 25 tested positive in in vitro cytogenetic assays, none of 31 in in vivo cytogenetic assays, and none of 14 in inducing DNA damage and/or repair in in vitro and/or in vivo assays. Concerning the predictivity of genetic toxicology findings for long-term carcinogenesis assays, 75 drugs had both genotoxicity and carcinogenicity data; of these 37 (49.3%) were neither genotoxic nor carcinogenic, 14 (18.7%) were non-carcinogens which tested positive in at least one genotoxicity assay, 14 (18.7%) were carcinogenic in at least one sex of mice or rats but tested negative in genotoxicity assays, and 10 (13.3%) were both genotoxic and carcinogenic. Only 42 of the 164 marketed antihypertensives (25.6%) had all data required by the guidelines for testing of pharmaceuticals.  相似文献   

9.
Results of the 1986 Genetic Toxicology Association's survey of industrial, government, contract, and academic laboratories on the status of several assays in genetic toxicology are presented below. 1. The most commonly used assay was the Salmonella typhimurium/mammalian microsomal (Ames) assay, which was used by 83% of all respondents. 2. The next five (5) most commonly used assays were in vitro cytogenetics (72%), in vivo cytogenetics (59%), CHO HGPRT gene mutation (55%), the micronucleus assay (53%), and L517BY gene mutation (45%). 3. The assay showing the greatest percentage increase in routine use was the micronucleus assay which went from 14% in 1984 to 34% in 1986, an increase of 20%. 4. Other assays which increased in routine use were CHO HGPRT mutation (+18%); in vitro cytogenetics (+14%); L5178Y gene mutation (+9%), and the Ames assay (+5%). 5. Routine use of in vitro UDS assays declined by 6%; use of in vitro SCE assays declined by 12%. 6. There was no change in the rate of routine use of in vivo cytogenetics or in vivo SCE assays. 7. Assays routinely performed on contract included the Salmonella assay, CHO HGPRT gene mutation, in vitro cytogenetics, in vitro UDS, in vivo cytogenetics, the micronucleus assay, L5178Y gene mutation, and the Drosophila sex-linked recessive lethal assay. 8. Four assays were being developed by five or more laboratories. These included in vitro SCE (8); the micronucleus assay (7); in vivo SCE (6); and DNA adduct formation (5). 9. A total of 17 assays had been abandoned by one or more laboratories. However, since no assay had been given up by more than three laboratories no conclusions can be drawn about the overall robustness of any of the assays on the survey form.  相似文献   

10.
tert.-Butylhydroquinone (TBHQ) has been reported to be genotoxic in some short-term assays but non-genotoxic in others. We have examined cytotoxicity and genotoxicity of TBHQ, a principal metabolite of the phenolic antioxidant 2(3)-tert.-butyl-4-hydroxyanisole (BHA), in an hepatocyte-mediated assay with V79 Chinese hamster lung cells including both sister-chromatid exchange (SCE) and thioguanine-resistance (TGR) endpoints. The ability of BHA and of TBHQ to elicit a genotoxic response in Saccharomyces cerevisiae strain D7 was also investigated. In V79 cytotoxicity tests, TBHQ without hepatocytes produced a 50% reduction in colony formation at 4.2 micrograms/ml and was lethal to 100% of the cells at concentrations above 5 micrograms/ml. At partially cytotoxic dose levels, (0.17-3.4 micrograms/ml of medium), TBHQ sometimes increased significantly the frequency of SCE. TBHQ also produced sporadic statistically significant increases in the mutation frequency at the HGPRTase (TGR) gene locus when tested alone or with activation by rat or hamster hepatocytes. Mitotic gene conversion and reverse mutation were not induced in strain D7 of Saccharomyces cerevisiae by exposure to BHA or to TBHQ for 4 h at concentrations as high as 200 micrograms/ml for BHA or 500 micrograms/ml for TBHQ, either alone or with activation by rat-liver S9. Incubation of the yeast cells with BHA or TBHQ for 24 h in growth medium without activation also did not induce genotoxic activity. The slight and sporadic response to TBHQ in the V79 test system may indicate weak genotoxicity which is sensitive to slight differences in test conditions. The classification and test strategies adopted for compounds such as TBHQ could have important implications for regulatory decisions and for the validation of short-term tests.  相似文献   

11.
Today reconstructed skin models that simulate human skin, such as Episkin, are widely used for safety or efficacy pre-screening. Moreover, they are of growing interest for regulatory purposes in the framework of alternatives to animal testing. In order to reduce and eventually replace results of in vivo genotoxicity testing with in vitro data, there is a need to develop new complementary biological models and methods with improved ability to predict genotoxic risk. This can be achieved if these new assays do take into account exposure conditions that are more relevant than in the current test systems. In an attempt to meet this challenge, two new applications using a human reconstructed skin model for in vitro genotoxicity assessment are proposed. The skin is the target organ for dermally exposed compounds or environmental stress. Although attempts have been made to develop genotoxicity test procedures in vivo on mouse skin, human reconstructed skin models have not been used for in vitro genotoxicity testing so far, although they present clear advantages over mouse skin for human risk prediction. This paper presents the results of the development of a specific protocol allowing to perform the comet assay, a genotoxicity test procedure, on reconstructed skin. The comet assay was conducted after treatment of Episkin with UV, Lomefloxacin and UV or 4-nitroquinoline-N-oxide (4NQO). Treatment with the sunscreen Mexoryl was able to reduce the extent of comet signal. A second approach to use reconstructed epidermis in genotoxicity assays is also proposed. Indeed, the skin is a biologically active barrier driving the response to exposure to chemical agents and their possible metabolites. A specific co-culture system (Figure 1) using Episkin to perform the regular micronucleus assay is presented. Micronucleus induction in L5178Y cells cultured underneath Episkin was assessed after treatment of the reconstructed epidermis with mitomycin C, cyclophosphamide or apigenin. This second way of using human reconstructed skin for genotoxicity testing aims at improving the relevance of exposure conditions in in vitro genotoxicity assays for dermally applied compounds.  相似文献   

12.
Issues of biological relevance and thresholds for genotoxicity are discussed here based upon the background of experience with the submissions for the approval of new pharmaceuticals to the German regulatory authority over the period between 1990 and 1997. This experience shows that out of the genotoxicity test systems which are required according to existing guidelines in the European Union (EU), the in vitro tests for chromosomal aberrations (CA) and the mouse lymphoma tk assays (MLA) yield a rate of positives that is about four-fold higher than that of other genotoxicity tests. A detailed analysis of chemical and pharmacological classes of compounds and their effects in these systems reveals that in addition to direct DNA reactivity several mechanisms of indirect genotoxicity such as nucleoside analogue incorporation into DNA, interaction with microtubule assembly, topoisomerase inhibition and high levels of cytotoxicity are relevant. New pharmaceuticals, for which the latter mechanisms apply, often display threshold-like characteristics in their genotoxic effects in vitro or even in vivo in experimental animals. This casts doubt upon the relevance of positive in vitro test results for such compounds. However, the discussion of examples shows that it may not be easy to demonstrate the exact thresholded mechanism of genotoxicity in a given case. In particular, the demonstration of a coincidence of genotoxicity and high levels of cytotoxicity, which seems to be a major factor for biologically non-relevant in vitro positive new pharmaceuticals, usually requires quite extensive testing. Hence, for new pharmaceuticals it is practice to provide in addition to in vitro results that may be thresholded a wealth of information from in vivo studies on genotoxicity, carcinogenicity, metabolism, pharmacokinetics, etc. the results of which help in assessing the biological relevance of in vitro positives. The regulatory acknowledgement of biologically non-relevant, thresholded mechanisms of (in vitro) genotoxicity in addition to those that are considered relevant for human risk ensures a better understanding of test results and is needed for the credibility of genotoxicity testing practice in general.  相似文献   

13.
In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit.  相似文献   

14.
One of the consequences of the low specificity of the in vitro mammalian cell genotoxicity assays reported in our previous paper [D. Kirkland, M. Aardema, L. Henderson, L. Muller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] is industry and regulatory agencies dealing with a large number of false-positive results during the safety assessment of new chemicals and drugs. Addressing positive results from in vitro genotoxicity assays to determine which are "false" requires extensive resources, including the conduct of additional animal studies. In order to reduce animal usage, and to conserve industry and regulatory agency resources, we thought it was important to raise the question as to whether the protocol requirements for a valid in vitro assay or the criteria for a positive result could be changed in order to increase specificity without a significant loss in sensitivity of these tests. We therefore analysed some results of the mouse lymphoma assay (MLA) and the chromosomal aberration (CA) test obtained for rodent carcinogens and non-carcinogens in more detail. For a number of chemicals that are positive only in either of these mammalian cell tests (i.e. negative in the Ames test) there was no correlation between rodent carcinogenicity and level of toxicity (we could not analyse this for the CA test as insufficient data were available in publications), magnitude of response or lowest effective positive concentration. On the basis of very limited in vitro and in vivo data, we could also find no correlation between the above parameters and formation of DNA adducts. Therefore, a change to the current criteria for required level of toxicity in the MLA, to limit positive calls to certain magnitudes of response, or to certain concentration ranges would not improve the specificity of the tests without significantly reducing the sensitivity. We also investigated a possible correlation between tumour profile (trans-species, trans-sex and multi-site versus single-species, single-sex and single-site) and pattern of genotoxicity results. Carcinogens showing the combination of trans-species, trans-sex and multi-site tumour profile were much more prevalent (70% more) in the group of chemicals giving positive results in all three in vitro assays than amongst those giving all negative results. However, single-species, single-sex, single-site carcinogens were not very prevalent even amongst those chemicals giving three negative results in vitro. Surprisingly, when mixed positive and negative results were compared, multi-site carcinogens were highly prevalent amongst chemicals giving only a single positive result in the battery of three in vitro tests. Finally we extended our relative predictivity (RP) calculations to combinations of positive and negative results in the genotoxicity battery. For two out of three tests positive, the RP for carcinogenicity was no higher than 1.0 and for 2/3 tests negative the RP for non-carcinogenicity was either zero (for Ames+MLA+MN) or 1.7 (for Ames+MLA+CA). Thus, all values were less than a meaningful RP of two, and indicate that it is not possible to predict outcome of the rodent carcinogenicity study when only 2/3 genotoxicity results are in agreement.  相似文献   

15.
In vitro genotoxicity assays are often used to screen and predict whether chemicals might represent mutagenic and carcinogenic risks for humans. Recent discussions have focused on the high rate of positive results in in vitro tests, especially in those assays performed in mammalian cells that are not confirmed in vivo. Currently, there is no general consensus in the scientific community on the interpretation of the significance of positive results from the in vitro genotoxicity assays. To address this issue, the Health and Environmental Sciences Institute (HESI), held an international workshop in June 2006 to discuss the relevance and follow-up of positive results in in vitro genetic toxicity assays. The goals of the meeting were to examine ways to advance the scientific basis for the interpretation of positive findings in in vitro assays, to facilitate the development of follow-up testing strategies and to define criteria for determining the relevance to human health. The workshop identified specific needs in two general categories, i.e., improved testing and improved data interpretation and risk assessment. Recommendations to improve testing included: (1) re-examine the maximum level of cytotoxicity currently required for in vitro tests; (2) re-examine the upper limit concentration for in vitro mammalian studies; (3) develop improved testing strategies using current in vitro assays; (4) define criteria to guide selection of the appropriate follow-up in vivo studies; (5) develop new and more predictive in vitro and in vivo tests. Recommendations for improving interpretation and assessment included: (1) examine the suitability of applying the threshold of toxicological concern concepts to genotoxicity data; (2) develop a structured weight of evidence approach for assessing genotoxic/carcinogenic hazard; and (3) re-examine in vitro and in vivo correlations qualitatively and quantitatively. Conclusions from the workshop highlighted a willingness of scientists from various sectors to change and improve the current paradigm and move from a hazard identification approach to a "realistic" risk-based approach that incorporates information on mechanism of action, kinetics, and human exposure..  相似文献   

16.
This symposium focused on the use of tests for chromosomal damage, and other genotoxicity measures, for detection of potentially harmful chemicals. The speakers discussed the information that has been gained over the last three decades about the use of "short-term tests" for genotoxicity in cultured cells and in animals (mainly rodents), and the ongoing debates about the rational use of data from such experimental systems in trying to extrapolate to an understanding of potential human risk. The overall theme was that the field of regulatory toxicology currently is over-reliant on qualitative outcomes of in vitro hazard-screening tests, generally conducted at the maximum achievable exposures, and needs a more realistic approach that incorporates in vivo exposure levels and dose-response information.  相似文献   

17.
Ethylenediamine dinitrate (EDDN) and diethylenetriamine trinitrate (DETN) are relatively insensitive explosive compounds that are being explored as safe alternatives to other more sensitive compounds. When used in combination with other high explosives they are an improvement and may provide additional safety during storage and use. The genetic toxicity of these compounds was evaluated to predict the potential adverse human health effects from exposure by using a standard genetic toxicity test battery which included: a gene mutation test in bacteria (Ames), an in vitro Chinese Hamster Ovary (CHO) cell chromosome aberration test and an in vivo mouse micronucleus test. The results of the Ames test showed that EDDN increased the mean number of revertants per plate with strain TA100, without activation, at 5000μg/plate compared to the solvent control, which indicated a positive result. No positive results were observed with the other tester strains with or without activation in Salmonella typhimurium strains TA98, TA1535, TA1537, and Escherichia coli strain WP2 uvrA. DETN was negative for all Salmonella tester strains and E. coli up to 5000μg/plate both with and without metabolic activation. The CHO cell chromosome aberration assay was performed using EDDN and DETN at concentrations up to 5000μg/mL. The results indicate that these compounds did not induce structural chromosomal aberrations at all tested concentrations in CHO cells, with or without metabolic activation. EDDN and DETN, when tested in vivo in the CD-1 mouse at doses up to 2000mg/kg, did not induce any significant increase in the number of micronuclei in bone marrow erythrocytes. These studies demonstrate that EDDN is mutagenic in one strain of Salmonella (TA100) but was negative in other strains, for in vitro induction of chromosomal aberrations in CHO cells, and for micronuclei in the in vivo mouse micronucleus assay. DETN was not genotoxic in all in vitro and in vivo tests. These results show the in vitro and in vivo genotoxicity potential of these chemicals.  相似文献   

18.
Sesamin is a major lignan that is present in sesame seeds and oil. Sesamin is partially converted to its stereoisomer, episesamin, during the refining process of non-roasted sesame seed oil. We evaluated the genotoxicity of these substances through the following tests: a bacterial reverse mutation assay (Ames test), a chromosomal aberration test in cultured Chinese hamster lung cells (CHL/IU), a bone marrow micronucleus (MN) test in Crlj:CD1 (ICR) mice, and a comet assay using the liver of Sprague-Dawley (SD) rats. Episesamin showed negative results in the Ames test with and without S9 mix, in the in vitro chromosomal aberration test with and without S9 mix, and in the in vivo comet assay. Sesamin showed negative results in the Ames test with and without S9 mix. In the in vitro chromosomal aberration test, sesamin did not induce chromosomal aberrations in the absence of S9 mix, but induced structural abnormalities at cytotoxic concentrations in the presence of S9 mix. Oral administration of sesamin at doses up to 2.0g/kg did not cause a significant increase in either the percentage of micronucleated polychromatic erythrocytes in the in vivo bone marrow MN test or in the % DNA in the comet tails in the in vivo comet assay of liver cells. These findings indicate that sesamin does not damage DNA in vivo and that sesamin and episesamin have no genotoxic activity.  相似文献   

19.
A review of the genotoxicity of ethylbenzene   总被引:2,自引:0,他引:2  
Ethylbenzene is an important industrial chemical that has recently been classified as a possible human carcinogen (IARC class 2B). It induces tumours in rats and mice, but neither the relevance of these tumours to humans nor their mechanism of induction is clear. Considering the carcinogenic potential of ethylbenzene, it is of interest to determine whether there is sufficient data to characterize its mode of action as either genotoxic or non-genotoxic. A review of the currently available genotoxicity data is assessed. Ethylbenzene is not a bacterial mutagen, does not induce gene conversion or mutations in yeast and does not induce sister chromatid exchanges in CHO cells. Ethylbenzene is not clastogenic in CHO or rat liver cell lines but was reported to induce micronuclei in SHE cells in vitro. No evidence for genotoxicity has been seen in humans exposed to relatively high levels of ethylbenzene. Mouse lymphoma gene mutation studies produced a mixed series of responses that have proved difficult to interpret. An increase in morphological transformation of SHE cells was also found. Results from a more relevant series of in vivo genotoxicity studies, including acute and sub-chronic micronucleus tests and the mouse liver UDS assay, indicate a lack of in vivo genotoxic activity. The composite set of results from both in vitro and in vivo tests known to assess direct damage to DNA have been predominantly negative in the absence of excessive toxicity. The available data from the standard battery of genotoxicity assays do not support a genotoxic mechanism for ethylbenzene-induced kidney, liver or lung tumors in rats and mice.  相似文献   

20.
Genetic toxicology studies play a central role in the development and marketing of new chemicals for pharmaceutical, agricultural, industrial, and consumer use. During the discovery phase of product development, rapid screening tests that require minimal amounts of test materials are used to assist in the design and prioritization of new molecules. At this stage, a modified Salmonella reverse mutation assay and an in vitro micronucleus test with mammalian cell culture are frequently used for screening. Regulatory genetic toxicology studies are conducted with a short list of compounds using protocols that conform to various international guidelines. A set of four assays usually constitutes the minimum test battery that satisfies global requirements. This set includes a bacterial reverse mutation assay, an in vitro cytogenetic test with mammalian cell culture, an in vitro gene mutation assay in mammalian cell cultures, and an in vivo rodent bone marrow micronucleus test. Supplementary studies are conducted in certain instances either as a follow-up to the findings from this initial testing battery and/or to satisfy a regulatory requirement. Currently available genetic toxicology assays have helped the scientific and industrial community over the past several decades in evaluating the mutagenic potential of chemical agents. The emerging field of toxicogenomics has the potential to redefine our ability to study the response of cells to genetic damage and hence our ability to study threshold phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号