首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Many studies indicate that thimet oligopeptidase (EC3.4.24.15; TOP) can be implicated in the metabolism of bioactive peptides, including dynorphin 1-8, α-neoendorphin, β-neoendorphin and GnRH. Furthermore, the higher levels of this peptidase are found in neuroendocrine tissue and testis. In the present study, we have evaluated the effect of acute cocaine administration in male rats on TOP specific activity and mRNA levels in prosencephalic brain areas related with the reward circuitry; ventral striatum, hippocampus, and frontal cortex. No significant differences on TOP specific activity were detected in the hippocampus and frontal cortex of cocaine treated animals compared to control vehicle group. However, a significant increase in activity was observed in the ventral striatum of cocaine treated-rats. The increase occurred in both, TOP specific activity and TOP relative mRNA amount determined by real time RT-PCR. As TOP can be implicated in the processing of many neuropeptides, and previous studies have shown that cocaine also alters the gene expression of proenkephalin and prodynorphin in the striatum, the present findings suggest that TOP changes in the brain could play important role in the balance of neuropeptide level correlated with cocaine effects.  相似文献   

2.
3.
Administration of drugs of abuse can produce long-lasting effects on brain function, which involve modifications at neurotransmitter level as well as changes in proteins important for structural alterations of selected brain regions. The contribution of trophic factors in these events has so far been underestimated. Here, we demonstrate that a single cocaine injection selectively up-regulated fibroblast growth factor 2 (FGF-2) mRNA levels in the striatum and prefrontal cortex within 2 h, an effect that vanished by 24 h. However, prolonged exposure (5 or 14 days) to cocaine treatment produced an enduring elevation of FGF-2 mRNA levels that was evident 72 h after the last injection in the prefrontal cortex and could even persist for 14 days in the striatum, raising the possibility that cocaine treatment primes the brain, resulting in longer-lasting FGF-2 up-regulation in regions that are highly innervated by dopaminergic projections. The expression of FGF-2 was also significantly increased in the midbrain following acute or 5-day injection, suggesting that modulation of FGF-2 biosynthesis in dopamine-producing cells occurs only during early stages of cocaine exposure. Our results point to important mechanistic conclusions as to how cocaine alters FGF-2 expression. Whereas cocaine-induced changes in FGF-2 gene expression following a single injection could be ascribed to increased release of transmitters (mainly dopamine), enhanced FGF-2 gene expression following repeated administration identifies the trophic factor as part of the adaptive changes set in motion by cocaine.  相似文献   

4.
5.
Chen Y  Jiang Y  Yue W  Zhou Y  Lu L  Ma L 《Neurochemical research》2008,33(10):2092-2098
The effects of acute and chronic morphine treatments on the expression of Ca2+/calmodulin dependent protein kinase II (CaMK II) gene in rat brain were investigated using in situ hybridization histochemistry. Our data showed that repeated, but not single morphine administration, resulted in significant up-regulation of the α-CaMK II gene expression in hippocampus and frontal cortex. We further studied the time courses of α-CaMK II gene expression in response to repeated morphine administration. After 3 days of consecutive morphine injections, the α-CaMK II mRNA levels exhibited a trend of up-regulation, and after 6 days of consecutive morphine injections it increased over 50–60% as compared with the control group. The α-CaMK II mRNA levels remained high 24 h after the cessation of chronic morphine treatment and returned to the control level 72 h later. However, changes of α-CaMK II gene levels mentioned above were not detected in amygdala or piriform cortex. Taken together, our data demonstrate that chronic morphine treatment region-specific up-regulates the levels of the α-CaMK II gene expression in hippocampus and frontal cortex. Yuejun Chen, Yan Jiang, Wen Yue contributed equally to this work. Special issue in honor of Dr. Ji-Sheng Han.  相似文献   

6.
7.
During severe sepsis, several immunological defense mechanisms initiate a cascade of inflammatory events leading to multiorgan failure, including septic encephalopathy and ultimately death. Endothelin-1 (ET-1) has recently been investigated in different cerebral pathologies. Some reports suggest the involvement of ET-1 in sepsis. However, no study to date has reported the alterations in expression of the genes encoding preproET-1 and ET receptors in the frontal cortex of the septic brain. Male Sprague-Dawley (SD) rats 8 weeks of age were administered either saline or 15 mg/kg lipopolysaccharide (LPS) at different time points (1, 3, 6, and 10 hrs). Rats that did not receive LPS were considered to be controls. The rats were sacrificed with ether, and the brain tissues were harvested. Systolic and diastolic blood pressure decreased 1 hr after LPS administration and then gradually returned to normal, without any change in the heart rate. We confirmed the induction of endotoxemia in the brains of SD rats by measuring the expression of nitric oxide synthase (NOS) mRNA induced in the cerebrum. The expression of inducible NOS (iNOS) mRNA in the brains of SD rat after LPS administration was 30-fold higher than that in the brains of control rats. mRNA expression of preproET-1 in the frontal cortex of SD rats after LPS administration was 2-fold higher than that in control rats. A time-dependent increase in the expression of the gene encoding the ET(A) receptor (vasoconstrictive property) after LPS administration was observed in SD rat brain, whereas expression of the gene encoding the ET(B) receptor (vasodilatatory property) showed an initial upregulation and then gradually decreased as sepsis progressed. In conclusion, we report for the first time that expressions of the genes encoding ET-1 and ET receptors are altered in the endotoxemic brain and that these alterations are time-dependent in SD rats. The alterations in the ET system in brain tissue observed in the present study may contribute to the understanding of the pathophysiological changes in the endotoxemic brain.  相似文献   

8.
Semax is a synthetic peptide, which consists of the N-terminal adrenocorticotropic hormone fragment (4-7) (ACTH4-7) and C-terminal Pro-Gly-Pro peptide. Semax promotes neuron survival in hypoxia, increases selective attention and memory storage. It was shown that this synthetic peptide exerted a number of gene expressions, especially brain derived neurotrophic factor gene (Bdnf) and nerve growth factor gene (Ngf). Temporary dynamics of Bdnf and Ngf ex- pression in rat hippocampus and frontal cortex under Semax action (50 mg/kg, single intranasal administration) was studied in this work. It was shown that the studied gene expression levels changed significantly both in the hippocampus and the frontal cortex tissues 20 minutes after the peptide preparation application. The expression levels decreased in the hippocampus and increased in the frontal cortex. Forty minutes after Semax administration both gene expression levels returned to the level typical of control tissues. After that they increased significantly by 90 minutes after experiment start. Bdnf and Ngf expression levels decreased up to the control levels by 8 hours after medicine applying maximum gene expression levels were attained. Thus, Semax administration results in rapid, long-term, and specific activation of Bdnf and Ngf expression changes in different rat brain departments.  相似文献   

9.
The present study was undertaken to examine whether NKH477, a novel and potent water-soluble forskolin derivative, stimulates adenylyl cyclase and regulates brain-derived neurotrophic factor (BDNF) and TrkB expression in the rat brain. Administration of NKH477 at a dose of 1.0 mg/kg, but not 0.1 mg/kg, increased levels of cyclic AMP (cAMP) in a time-dependent manner in frontal cortex and hippocampus. Repeated administration of NKH477 (1.0 mg/kg) for 7 or 14 days also increased levels of cAMP in these two brain regions, indicating that the response does not desensitize with chronic treatment. In addition, administration of NKH477 at the 1 mg/kg dose increased the expression of BDNF and TrkB mRNA in frontal cortex and hippocampus. This effect was observed after single, as well as repeated (7 or 14 days), administration of NKH477. These results demonstrate that NKH477 administration rapidly increases cAMP levels in brain and provides evidence that stimulation of this second messenger system increases the expression of BDNF and TrkB mRNA.  相似文献   

10.
11.
Addiction to psychostimulants elicits behavioral and biochemical changes that are assumed to be mediated by alterations of gene expression in the brain. The changes in gene expression after 3 weeks of withdrawal from chronic cocaine treatment were evaluated in the nucleus accumbens core and shell, dorsal prefrontal cortex and caudate using a complementary DNA (cDNA) array. The level of mRNA encoded by several genes was identified as being up- or down-regulated in repeated cocaine versus saline subjects. The results from the cDNA array were subsequently confirmed at the protein level with immunoblotting. Of particular interest, parallel up-regulation in protein and mRNA was found for the adenosine A1 receptor in the accumbens core, neuroglycan C in the accumbens shell, and the GluR5 glutamate receptor subtype in dorsal prefrontal cortex. However, there was an increase in TrkB protein in the nucleus accumbens core of cocaine-treated rats without a corresponding alteration in mRNA. These changes of gene expression in corticolimbic circuitry may contribute to the psychostimulant-induced behavioral changes associated with addiction.  相似文献   

12.
To study the change of gene expression in the brain tissues of schizophrenia, we used the gene expression monitoring technology and compared two sets of pools each containing four RNA samples of frontal cortex that were randomly selected from the control or schizophrenia group. We found that the expression of two genes were commonly altered in four pairwise comparisons; the expression of DEAD-box protein p72 (p72) gene was increased and neuropeptide Y (NPY) gene expression was decreased in the schizophrenia group compared with the control group. To substantiate these results, we estimated their mRNA levels by the real time TaqMan method in the 15 samples of each frontal or temporal cortex of four matched groups of schizophrenia, bipolar disorder, major depression and normal controls. A statistically significant decrease was observed for NPY in the frontal, but not in the temporal cortex, in the schizophrenia group (P=0.003). A decrease was also observed in the frontal cortex of the bipolar disorder group (P=0.031). In contrast, p72 gene expression showed no significant difference among the four groups. In conclusion, by novel technology of DNA array and TaqMan PCR analyses, we found that neuropeptide Y mRNA levels were significantly reduced in the frontal cortex in both schizophrenia and bipolar disorder.  相似文献   

13.
Recent studies have shown marked increases in brain content of neuropeptide Y (NPY) after seizures induced by intraperitoneal injection of kainic acid and after pentylenetetrazole kindling in the rat. We have now investigated possible changes in the rate of biosynthesis of NPY after kainic acid treatment, by using pulse-labeling of the peptide and by determining prepro-NPY mRNA concentrations. For pulse labeling experiments, [3H]tyrosine was injected into the frontal cortex, and the incorporation of the amino acid into NPY was determined after purifying the peptide by gel filtration chromatography, antibody affinity chromatography, and reversed-phase HPLC. At 2 and 30 days after kainic acid treatment, the rate of tyrosine incorporation was enhanced by approximately 380% in the cortex. In addition, concentrations of pre-pro-NPY mRNA were determined in four different brain areas by hybridization of Northern blots with a complementary 32P-labeled RNA probe 2, 10, 30, and 60 days after kainic acid treatment. Marked increases were observed in the frontal cortex (by up to 350% of controls), in the dorsal hippocampus (by 750%), and in the amygdala/pyriform cortex (by 280%) at all intervals investigated. In the striatum only a small, transient increase was observed. The data demonstrate increased expression of prepro-NPY mRNA and an enhanced rate of in vivo synthesis of NPY as a result of seizures induced by the neurotoxin kainic acid.  相似文献   

14.
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on somatostatin (SS)-containing neurons were examined by measuring dopamine, norepinephrine (NE), SS, and SS mRNA in striatum and frontal cortex of C57/B16 mice at various times following treatment with MPTP-HCl (96 mg/kg i.p.). MPTP caused a 70% depletion of dopamine in striatum by 1 day and a 40% depletion of NE in frontal cortex within 3 days. SS content was increased in frontal cortex 4 days later, but not in striatum; there were no changes in SS mRNA. Maprotiline, a specific NE-uptake blocker, prevented both the depletion of NE and the increase of SS in frontal cortex due to MPTP administration. These results support the possibility that NE can regulate SS in frontal cortex and are discussed in terms of the decrease of SS seen in parkinsonian patients with dementia.  相似文献   

15.
Chronic cocaine use in humans and animal models is known to lead to pronounced alterations in glutamatergic function in brain regions associated with reinforcement. Previous studies have examined ionotropic glutamate receptor (iGluR) subunit protein level changes following acute and chronic experimenter-administered cocaine or after withdrawal periods from experimenter-administered cocaine. To evaluate whether alterations in expression of iGluRs are associated with cocaine reinforcement, protein levels were assessed after binge (8 h/day, 15 days; 24-h access, days 16-21) cocaine self-administration and following 2 weeks of abstinence from this binge. Western blotting was used to compare levels of iGluR protein expression (NR1-3B, GluR1-7, KA2) in the ventral tegmental area (VTA), substantia nigra (SN), nucleus accumbens (NAc), striatum and prefrontal cortex (PFC) of rats. iGluR subunits were altered in a time-dependent manner in all brain regions studied; however, selective alterations in certain iGluR subtypes appeared to be associated with binge cocaine self-administration and withdrawal in a region-specific manner. In the SN and VTA, alterations in iGluR protein levels compared with controls occurred only following binge access, whereas in the striatum and PFC, iGluR alterations occurred with binge access and following withdrawal. In the NAc, GluR2/3 levels were increased following withdrawal compared with binge access, and were the only changes observed in this region. Because subunit composition determines the functional properties of iGluRs, the observed changes may indicate alterations in the excitability of dopamine transmission underlying long-term biochemical and behavioral effects of cocaine.  相似文献   

16.
17.
Thyrotropin releasing hormone (TRH) present in several brain areas has been proposed as a neuromodulator. Its administration produces opposite effects to those observed with acute ethanol consumption. Opioid peptides, in contrast, have been proposed to mediate some of the effects of alcohol intoxication. We measured TRH content and the levels of its mRNA in hypothalamic and limbic zones 1–24 h after acute ethanol injection. We report here fast and transient changes in the content of TRH and its mRNA in these areas. The levels of proenkephalin mRNA varied differently from those of proTRH mRNA, depending on the time and region studied. Wistar rats were administered one dose of ethanol (intraperitoneal, 3 g/kg body weight) and brains dissected in hypothalamus, hippocampus, amygdala, n. accumbens and frontal cortex, for TRH quantification by radioimmunoassay or for proTRH mRNA measurement by RT-PCR. After 1 h injection, TRH levels were increased in hippocampus and decreased in n. accumbens; after 4 h, it decreased in the hypothalamus, frontal cortex and amygdala, recovering to control values in all regions at 24 h. ProTRH mRNA levels increased at 1 h post-injection in total hypothalamus and hippocampus, while they decreased in the frontal cortex. The effect of ethanol was also studied in primary culture of hypothalamic cells; a fast and transient increase in proTRH mRNA was observed at 1 h of incubation (0.001% final ethanol concentration). Changes in the mRNA levels of proTRH and proenkephalin were quantified by in situ hybridization in rats administered ethanol intragastrically (2.5 g/kg). Opposite alterations were observed for these two mRNAs in hippocampus and frontal cortex, while in n. accumbens and the paraventricular nucleus of the hypothalamus, both mRNA levels were increased but with different kinetics. These results give support for TRH and enkephalin neurons as targets of ethanol and, as possible mediators of some of its observed behavioral effects.  相似文献   

18.
Neurotrophins regulate key functions of nervous tissue cells. Analysis of neurotrophin mRNA expression is an appropriate tool to assess therapeutic efficiency of antistroke drugs. We have analyzed the effect of synthetic peptide semax and its C-terminal Pro-Gly-Pro tripeptide on mRNA expression of neurotrophins Ngf, Bdnf, and Nt-3 and their receptors TrkA, TrkB, TrkC, and p75 in rat frontal cortex, hippocampus, and cerebellum after bilateral common carotid artery occlusion. The animals were decapitated at 30 min and 1, 2, 4, 8, 12, and 24 h after the operation. The mRNA expression of neurotrophins and their receptors was assessed by relative quantification using real-time RT-PCR. Our results demonstrated that ischemia caused a significant decrease in gene expression in the hippocampus. Semax and PGP treatment affected the expression of neurotrophins and their receptors predominantly in the frontal cortex and hippocampus of the ischemized animals. In the frontal cortex, Semax treatment resulted in a decrease of mRNA level of neurotrophin receptors, while PGP treatment increased the level of these mRNA. Maximal neuroprotective effect of both peptides was observed in the hippocampus 12 h after occlusion. A decrease of gene expression of neurotrophins and their receptors caused by the occlusion was overcome by Semax and PGP. These results clarify the mechanism of Semax action and reveal certain features of mRNA expression of neurotrophins and their receptors under experimental conditions.  相似文献   

19.
20.
Dopamine transporter mRNA levels in the rat substantia nigra were quantified using a sensitive nuclease protection assay with a highly homologous human dopamine transporter cDNA clone. The same probe was also used to visualize dopamine transporter mRNA in the substantia nigra by in situ hybridization. Repeated cocaine administration (15 mg/kg, twice a day for 6.5 days) resulted in a greater than 40% decrease in nigral dopamine transporter mRNA levels. In contrast, dopamine transporter mRNA levels were unchanged after either acute treatment (4 h before death) or repeated cocaine treatment followed by a 72-h withdrawal period. Thus, blockade of the dopamine transporter by repeated cocaine administration may result in the down-regulation of dopamine transporter gene expression in dopamine neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号