首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Most mitochondrial proteins are synthesized as precursors that carry N-terminal presequences. After they are imported into mitochondria, these targeting signals are cleaved off by the mitochondrial processing peptidase (MPP). Using the mitochondrial tandem protein Arg5,6 as a model substrate, we demonstrate that MPP has an additional role in preprotein maturation, beyond the removal of presequences. Arg5,6 is synthesized as a polyprotein precursor that is imported into mitochondria and subsequently separated into two distinct enzymes. This internal processing is performed by MPP, which cleaves the Arg5,6 precursor at its N-terminus and at an internal site. The peculiar organization of Arg5,6 is conserved across fungi and reflects the polycistronic arginine operon in prokaryotes. MPP cleavage sites are also present in other mitochondrial fusion proteins from fungi, plants, and animals. Hence, besides its role as a “ticket canceller” for removal of presequences, MPP exhibits a second conserved activity as an internal processing peptidase for complex mitochondrial precursor proteins.  相似文献   

2.
We have shown previously that cleavage of a number of precursors by the mitochondrial processing peptidase (MPP) requires an intermediate octapeptide (FXXSXXXX) between the MPP cleavage site and the mature protein amino terminus. We show now that these octapeptides, present at the amino termini of the intermediates, direct recognition of these substrates by the mitochondrial intermediate peptidase (MIP), leading to formation of mature proteins. Synthetic peptides, corresponding to the intermediate octapeptides of human ornithine transcarbamylase (OTC) and of Neurospora cytochrome c reductase Fe/S subunit (Fe/S), inhibit the processing activity of purified rat liver MIP in vitro, without affecting MPP activity; this indicates that the octapeptides can be recognized by MIP independent of the presence of the corresponding mature proteins and interact with a site that is crucial for MIP activity. MIP activity is not inhibited by a peptide lacking the amino-terminal hydrophobic residue, while substitution of such a residue by a polar amino acid causes a 10-fold reduction in the efficiency of MIP inhibition. To analyze the requirements for removal of the octapeptide from the intermediate proteins by MIP, artificial intermediates were synthesized and subjected to in vitro processing by purified MIP. The octapeptide can be cleaved by MIP only when the amino-terminal hydrophobic residue is also the amino terminus of the intermediate. Further, when the OTC octapeptide is joined to the mature amino terminus of another twice-cleaved precursor (pFe/S; rat malate dehydrogenase, pMDH), the chimeric intermediate is cleaved by MIP to the corresponding mature-sized protein. When the OTC octapeptide is joined to the mature amino terminus of a once-cleaved precursor (yeast F1-beta-ATPase, pF1-beta), however, this intermediate is not cleaved by MIP; rather, it is processed by MPP to mature-sized F1-beta. Therefore, amino-terminal octapeptides can be cleaved by MIP only within the structural context of twice-cleaved precursors.  相似文献   

3.
Two proteins co-operate in the proteolytic cleavage of mitochondrial precursor proteins: the mitochondrial processing peptidase (MPP) and the processing enhancing protein (PEP). In order to understand the structure and function of this novel peptidase, we have isolated mutants of Saccharomyces cerevisiae which were temperature sensitive in the processing of mitochondrial precursor proteins. Here we report on the mif2 mutation which is deficient in MPP. Mitochondria from the mif2 mutant were able to import precursor proteins, but not to cleave the presequences. The MPP gene was isolated. MPP is a hydrophilic protein consisting of 482 amino acids. Notably, MPP exhibits remarkable sequence similarity to PEP. We speculate that PEP and MPP have a common origin and have evolved into two components with different but mutually complementing functions in processing of precursor proteins.  相似文献   

4.
5.
Mitochondrial and glyoxysomal malate dehydrogenase (mMDH; gMDH; L-malate: NAD+ oxidoreductase; EC 1.1.1.37) of watermelon (Citrullus vulgaris) cotyledons are synthesized with N-terminal cleavable presequences which are shown to specify sorting of the two proteins. The two presequences differ in length (27 or 37 amino acids) and primary structure. Precursor proteins of the two isoenzymes with site-directed mutations in their presequences and hybrid precursor proteins with reciprocally exchanged presequences were analyzed for proper import using two approaches, namely in vitro using isolated watermelon organelles or in vivo after synthesis in the heterologous host, Hansenula polymorpha. The mitochondrial presequence is essential and sufficient to target the mature glyoxysomal isoenzyme into mitochondria (Gietl et al., 1994). As to the function of the mitochondrial presequence a substitution of ?3R (considered important for one step precursor cleavage in yeast and mammals) with ?3L permitted import into mitochondria but cleavage of the transit peptide and conversion into active mature enzyme was impeded. Substitution of ?13R?12S (in a sequence reminiscent of the octapeptide motif serving as a substrate for the mammalian and yeast intermediate peptidase) into ?13L12F permitted mitochondrial import and processing like the wild type transit peptide. Purified rat mitochondrial processing protease, which can effect single step cleavage of mitochondrial protein precursors, cleaves in vitro translated watermelon mMDH precursor into its mature form. The glyoxysomal presequence is essential and sufficient to target the mature mitochondrial isoenzyme into peroxisomes of Hansenula polymorpha, but these peroxisomes lack a processing enzyme to cleave the presequence (Gietl et al., 1994). We here show that isolated watermelon organelles also import the hybrid proteins in vitro and process the glyoxysomal presequence. Site directed mutations within the conserved RI-X5-HL-motif impede efficiency of import and cleavage by watermelon organelles.  相似文献   

6.
7.
The amino acid sequence predicted from a rat liver cDNA library indicated that the precursor of beta-AlaAT I (4-aminobutyrate aminotransferase, beta-alanine-oxoglutarate aminotransferase) consists of a mature enzyme of 466 amino acid residues and a 34-amino acid terminal segment, with amino acids attributed to the leader peptide. However, the mass of beta-AlaAT I from rat brain was larger than that from rat liver and kidney, as assessed by Western-blot analysis, mass spectroscopy and N-terminal sequencing. The mature form of beta-AlaAT I from the brain had an ISQAAAK- peptide on the N-terminus of the liver mature beta-AlaAT I. Brain beta-AlaAT I was cleaved to liver beta-AlaAT I when incubated with fresh mitochondrial extract from rat liver. These results imply that mature rat liver beta-AlaAT I is proteolytically cleaved in two steps. The first cleavage of the motif XRX( downward arrow)XS is performed by a mitochondrial processing peptidase, yielding an intermediate-sized protein which is the mature brain beta-AlaAT I. The second cleavage, which generates the mature liver beta-AlaAT I, is also carried out by a mitochondrial endopeptidase. The second peptidase is active in liver but lacking in brain.  相似文献   

8.
Matrix proteins of mitochondria, hydrogenosomes and mitosomes are typically targeted and translocated into their respective organelles using N-terminal presequences that are subsequently cleaved by a peptidase. Here we characterize a approximately 47 kDa metallopeptidase, from the hydrogenosome-bearing, unicellular eukaryote Trichomonas vaginalis, that contains the active site motif (HXXEHX(76)E) characteristic of the beta subunit of the mitochondrial processing peptidase (MPP) and localizes to hydrogenosomes. The purified recombinant protein, named hydrogenosomal processing peptidase (HPP), is capable of cleaving a hydrogenosomal presequence in vitro, in contrast to MPP which requires both an alpha and beta subunit for activity. T. vaginalis HPP forms an approximately 100 kDa homodimer in vitro and also exists in an approximately 100 kDa complex in vivo. Our phylogenetic analyses support a common origin for HPP and betaMPP and demonstrate that gene duplication gave rise to alphaMPP and betaMPP before the divergence of T. vaginalis and mitochondria-bearing lineages. These data, together with published analyses of MPPs and putative mitosomal processing peptidases, lead us to propose that the length of targeting presequences and the subunit composition of organellar processing peptidases evolved in concert. Specifically, longer mitochondrial presequences may have evolved to require an alpha/beta heterodimer for accurate cleavage, while shorter hydrogenosomal and mitosomal presequences did not.  相似文献   

9.
The mitochondrial processing peptidase (MPP) specifically cleaves N-terminal targeting signals from hundreds of nuclear-encoded, matrix-targeted precursor proteins. In contrast to yeast and mammals, the plant MPP is an integral component of the respiratory cytochrome bc1 complex. The topology of the protein import channel in relation to MPP/bc1 in plants was studied using chimeric precursors containing truncated cytochrome b2 (cyt b2) proteins of 55-167 residues in length, fused to dihydrofolate reductase (DHFR). The DHFR domain could be tightly folded by methotrexate (MTX), generating translocation intermediates trapped in the import channel with only the cyt b2 pre-sequence/mature domain protruding into the matrix. Spinach and soybean mitochondria imported and processed unfolded precursors. MTX-folded intermediates were not processed in spinach but the longest (1-167) MTX-folded cyt b2-DHFR construct was processed in soybean, while yeast mitochondria successfully processed even shorter MTX-folded constructs. The MTX-folded precursors were cleaved with high efficiency by purified spinach MPP/bc1 complex. We interpret these results as indicating that the protein import channel is located distantly from the MPP/bc1 complex in plants, and that there is no link between protein translocation and protein processing.  相似文献   

10.
Pea glutathione reductase (GR) is dually targeted to mitochondria and chloroplasts by means of an N-terminal signal peptide of 60 amino acid residues. After import, the signal peptide is cleaved off by the mitochondrial processing peptidase (MPP) in mitochondria and by the stromal processing peptidase (SPP) in chloroplasts. Here, we have investigated determinants for processing of the dual targeting signal peptide of GR by MPP and SPP to examine if there is separate or universal information recognised by both processing peptidases. Removal of 30 N-terminal amino acid residues of the signal peptide (GRDelta1-30) greatly stimulated processing activity by both MPP and SPP, whereas constructs with a deletion of an additional ten amino acid residues (GRDelta1-40) and deletion of 22 amino acid residues in the middle of the GR signal sequence (GRDelta30-52) could be cleaved by SPP but not by MPP. Numerous single mutations of amino acid residues in proximity of the cleavage site did not affect processing by SPP, whereas mutations within two amino acid residues on either side of the processing site had inhibitory effect on processing by MPP with a nearly complete inhibition for mutations at position -1. Mutation of positively charged residues in the C-terminal half of the GR targeting peptide inhibited processing by MPP but not by SPP. An inhibitory effect on SPP was detected only when double and triple mutations were introduced upstream of the cleavage site. These results indicate that: (i) recognition of processing site on a dual targeted GR precursor differs between MPP and SPP; (ii) the GR targeting signal has similar determinants for processing by MPP as signals targeting only to mitochondria; and (iii) processing by SPP shows a low level of sensitivity to single mutations on targeting peptide and likely involves recognition of the physiochemical properties of the sequence in the vicinity of cleavage rather than a requirement for specific amino acid residues.  相似文献   

11.
BACKGROUND: Mitochondrial processing peptidase (MPP) is a metalloendopeptidase that cleaves the N-terminal signal sequences of nuclear-encoded proteins targeted for transport from the cytosol to the mitochondria. Mitochondrial signal sequences vary in length and sequence, but each is cleaved at a single specific site by MPP. The cleavage sites typically contain an arginine at position -2 (in the N-terminal portion) from the scissile peptide bond in addition to other distal basic residues, and an aromatic residue at position +1. Mitochondrial import machinery recognizes amphiphilic helical conformations in signal sequences. However, it is unclear how MPP specifically recognizes diverse presequence substrates. RESULTS: The crystal structures of recombinant yeast MPP and a cleavage-deficient mutant of MPP complexed with synthetic signal peptides have been determined. MPP is a heterodimer; its alpha and beta subunits are homologous to the core II and core I proteins, respectively, of the ubiquinol-cytochrome c oxidoreductase complex. Crystal structures of two different synthetic substrate peptides cocrystallized with the mutant MPP each show the peptide bound in an extended conformation at the active site. Recognition sites for the arginine at position -2 and the +1 aromatic residue are observed. CONCLUSIONS: MPP bound two mitochondrial import presequence peptides in extended conformations in a large polar cavity. The presequence conformations differ from the amphiphilic helical conformation recognized by mitochondrial import components. Our findings suggest that the presequences adopt context-dependent conformations through mitochondrial import and processing, helical for recognition by mitochondrial import machinery and extended for cleavage by the main processing component.  相似文献   

12.
Most mitochondrial matrix space proteins are synthesized as a precursor protein, and the N-terminal extension of amino acids that served as the leader sequence is removed after import by the action of a metalloprotease called mitochondrial processing peptidase (MPP). The crystal structure of MPP has been solved very recently, and it has been shown that synthetic leader peptides bind with MPP in an extended conformation. However, it is not known how MPP recognizes hundreds of leader peptides with different primary and secondary structures or when during import the leader is removed. Here we took advantage of the fact that the structure of the leader from rat liver aldehyde dehydrogenase has been determined by 2D-NMR to possess two helical portions separated by a three amino acid (RGP) linker. When the linker was deleted, the leader formed one long continuous helix that can target a protein to the matrix space but is not removed by the action of MPP. Repeats of two and three leaders were fused to the precursor protein to determine the stage of import at which processing occurs, if MPP could function as an endo peptidase, and if it would process if the cleavage site was part of a helix. Native or linker deleted constructs were used. Import into isolated yeast mitochondria or processing with recombinantly expressed MPP was performed. It was concluded that processing did not occur as the precursor was just entering the matrix space, but most likely coincided with the folding of the protein. Further, finding that hydrolysis could not take place if the processing site was part of a stable helix is consistent with the crystal structure of MPP. Lastly, it was found that MPP could function at sites as far as 108 residues from the N terminus of the precursor protein, but its ability to process decreases exponentially as the distance increases.  相似文献   

13.
Plastids of diatoms and related algae evolved by secondary endocytobiosis, the uptake of a eukaryotic alga into a eukaryotic host cell and its subsequent reduction into an organelle. As a result diatom plastids are surrounded by four membranes. Protein targeting of nucleus encoded plastid proteins across these membranes depends on N-terminal bipartite presequences consisting of a signal and a transit peptide-like domain. Diatoms and cryptophytes share a conserved amino acid motif of unknown function at the cleavage site of the signal peptides (ASAFAP), which is particularly important for successful plastid targeting. Screening genomic databases we found that in rare cases the very conserved phenylalanine within the motif may be replaced by tryptophan, tyrosine or leucine. To test such unusual presequences for functionality and to better understand the role of the motif and putative receptor proteins involved in targeting, we constructed presequence:GFP fusion proteins with or without modifications of the “ASAFAP”-motif and expressed them in the diatom Phaeodactylum tricornutum. In this comprehensive mutational analysis we found that only the aromatic amino acids phenylalanine, tryptophan, tyrosine and the bulky amino acid leucine at the +1 position of the predicted signal peptidase cleavage site allow plastid import, as expected from the sequence comparison of native plastid targeting presequences of P. tricornutum and the cryptophyte Guillardia theta. Deletions within the signal peptide domains also impaired plastid import, showing that the presence of F at the N-terminus of the transit peptide together with a cleavable signal peptide is crucial for plastid import. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. A. Gruber and S. Vugrinec contributed equally to this work.  相似文献   

14.
《The Journal of cell biology》1989,109(4):1421-1428
Passage of precursor proteins through translocation contact sites of mitochondria was investigated by studying the import of a fusion protein consisting of the NH2-terminal 167 amino acids of yeast cytochrome b2 precursor and the complete mouse dihydrofolate reductase. Isolated mitochondria of Neurospora crassa readily imported the fusion protein. In the presence of methotrexate import was halted and a stable intermediate spanning both mitochondrial membranes at translocation contact sites accumulated. The complete dihydrofolate reductase moiety in this intermediate was external to the outer membrane, and the 136 amino acid residues of the cytochrome b2 moiety remaining after cleavage by the matrix processing peptidase spanned both outer and inner membranes. Removal of methotrexate led to import of the intermediate retained at the contact site into the matrix. Thus unfolding at the surface of the outer mitochondrial membrane is a prerequisite for passage through translocation contact sites. The membrane-spanning intermediate was used to estimate the number of translocation sites. Saturation was reached at 70 pmol intermediate per milligram of mitochondrial protein. This amount of translocation intermediates was calculated to occupy approximately 1% of the total surface of the outer membrane. The morphometrically determined area of close contact between outer and inner membranes corresponded to approximately 7% of the total outer membrane surface. Accumulation of the intermediate inhibited the import of other precursor proteins suggesting that different precursor proteins are using common translocation contact sites. We conclude that the machinery for protein translocation into mitochondria is present at contact sites in limited number.  相似文献   

15.
A new specific endopeptidase that cleaves eukaryotic precursor proteins has been found in Escherichia coli K but not in E. coli B strains. After purification, protein sequencing and Western blotting, the endopeptidase was shown to be identical with E. coli outer membrane protein OmpP [Kaufmann, A., Stierhof, Y.-D. & Henning, U. (1994) J. Bacteriol. 176, 359-367]. Further characterization of enzymatic properties of the new peptidase was performed. Comparison of the cleavage specificities of the newly found endopeptidase and that of rat mitochondrial processing peptidase (MPP) showed that patterns of proteolytic cleavage on the investigated precursor proteins by both enzymes are similar. By using three mitochondrial precursor proteins, the specificity assigned to OmpP previously, a cleavage position between two basic amino-acid residues, was extended to a three amino-acid recognition sequence. Positions +1 to +3 of this extended recognition site consist of an amino-acid residue with a small aliphatic side chain such as alanine or serine, a large hydrophobic residue such as leucine or valine followed by an arginine residue. Additionally, structural motifs of the substrate seem to be required for OmpP cleavage.  相似文献   

16.
Determinants for the recognition of a mitochondrial presequence by the mitochondrial processing peptidase (MPP) have been investigated using mutagenesis and bioinformatics approaches. All plant mitochondrial presequences with a cleavage site that was confirmed by experimental studies can be grouped into three classes. Two major classes contain an arginine residue at position -2 or -3, and the third class does not have any conserved arginines. Sequence logos revealed loosely conserved cleavage motifs for the first two classes but no significant amino acid conservation for the third class. Investigation of processing determinants for a class III precursor, Nicotiana plumbaginifolia F1beta precursor of ATP synthase (pF1beta), was performed using a series of pF1beta presequence mutants and mutant presequence peptides derived from the C-terminal portion of the presequence. Replacement of -2 Gln by Arg inhibited processing, whereas replacement of either the most proximally located -5 Arg or -15 Arg by Leu had only a low inhibitory effect. The C-terminal portion of the pF1beta presequence forms a helix-turn-helix structure. Mutations disturbing or prolonging the helical element upstream of the cleavage site inhibited processing significantly. Structural models of potato MPP and the C-terminal pF1beta presequence peptide were built by homology modelling and empirical conformational energy search methods, respectively. Molecular docking of the pF1beta presequence peptide to the MPP model suggested binding of the peptide to the negatively charged binding cleft formed by the alpha-MPP and beta-MPP subunits in close proximity to the H111XXE114H115X(116-190)E191 proteolytic active site on beta-MPP. Our results show for the first time that the amino acid at the -2 position, even if not an arginine, as well as structural properties of the C-terminal portion of the presequence are important determinants for the processing of a class III precursor by MPP.  相似文献   

17.
Frataxin is a nuclear-encoded mitochondrial protein which is deficient in Friedreich's ataxia, a hereditary neurodegenerative disease. Yeast mutants lacking the yeast frataxin homologue (Yfh1p) show iron accumulation in mitochondria and increased sensitivity to oxidative stress, suggesting that frataxin plays a critical role in mitochondrial iron homeostasis and free radical toxicity. Both Yfh1p and frataxin are synthesized as larger precursor molecules that, upon import into mitochondria, are subject to two proteolytic cleavages, yielding an intermediate and a mature size form. A recent study found that recombinant rat mitochondrial processing peptidase (MPP) cleaves the mouse frataxin precursor to the intermediate but not the mature form (Koutnikova, H., Campuzano, V., and Koenig, M. (1998) Hum. Mol. Gen. 7, 1485-1489), suggesting that a different peptidase might be required for production of mature size frataxin. However, in the present study we show that MPP is solely responsible for maturation of yeast and human frataxin. MPP first cleaves the precursor to intermediate form and subsequently converts the intermediate to mature size protein. In this way, MPP could influence frataxin function and indirectly affect mitochondrial iron homeostasis.  相似文献   

18.
Many precursors of mitochondrial proteins are processed in two successive steps by independent matrix peptidases (MPP and MIP), whereas others are cleaved in a single step by MPP alone. To explain this dichotomy, we have constructed deletions of all or part of the octapeptide characteristic of a twice cleaved precursor (human ornithine transcarbamylase [pOTC]), have exchanged leader peptide sequences between once-cleaved (human methylmalonyl-CoA mutase [pMUT]; yeast F1ATPase beta-subunit [pF1 beta]) and twice-cleaved (pOTC; rat malate dehydrogenase (pMDH); Neurospora ubiquinol-cytochrome c reductase iron-sulfur subunit [pFe/S]) precursors, and have incubated these proteins with purified MPP and MIP. When the octapeptide of pOTC was deleted, or when the entire leader peptide of a once-cleaved precursor (pMUT or pF1 beta) was joined to the mature amino terminus of a twice-cleaved precursor (pOTC or pFe/S), no cleavage was produced by either protease. Cleavage of these constructs by MPP was restored by re-inserting as few as two amino-terminal residues of the octapeptide or of the mature amino terminus of a once-cleaved precursor. We conclude that the mature amino terminus of a twice-cleaved precursor is structurally incompatible with cleavage by MPP; such proteins have evolved octapeptides cleaved by MIP to overcome this incompatibility.  相似文献   

19.
Transport of nuclear-encoded precursor proteins into mitochondria includes proteolytic cleavage of amino-terminal targeting sequences in the mitochondrial matrix. We have isolated the processing activity from Neurospora crassa. The final preparation (enriched ca. 10,000-fold over cell extracts) consists of two proteins, the matrix processing peptidase (MPP, 57 kd) and a processing enhancing protein (PEP, 52 kd). The two components were isolated as monomers. PEP is about 15-fold more abundant in mitochondria than MPP. It is partly associated with the inner membrane, while MPP is soluble in the matrix. MPP alone has a low processing activity whereas PEP alone has no apparent activity. Upon recombining both, full processing activity is restored. Our data indicate that MPP contains the catalytic site and that PEP has an enhancing function. The mitochondrial processing enzyme appears to represent a new type of "signal peptidase," different from the bacterial leader peptidase and the signal peptidase of the endoplasmic reticulum.  相似文献   

20.
Mitochondrial processing peptidase (MPP) specifically cleaves off the N-terminal presequence of the mitochondrial protein precursor. Previous studies demonstrated that Arg at position -2 from the cleavage site, which is found among many precursors, plays a critical role in recognition by MPP. We analyzed the structural elements of bovine cytochrome P450 side-chain cleavage enzyme precursor [pre-P450(SCC)], which has Ala at position -2, for recognition by MPP. Replacement of Ala position -2 of pre-P450(SCC) with Arg resulted in an increase in the cleavage rate. Replacement with Gly caused a reduction in the cleavage rate and the appearance of an additional cleavage site downstream of the authentic site. A pre-P450(SCC) mutant with Met at position -2 retained cleavage efficiency equal to that of the wild type. These results indicate that -2 Ala of pre-P450(SCC) is recognized by MPP as a determinant for precise cleavage, and that the amino acid at -2 is required to have a straight methylene chain for interaction with the S(2) site. The preference for distal basic residues, a hydrophobic residue at +1, and hydroxyl residues at +2 and +3, was almost the same as those of the precursors with Arg at -2, indicating that the recognition mechanism of pre-P450(SCC) by MPP is essentially the same as that of the precursors with Arg at position -2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号