首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
A reproducible and efficient transformation system has been developed for maize that is based on direct DNA uptake into embryogenic protoplasts and regeneration of fertile plants from protoplast-derived transgenic callus tissues. Plasmid DNA, containing the -glucuronidase (GUS) gene, under the control of the doubled enhancer element (the –208 to –46 bp upstream fragment) from CaMV 35S promoter, linked to the truncated (up to –389 bp from ATG) promoter of wheat, -amylase gene was introduced into protoplasts from suspension culture of HE/89 genotype. The constructed transformation vectors carried either the neomycin phosphotransferase (NPTII) or phosphinothricin acetyltransferase (PAT) gene as selective marker. The applied DNA uptake protocol has resulted at least in 10–20 resistant calli, or GUS-expressing colonies after treatment of 106 protoplasts. Vital GUS staining of microcalli has made possible the shoot regeneration from the GUS-stained tissues. 80–90% of kanamycin or PPT resistant calli showed GUS activity, and transgenic plants were regenerated from more than 140 clones. Both Southern hybridization and PCR analysis showed the presence of introduced foreign genes in the genomic DNA of the transformants. The chimeric promoter, composed of a tissue specific monocot promoter, and the viral enhancer element specified similar expression pattern in maize plants, as it was determined by the full CaMV 35S promoter in dicot and other monocot plants. The highest GUS specific activity was found in older leaves with progressively less activity in young leaves, stem and root. Histochemical localization of GUS revealed promoter function in leaf epidermis, mesophyll and vascular bundles, in the cortex and vascular cylinder of the root. In roots, the meristematic tip region and vascular tissues stained intensively. Selected transformants were grown up to maturity, and second-generation seedlings with segregation for GUS activity were obtained after outcrossing. The GUS-expressing segregants carried also the NPTII gene as shown by Southern hybridization.  相似文献   

3.
The expression of an Arabidopsis acyl carrier protein (ACP) gene promoter has been examined in transgenic tobacco plants by linking it to the reporter gene -glucuronidase (GUS). Fluorometric analysis showed that the ACP gene promoter was most active in developing seeds. Expression was also high in roots, but significantly lower in young leaves and downregulated upon their maturation. Etiolated and light-grown seedlings showed the same level of GUS activity, indicating that this promoter is not tightly regulated by light. Histochemical studies revealed that expression was usually highest in apical/ meristematic zones of vegetative tissues. Young flowers (ca. 1 cm in length) showed GUS staining in nearly all cell types, however, cell-specific patterns emerged in more mature flowers. The ACP gene promoter was active in the stigma and transmitting tissue of the style, as well as in the tapetum of the anther, developing pollen, and ovules. The results provide evidence that this ACP gene is regulated in a complex manner and is responsive to the array of signals which accompany cell differentiation, and a demand for fatty acids and lipids, during organogenesis.  相似文献   

4.
Globulins are the most abundant seed storage proteins in cotton and, therefore, their regulatory sequences could potentially provide a good source of seed-specific promoters. We isolated the putative promoter region of cotton -globulin B gene by gene walking using the primers designed from a cotton staged embryo cDNA clone. PCR amplified fragment of 1108 bp upstream sequences was fused to gusA gene in the binary vector pBI101.3 to create the test construct. This was used to study the expression pattern of the putative promoter region in transgenic cotton, Arabidopsis, and tobacco. Histochemical GUS analysis revealed that the promoter began to express during the torpedo stage of seed development in tobacco and Arabidopsis, and during cotyledon expansion stage in cotton. The activity quickly increased until embryo maturation in all three species. Fluorometric GUS analysis showed that the promoter expression started at 12 and 15 dpa in tobacco and cotton, respectively, and increased through seed maturation. The strength of the promoter expression, as reflected by average GUS activity in the seeds from primary transgenic plants, was vastly different amongst the three species tested. In Arabidopsis, the activity was 16.7% and in tobacco it was less than 1% of the levels detected in cotton seeds. In germinating seedlings of tobacco and Arabidopsis, GUS activity diminished until it was completely absent 10 days post imbibition. In addition, absence of detectable level of GUS expression in stem, leaf, root, pollen, and floral bud of transgenic cotton confirmed that the promoter is highly seed-specific. Analysis of GUS activity at individual seed level in cotton showed a gene dose effect reflecting their homozygous or hemizygous status. Our results show that this promoter is highly tissue-specific and it can be used to control transgene expression in dicot seeds.  相似文献   

5.
6.
7.
Bombardment of plant tissues with microprojectiles in an effective method of wounding to promote Agrobacterium-mediated transformation. Tobacco cv. Xanthi leaves and sunflower apical meristems were wounded by microprojectile bombardment prior to application of Agrobacterium tumefaciens strains containing genes within the T-DNA encoding GUS or NPTII. Stable kanamycin-resistant tobacco transformants were obtained using an NPTII construct from particle/plasmid, particle-wounded/Agrobacterium-treated or scalpel-wounded/Agrobacterium-treated potato leaves. Those leaves bombarded with particles suspended in TE buffer prior to Agrobacterium treatment produced at least 100 times more kanamycin-resistant colonies than leaves treated by the standard particle gun transformation protocol. In addition, large sectors of GUS expression, indicative of meristem cell transformation, were observed in plants recovered from sunflower apical explants only when the meristems were wounded first by particle bombardment prior to Agrobacterium treatment. Similar results in two different tissue types suggest that (1) particles may be used as a wounding mechanism to enhance Agrobacterium transformation frequencies, and (2) Agrobacterium mediation of stable transformation is more efficient than the analogous particle/plasmid protocol.  相似文献   

8.
The activity of constitutive promoters was compared in transgenic alfalfa plants using two marker genes. Three promoters, the 35S promoter from cauliflower mosaic virus (CaMV), the cassava vein mosaic virus (CsVMV) promoter, and the sugarcane bacilliform badnavirus (ScBV) promoter were each fused to the beta-glucuronidase (gusA) gene. The highest GUS enzyme activity was obtained using the CsVMV promoter and all alfalfa cells assayed by in situ staining had high levels of enzyme activity. The 35S promoter was expressed in leaves, roots, and stems at moderate levels, but the promoter was not active in stem pith cells, root cortical cells, or in the symbiotic zones of nodules. The ScBV promoter was active primarily in vascular tissues throughout the plant. In leaves, GUS activity driven by the CsVMV promoter was approximately 24-fold greater than the activity from the 35S promoter and 38-fold greater than the activity from the ScBV promoter. Five promoters, the double 35S promoter, figwort mosaic virus (FMV) promoter, CsVMV promoter, ScBV promoter, and alfalfa small subunit Rubisco (RbcS) promoter were used to control expression of a cDNA from Trichoderma atroviride encoding an endochitinase (ech42). Highest chitinase activity in leaves, roots, and root nodules was obtained in plants containing the CsVMV:ech42 transgene. Plants expressing the endochitinase were challenged with Phoma medicaginis var. medicaginis, the causal agent of spring black stem and leaf spot of alfalfa. Although endochitinase activity in leaves of transgenic plants was 50- to 2650-fold greater than activity in control plants, none of the transgenic plants showed a consistent increase in disease resistance compared to controls. The high constitutive levels of both GUS and endochitinase activity obtained demonstrate that the CsVMV promoter is useful for high-level transgene expression in alfalfa.  相似文献   

9.
The class I -1,3-glucanases are antifungal vacuolar proteins implicated in plant defense that show developmental, hormonal, and pathogenesis-related regulation. The tobacco enzymes are encoded by a small gene family with members derived from ancestors related to the present-day species Nicotiana sylvestris and N. tomentosiformis. We studied the expression in transgenic tobacco plants of a chimeric -glucuronidase (GUS) reporter gene fused to 1.6 kb of upstream sequence of the tobacco class I -1,3-glucanase B (GLB) gene, which is of N. tomentosiformis origin. Expression of the GUS reporter gene and the accumulation of class I -1,3-glucanase and its mRNA showed very similar patterns of regulation. In young seedlings the reporter gene was expressed in the roots. In mature tobacco plants it was preferentially expressed in lower leaves and roots and was induced in leaves by ethylene treatment and by infection with tobacco mosaic virus (TMV). Furthermore, it was down-regulated in cultured leaf discs by combinations of the hormones auxin and cytokinin. Histological studies of GUS activity showed that the GLB promoter shows highly localized expression in roots of seedlings. It is also expressed in a ring of cells around necrotic lesions induced by TMV infection, but not in cells immediately adjacent to the lesions or in the lesions themselves. The results of deletion analyses suggest that multiple positive and negative elements in the GLB promoter regulate its activity. The region from –1452 to –1193 containing two copies of the heptanucleotide AGCCGCC, which is highly conserved in plant-stress and defense-related genes, is necessary for high level expression in leaves. Additional regions important for organ-specific and regulated expression were: –568 to –402 for ethylene induction of leaves; –402 to –211 for expression in lower leaves and cultured leaf discs and for TMV induction of leaves; and –211 to –60 for expression in roots.  相似文献   

10.
11.
Expression patterns of three Arabidopsis thaliana cytokinin oxidase/dehydrogenase promoter::GUS reporter fusions were investigated in tobacco plants. While cytokinin oxidase/dehydrogenase promoter 2 showed no expression in tobacco, the cytokinin oxidase/dehydrogenase promoters 3 and 4 were active in various tissues throughout development of the tobacco. Recently, the 1452 bp promoter region of AtCKX3 was reported as almost inactive in Arabidopsis. In contrast, the 1627 bp DNA fragment preceding the AtCKX3 coding region drove expression of the reporter GUS gene in various tobacco tissues. The promoter was mainly expressed in tobacco leaves and roots during early stages of development but also later in young flower buds as well as in pollen grains. The construct was particularly active before (hypocotyl region) and during (vascular system) lateral root initiation, supporting the idea of an inhibitory role of active cytokinins in the process of root initiation. The cytokinin oxidase/dehydrogenase promoter 4::GUS fusion in tobacco was shown to share some common (but weaker) expression patterns with promoter 3, namely in the leaves and pollen, but also conferred specific expression in tobacco root cap cells and trichomes. In addition, the response of cytokinin oxidase/dehydrogenase promoter::GUS reporter fusions to infection with the leafy gall-forming bacteria Rhodococcus fascians was examined. While an avirulent strain of R. fascians did not induce expression of any of the cytokinin oxidase/dehydrogenase promoters, the cytokinin oxidase/dehydrogenase promoter 3::GUS fusion was specifically induced at the site of infection when plants were challenged with a virulent strain of R. fascians, providing a possible explanation for the lack of significantly elevated cytokinin concentrations in tissues infected with virulent strains of R. fascians.This revised version was published online in August 2005 with some black and white figures replaced by coloured figures.  相似文献   

12.
Infection of tobacco by tobacco mosaic virus (TMV) induces coordinate expression of genes encoding acidic and basic -1,3-glucanase isoforms. These genes are differentially expressed in response to other treatments. Salicylate treatment induces acidic glucanase mRNA to a higher level than basic glucanase mRNA. Ethylene treatment and wounding strongly induce the basic glucanase genes but have little effect on genes encoding the acidic isoforms. Furthermore, the basic glucanase genes are constitutively expressed in roots and lower leaves of healthy plants, whereas the acidic glucanase genes are not. In order to investigate how these expression patterns are established, we fused promoter regions of an acidic and a basic glucanase gene to the -glucuronidase (GUS) reporter gene and examined expression of these constructs in transgenic tobacco plants.A fragment of 1750 bp and two 5-truncated fragments of 650 bp and 300 bp of the acidic glucanase promoter were tested for induction of GUS gene expression after salicylate treatment and TMV infection. Upstream sequences of 1750 bp and 650 bp were sufficient for induction of the reporter gene by salicylate treatment and TMV infection, but the activity of the 300 bp fragment was strongly reduced. The results suggest that the 1750 bp upstream sequence of the acidic glucanase gene contains multiple regulatory elements.For the basic glucanase promoter it is shown that 1476 bp of upstream sequences were able to drive expression in response to TMV infection and ethylene treatment, but no response was found to incision wounding. Furthermore, high GUS activity was found in lower leaves and roots of healthy transgenic plants, carrying the 1476 bp basic glucanase promoter/GUS construct. When the promoter was truncated up to position –446 all activity was lost, indicating that the region between –1476 and –446 of the basic glucanase promoter is necessary for organ-specific and developmentally regulated expression as well as for induced expression in response to infection and other stress treatments.  相似文献   

13.
The tissue-specificity of the sugarcane bacilliform virus (SCBV) promoter was investigated in oat, barley, and wheat to determine whether its expression pattern in one species was predictive of promoter specificity in the other closely related Gramineae species. Progeny of transgenic plants produced using constructs containing the SCBV promoter driving gusA were sampled at different stages of plant development and stained for GUS activity using a histochemical assay. Overall, the GUS staining patterns were most similar between oat and barley. In all three species, similar GUS staining patterns were observed in mature endosperms, leaves, and floral bracts of developing infloresences. No GUS staining was detected in oat embryos whereas the entire barley embryo was stained, and GUS staining was confined to the scutellum of wheat embryos. Oat and barley stems exhibited GUS staining whereas no GUS staining was observed in stems of the transgenic wheat plants. The SCBV promoter conferred strong GUS staining intensity in most tissues of oat and barley but was generally weaker in wheat. These differences in SCBV promoter specificity indicate that promoter evaluation should be conducted in the target species of interest rather than by extrapolation from expression patterns in other species.  相似文献   

14.
Transgenic plants of Tricyrtis hirta carrying the intron-containing β-glucuronidase (GUS) gene under the control of the CaMV35S promoter have been cultivated for two years. Four independent transgenic plants produced flowers 1–2 years after acclimatization, and all of them contained one copy of the transgene as indicated by inverse polymerase chain reaction (PCR) analysis. All the four transgenic plants showed stable expression of the gus gene in leaves, stems, roots, tepals, stamens and pistils as indicated by histochemical and fluorometric GUS assays, although differences in the GUS activity were observed among different organs of each transgenic plant. No apparent gus gene silencing was observed in transgenic T. hirta plants even after two years of cultivation.  相似文献   

15.
16.
A chimeric gene consisting of the -glucuronidase (gusA) reporter gene under the control of the metallothionein-like promoter cgMT1 from the tropical tree Casuarina glauca was introduced into Nicotiana tabacum via Agrobacterium tumefaciens and into Oryza sativa by particle bombardment. The strongest histochemical staining for GUS activity was observed in the root system of the transgenic plants, and especially in lateral roots. In contrast, a relatively low level of reporter gene expression was seen in the aerial tissues and GUS staining was located mainly in the plant vascular system. The average ratio of GUS activity between root and leaf was found to be 13:1 in tobacco and 1.5:1 in rice. The pattern of cgMT1 promoter activity in floral organs was found to be different in tobacco and rice. High levels of gusA gene expression were detected in the ovules, pollen grains and tapetum, whereas in rice PcgMT1 directs expression to the vascular system of the floral organs. These results suggest that PcgMT1 is potentially useful in molecular breeding to express genes of interest whose products are preferentially needed in roots.  相似文献   

17.
We are examining various plant-based systems to produce enzymes for the treatment of human lysosomal storage disorders. Constitutive expression of the gene encoding the human lysosomal enzyme, alpha-L-iduronidase (IDUA; EC 3.2.1.76) in leaves of transgenic tobacco plants resulted in low-enzyme activity, and the protein appeared to be subject to proteolysis. Toward enhancing production of this recombinant enzyme in vegetative tissues, transgenic tobacco plants were generated to co-express a CaMV35S:Chamaecyparis nootkatensis Abscisic Acid Insensitive3 (CnABI3) gene construct, along with the human gene construct. The latter contained regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene (5'-flanking, signal-peptide-encoding, and 3'-flanking regions). Ectopic synthesis of the CnABI3 protein led to the transactivation of the arcelin promoter and accordingly high activity (e.g., 25,000 pmol/min/mg total soluble protein) and levels of recombinant IDUA mRNA and protein were induced in leaves of transgenic tobacco, particularly in the presence of 150-200 microM S-(+)-ABA. Synthesis of human IDUA containing a carboxy-terminal ER retention (SEKDEL) sequence was also inducible by ABA in leaves co-transformed with the CnABI3 gene. As compared to the natural S-(+)-ABA, two persistent ABA analogues, (+)-8' acetylene ABA and (+)-8'methylene ABA, led to greater levels of beta-glucuronidase (GUS) reporter activities in leaves co-expressing the CnABI3 gene and a vicilin:GUS chimeric gene. In contrast, (+)-8' acetylene ABA and natural ABA appeared to be equally effective in stimulating the CnABI3-induced expression of an arcelin:GUS gene, and of the human IDUA gene, the latter also driven by arcelin-gene-regulatory sequences. Various stress-related treatments, particularly high concentrations of NaCl, had an even greater effect than ABA in promoting accumulation of human IDUA in co-transformed tobacco leaves. This strategy provides the means of enhancing the yields of recombinant proteins in transgenic plant vegetative tissues and potentially in cultured plant cells. The human recombinant protein can be readily induced in the presence of chemicals such as NaCl that can be added to cell cultures or even whole plants without a significant increase in production costs.  相似文献   

18.
Summary A simple and efficient gene transfer system of trifoliate orange (Poncirus trifoliata Raf.) was developed using epicotyl segments. The segments were infected with Agrobacterium harboring the binary vector pBI121 or pBI101-O12-p1. Both vectors contained the neomycin phosphotransferase II (NPTII) and the -glucuronidase (GUS) genes. In the plasmid pBI101-O12-p1, the GUS gene was directed to the promoter region of ORF12 (rolC) of the Ri plasmid. On a selection medium containing 100 or 200 g/ml kanamycin, adventitious shoots were formed from 21.7–44.6% of the segments. Histochemical GUS assay showed that 55.4–87.7% of the shoots expressed the GUS gene. The stable integration of this gene was also confirmed by polymerase chain reaction (PCR) analysis and by Southern blot analysis. When the pBI101-O12-p1 plasmid was used, the GUS activity was found to be located in phloem cells of leaf, stem and root. More than 100 transformed plants were obtained using this method within 2–3 months.  相似文献   

19.
In order to study the expression in plants of therolD promoter ofAgrobacterium rhizogenes, we have constructed chimaeric genes placing the coding region of thegusA (uidA) marker gene under control of tworolD promoter fragments of different length. Similar results were obtained with both genes. Expression studies were carried out in transformed R1 progeny plants. In mature transformed tobacco plants, therolD-gus genes were expressed strongly in roots, and to much lower levels in stems and leaves. This pattern of expression was transmitted to progeny, though the ratio of the level of expression in roots relative to that in leaves was much lower in young seedlings. The degree of root specificity inrolD-gus transformants was less than that of a gene constructed with domain A of the CaMV 35S promoter,domA-gus, but the level of root expression was much higher than with the latter gene. However, the level of expression of therolD-gus genes was less than that of agus gene with a 35S promoter with doubled domain B, 35S2-gus. TherolD-gus genes had a distinctive pattern of expression in roots, compared to that of the two other genes, with the strongest GUS activity observed in the root elongation zone and in vascular tissue, and much less in the root apex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号