首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work analyzes the effect of calorie restriction on the 24 h variation of pituitary-testicular function in young male Wistar rats by measuring the circulating levels of prolactin, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone. Control animals were provided an equilibrium calorie diet and the experimental animals a calorie-restriction diet equivalent to 66% of food restriction for four weeks starting on day 35 of life. Different groups of control and experimental rats were killed at 6 h intervals around the clock, beginning 1 h after light on (HALO). Compared to the control animals, the mean secretion of prolactin was augmented and that of LH and testosterone decreased in calorie-restricted rats, whereas FSH release remained unchanged. Significant changes in the 24 h secretory pattern of circulating prolactin, LH, and testosterone occurred in the calorie-restricted rats. These include the appearance of a second maximum of plasma prolactin at 21 HALO, blunting of the LH peak seen at 13 HALO, and phase-shift of the testosterone peak from 13 HALO in controls to 17 HALO in calorie-restricted rats. The significant positive correlation between individual LH and testosterone levels found in controls was no longer observed in calorie-restricted rats. Availability of nutrients presumably affects the mechanisms that modulate the circadian variation of the pituitary-gonadal axis in growing male rats.  相似文献   

2.
The effect of Freund's adjuvant injection on 24-hour variation of hypothalamic corticotropin-releasing hormone (CRH), thyrotropin-releasing hormone (TRH), GH-releasing hormone (GRH) and somatostatin levels was examined in adult rats kept under light between 0800 and 2000 h daily. Groups of rats receiving Freund's complete adjuvant or its vehicle 3 days before sacrifice were killed at six different time intervals throughout a 24-hour cycle. In the median eminence, adjuvant vehicle-injected rats exhibited significant 24-hour variations for the four hormones examined, with maxima at noon. These 24-hour rhythms were inhibited or suppressed by Freund's adjuvant injection. In the anterior hypothalamus of adjuvant vehicle-treated rats, CRH content peaked at 1600 h, while two peaks were found for TRH and GRH levels, i.e., at 2400-0400 h and 1600 h. Freund's adjuvant injection suppressed 24-hour rhythm of anterior hypothalamic CRH, TRH and GRH content and uncovered a peak in anterior hypothalamic somatostatin levels at 0400 h. In the medial hypothalamus of adjuvant vehicle-treated rats, significant 24-hour variations were detectable for TRH (peaks at 1600 and 2400 h) and somatostatin (peak at 2400 h) which disappeared after Freund's adjuvant injection. In the posterior hypothalamus of adjuvant vehicle-treated rats, two peaks were apparent for CRH, TRH and somatostatin levels, i.e. at 1600 h and 2400-0400 h, this hormonal profile remaining unmodified after Freund's adjuvant administration. The administration of the immunosuppressant drug cyclosporine (5 mg/kg, 5 days) impaired the depressing effect of Freund's adjuvant injection on CRH, TRH and somatostatin content in median eminence, but not that on GRH. In the anterior hypothalamus, cyclosporine generally prevented the effect of immunization on hormone levels an revealed a second maximum in TRH at 0400 h. Cyclosporine also restored 24-hour variations in TRH and somatostatin levels of medial hypothalamus of Freund's adjuvant-injected rats but was unable to modify them in the posterior hypothalamus. The results further support the existence of a significant effect of immune-mediated inflammatory response at an early phase after Freund's adjuvant injection on hypothalamic levels which was partially sensitive to immunosuppression by cyclosporine.  相似文献   

3.
This work analyzes the effect of calorie restriction on the 24 h variation of pituitary-testicular function in young male Wistar rats by measuring the circulating levels of prolactin, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone. Control animals were provided an equilibrium calorie diet and the experimental animals a calorie-restriction diet equivalent to 66% of food restriction for four weeks starting on day 35 of life. Different groups of control and experimental rats were killed at 6 h intervals around the clock, beginning 1 h after light on (HALO). Compared to the control animals, the mean secretion of prolactin was augmented and that of LH and testosterone decreased in calorie-restricted rats, whereas FSH release remained unchanged. Significant changes in the 24 h secretory pattern of circulating prolactin, LH, and testosterone occurred in the calorie-restricted rats. These include the appearance of a second maximum of plasma prolactin at 21 HALO, blunting of the LH peak seen at 13 HALO, and phase-shift of the testosterone peak from 13 HALO in controls to 17 HALO in calorie-restricted rats. The significant positive correlation between individual LH and testosterone levels found in controls was no longer observed in calorie-restricted rats. Availability of nutrients presumably affects the mechanisms that modulate the circadian variation of the pituitary-gonadal axis in growing male rats.  相似文献   

4.
The 24h rhythms in plasma protein concentration were examined in rats on the third day after injection of Freund's complete adjuvant or adjuvant's vehicle, performed 3h after light on. In rats treated with adjuvant's vehicle, peak values of albumin and gamma globulin occurred during the nocturnal activity span (P < .02 and P < .0001, respectively), while those of alpha-1, alpha-2, and beta globulins were found late during the rest span (P < .002, P < .0001, and P < .0004, respectively). Freund's adjuvant administration abolished temporal changes in plasma albumin and beta globulin levels. It also decreased the amplitude of daily changes in alpha-1 and alpha-2 globulin (P < .05) and diminished mean values of alpha-2 globulin (P < .01). Pretreatment of rats with melatonin (30 microg daily) for 11 days, 11h after light on, counteracted mycobacterial adjuvant-induced suppression of the 24h rhythms in albumin and alpha-1, alpha-2, and beta globulins. The results further support the existence of preventive properties of a pharmacological dose of melatonin in situations in which a lost of circadian rhythmicity is expected.  相似文献   

5.
We studied the effects of adjuvant arthritis (AA) on the endocrine circadian rhythms of plasma prolactin (PRL), growth hormone (GH), insulin-like growth factor-1 (IGF-1), luteinizing hormone (LH), testosterone, and melatonin and of pituitary PRL and GH mRNA in male Long Evans rats. Groups of control and AA rats (studied 23 days after AA induction) that were housed under a 12/12 h light/dark cycle (light on at 06:00 h) were killed at 4 h intervals starting at 14:00 h. Cosinor analysis revealed a significant 12 h rhythm in PRL and PRL mRNA (p < 0.001) in controls with peaks at 14:00 h and 02:00 h, respectively. The peak at 02:00 h was abolished in the AA group resulting in a significant 24 h rhythm in parallel with that of PRL (p < 0.05) and PRL mRNA (p < 0.0001). Growth hormone showed no rhythm, but a significant rhythm of GH mRNA was present in both groups (p < 0.0001). Insulin-like growth factor-1 showed a 24 h rhythm in control but not in AA rats. The mean values of GH, GH mRNA, and IGF-1 were significantly reduced in AA. Luteinizing hormone displayed a significant 24 h rhythm (p < 0.01) peaking in the dark period in the control but not AA group. Testosterone showed in phase temporal changes of LH levels with AA abolishing the 02:00 h peak. Melatonin exhibited a significant 24 h rhythm in control (p < 0.001) and AA (p < 0.01) rats with maximum levels during the dark phase; the mesor value was higher in the AA males. These results demonstrate that AA interferes with the rhythms of all the studied hormones except the non-24 h (arrhythmic) GH secretion pattern and the rhythm in melatonin. The persistence of a distinct melatonin rhythm in AA suggests the observed disturbances of hormonal rhythms in this condition do not occur at the level of the pineal gland.  相似文献   

6.
The response of plasma LH, Prolactin, GH and TSH levels to systematic administration of a specific central dopaminergic stimulant, amfonelic acid (AFA), by intravenous pulse injection in ovariectomized (OVX) and OVX estrogen-progesterone primed conscious rats has been evaluated. Intravenous injection of 0.2 mg/kg of AFA had no influence on plasma LH concentration until 60 min after injection when it was significantly elevated. Increasing the dose to 1 mg/kg reduced LH titers at 15 and 30 min with a return to preinjection levels by 60 min. AFA produced a dose-dependent decrease in plasma prolactin levels; the decrease occurred as early as 5 min after injection. AFA, both at 0.2 and 1 mg/kg doses, was effective in producing a sharp, dose-related rise in plasma GH levels. By contrast, TSH levels were significantly suppressed by both doses of AFA. Injection of the 1 mg/kg dose of AFA did not modify plasma LH levels in OVX-steroid-primed animals, white producing a comparable effect on plasma prolactin, GH and TSH levels to that observed in OVX animals. The present results indicate that endogenously released DA can have profound effects on pituitary hormone release, inhibiting PRL and TSH discharge, stimulating GH release and either inhibiting or stimulating LH release.  相似文献   

7.
The effect of Freund's adjuvant injection on 24-h variation of circulating ACTH, prolactin, growth hormone (GH), and thyroid-stimulating hormone (TSH) levels, and of norepinephrine (NE) content, and dopamine (DA) and serotonin (5HT) turnover in median eminence, was examined in adult rats kept under light between 0800 and 2000 h daily. Groups of 6–10 animals Freund's complete adjuvant or its vehicle at 1 lOOh 3 days before sacrifice and were killed by decapitation at six different time intervals throughout a 24-h cycle. In rats injected with adjuvant's vehicle, serum ACTH and prolactin exhibited peak values around the light-dark transition (p < 0.0001 and < 0.04, respectively), while the maximum in TSH was found in the late afternoon (p < 0.0001, one-way ANOVA). GH levels did not vary on a 24-h basis. In Freund's adjuvant-injected rats, 24-h variations of TSH levels became blunted, while 24-h variations of prolactin and ACTH persisted. Freund's adjuvant augmented serum ACTH and prolactin levels, and decreased GH and TSH levels (p < 0.0007, factorial ANOVA). Median-eminence NE content, and turnover of DA, assessed by measuring dihydroxyphenylacetic acid, DOPAC/DA ratio, and of 5HT, assessed by measuring 5-hydroxyindoleacetic acid, HIAA/5HT ratio, varied on a 24-h basis in rats receiving adjuvant's vehicle (p < 0.02). Median-eminence NE content attained its maximum at 1600–2000 h, while maxima in DOPA/DA and HIAA/5HT ratios occurred at 0400 h. Injection with Freund's adjuvant reduced the amplitude of the daily variation of NE content, shifted the maximum of DOPAC/DA ratio toward the light-dark transition, and blunted the daily variation in HIAA/5HT ratio in median eminence. The administration at 1200 of the immunosuppressant drug cyclosporine (5 mg/kg, 5 days) restored the augmented ACTH and prolactin levels (p < 0.0001, factorial ANOVA) and depressed GH and TSH levels (p < 0.02) found in Freund's adjuvant-injected rats. Cyclosporine was also effective in restoring 24-h rhythmicity of serum ACTH and TSH, but not of prolactin, levels. Cyclosporine did not modify the effect of Freund's adjuvant on time-of-day changes of median-eminence NE content, but it was effective in counteracting the changes of DA and 5HT turnover found after immunization. The results are compatible with a significant effect of immune-mediated inflammatory response at an early phase after Freund's adjuvant injection on ACTH, GH, prolactin, and TSH release, which is partially sensitive to immunosuppression by cyclosporine. (Chronobiology International, 14(3), 253–265, 1997)  相似文献   

8.

Background  

Little information is available on the circadian sequela of an immune challenge in the brain of aged rats. To assess them, we studied 24-hour rhythms in hypothalamic and striatal norepinephrine (NE) content, hypothalamic and striatal dopamine (DA) turnover and hypophysial NE and DA content, in young (2 months) and aged (18–20 months) rats killed at 6 different time intervals, on day 18th after Freund's adjuvant or adjuvant's vehicle administration.  相似文献   

9.
Monosodium glutamate (MSG) was used to evaluate the importance of the arcuate nucleus of the hypothalamus in the expression of daily gonadotropin rhythms in female golden hamsters. These daily rhythms of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which also occur in prepubertal females, are characterized by afternoon surges. Neonatal administration of MSG induces degeneration of perikarya in the arcuate nucleus and renders females permanently anovulatory. MSG was injected at 8 days of age; at 21 days, the animals were weaned and sorted by sex into groups of 5-7. Blood samples were obtained at 1300 and 1700 h at 25, 30, 35, 40, 50, 62, and 192 days of age from MSG-sterilized animals. Saline-injected controls were bled at 25 days and after estrous cycles had been initiated (29-37 days of age). In both control and MSG-injected groups, there was an afternoon surge of LH and FSH at 25 days of age. These daily surges persisted in MSG-injected animals. The ovaries of these animals were characterized by an abundant interstitium and arrested follicular development. Progesterone levels of MSG-anovulatory animals also reflected the rhythmicity of LH and FSH, with a significant increase occurring between 1300 and 1700 h. Thus, MSG did not affect the daily circadian-based rhythmicity in gonadotropin secretion even though adult-age animals were infertile. These results suggest that perikarya of the arcuate nucleus affected by MSG are not required for generation of daily LH and FSH rhythms.  相似文献   

10.
The effects of third ventricular (IVT) injection of 25 μg of bradykinin (BK) upon plasma levels of LH, FSH, TSH, GH and prolactin were investigated in conscious ovariectomized female rats bearing indwelling jugular cannulae. Some animals were pretreated with bradykinin potentiating factor (BPF). Intravenous administration of BK had no effect upon hormone levels. IVT injection of BK significantly depressed plasma prolactin levels at 15 and 30 min post-drug, with levels returning to control values by 60 min. Pretreatment of animals with BPF (75 μg/3 μl) prolonged the prolactin suppression induced by BK for up to two hours. Plasma LH, FSH, TSH and GH levels in BK-rats were not significantly different from those of saline-injected animals at any time point measured. Neither BPF alone nor in conjunction with BK had any effects upon plasma levels of TSH; however, BK plus BPF suppressed FSH concentrations at 75 min post-BPF, while BPF alone appeared to increase GH levels at 45 min. In vitro incubation of hemipituitaries with 0.083, 0.83 or 8.33 μg/ml BK had no effect upon the release of LH, TSH or prolactin compared to control values. However, the secretion of GH and FSH was suppressed by the lowest dose of BK tested. These results suggest that BK may play a physiological inhibitory role in the regulation of prolactin, which can be augmented by preventing its degradation, i.e. via BPF. The effect of the peptide seems to be mediated by the CNS since neither intravenous injection of BK nor in vitro incubation of pituitaries with the peptide modified prolactin release.  相似文献   

11.
The purpose of these experiments was to determine whether bilateral vasoligation of adult male rats had any short-term effects upon plasma levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin. Adult male rats (250-300 g) were either bilaterally vasoligated or sham vasoligated, and blood samples were obtained by cardiac puncture preoperatively and at 24 h and 7 days following surgery. Plasma levels of both FSH and LH were significantly (P less than 0.01) decreased at 24 h following vasoligation compared to preoperative levels and those of sham-operated controls. However, the response was differential since, at 7 days following vasoligation, plasma FSH was still significantly decreased while LH was returning to control levels. Conversely, plasma prolactin levels were significantly (P less than 0.01) increased at 24 h compared to preoperative values and those in sham-operated controls, and at 7 days prolactin had returned to preoperative control levels. Sham vasoligation did not significantly change plasma levels of FSH, LH, or prolactin at any of the time intervals investigated. These results provide further evidence that suggests that there may be a direct connection between the testis and central nervous system that may be involved in the short-term regulation of gonadotropin and prolactin secretion.  相似文献   

12.
The response of 5 anterior pituitary hormones to single injections of naloxone, morphine and metenkephalin administration was measured in male rats. Morphine and met-enkephalin significantly increased serum prolactin and GH concentrations, and significantly decreased serum LH and TSH concentrations. Naloxone reduced serum prolactin and GH concentrations, increased serum LH and FSH, but had little effect on serum TSH concentrations. Concurrent injections of naloxone with morphine or met-enkephalin reduced the response to each of the drugs given separtely. These results suggest that endogenous morphinomimetic substances may participate in regulating secretion of anterior pituitary hormones.  相似文献   

13.
Calorie restriction of young male rats increases plasma prolactin, decreases luteinizing hormone (LH) and testosterone, and disrupts their 24 h secretory pattern. To study whether this could be the consequence of stress, we examined the 24 h variations of plasma adrenocorticotropic hormone (ACTH) corticosterone, growth hormone (GH), leptin, and adrenal corticosterone. Rats were submitted to a calorie restriction equivalent to a 66% of usual intake for 4 weeks, starting on day 35 of life. Controls were kept in individual cages and allowed to eat a normal calorie regimen. Significantly lower ACTH levels were detected in calorie-restricted rats. Plasma corticosterone levels during the light phase of the daily cycle were significantly higher in calorie-restricted rats. Time-of-day variation in plasma ACTH and corticosterone levels attained significance in calorie-restricted rats only, with a maximum toward the end of the resting phase. The daily pattern of adrenal gland corticosterone mirrored that of circulating corticosterone; however, calorie restriction reduced its levels. Plasma ACTH and corticosterone correlated significantly in controls only. Calorie restriction decreased plasma GH and leptin, and it distorted 24 h rhythmicity. In a second study, plasma ACTH and corticosterone levels were measured in group-caged rats, isolated control rats, and calorie-restricted rats during the light phase of the daily cycle. Plasma ACTH of calorie-restricted rats was lower, and plasma corticosterone was higher, compared with isolated or group-caged controls. The changes in the secretory pattern of hormones hereby reported may be part of the neuroendocrine and metabolic mechanisms evolved to maximize survival during periods of food shortage.  相似文献   

14.
The influence of dexamethasone treatment on the basal values of corticosterone, GH, prolactin (PRL), LH and FSH, as well as on the adenohypophyseal hormone response to chronic stress was studied in female rats. Dexamethasone acetate (25 micrograms/100 b.w.), given by gavage twice daily for 10 days, decreased the resting plasma levels of corticosterone, GH, LH and PRL, whereas the FSH titers remained normal. The secretion of ACTH (evaluated indirectly through corticosterone concentrations) and of GH appeared to be most sensitive to the suppressive effect of dexamethasone. The same hormonal response pattern was induced by 8 h of daily immobilization for 10 days, except that ACTH release was enhanced and the plasma LH titers dropped more drastically. Dexamethasone administration in combination with restraint did not alter the characteristic hormonal profile of chronic stress, despite the fact that ACTH secretion was completely blocked. These data suggest that the inhibition of PRL, LH and GH secretion following severe, chronic stress is not causally related to the sustained elevation of plasma ACTH.  相似文献   

15.
The effects of third ventricular (3V) injection of the beta-adrenergic antagonist, propranolol (PROPR), a selective beta 1-antagonist, metoprolol (MET), a selective beta 2-antagonist, IPS 339, and a beta-adrenergic agonist (-) isoproterenol (ISOPR), on plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH), and growth hormone (GH) were studied in conscious, ovariectomized (OVX) rats. Samples were removed from unrestrained rats which had been previously implanted with atrial and 3V cannulae, and plasma hormone levels were determined by radioimmunoassay (RIA). Intraventricular injection of PROPR (30 micrograms), MET (40 micrograms), or IPS 339 (20 micrograms) induced a gradual elevation in plasma GH concentrations, whereas ISOPR (30 micrograms) reduced plasma GH. ISOPR (30 micrograms) brought about a decrease in plasma LH concentrations, but PROPR, MET and IPS 339 had no effect on LH levels. PROPR (30 micrograms) increased plasma FSH concentrations, but there was no significant effect of MET, IPS 339 or ISOPR on FSH secretion. The results indicate that the beta-adrenergic system can inhibit the release of GH, LH, and FSH. This system appears to have a tonic inhibitory effect on GH and FSH but not LH release in the OVX rat.  相似文献   

16.
Changes at the anterior pituitary gland level which result in follicle-stimulating hormone (FSH) release after ovariectomy in metestrous rats were investigated. Experimental rats were ovariectomized at 0900 h of metestrus and decapitated at 1000, 1100, 1300, 1500, 1700 or 1900 h of metestrus. Controls consisted of untreated rats killed at 0900 or 1700 h and rats sham ovariectomized at 0900 h and killed at 1700 h. Trunk blood was collected and the serum assayed for FSH and luteinizing hormone (LH) concentrations. The anterior pituitary gland was bisected. One-half was used to assay for FSH concentration. The other half was placed in culture medium for a 30-min preincubation and then placed in fresh medium for a 2-h incubation (basal FSH and LH release rates). The basal FSH release rate and the serum FSH concentration rose significantly by 4 h postovariectomy and remained high for an additional 6 h. The basal FSH release rate and the serum FSH concentration correlated positively (r=0.71 with 72 degrees of freedom) and did not change between 0900 and 1700 h in untreated or sham-ovariectomized rats. In contrast, the serum LH concentration and the basal LH release rate did not increase after ovariectomy. Ovariectomy had no significant effect on anterior pituitary gland FSH concentration. The results suggest that the postovariectomy rise in serum FSH concentration is the result, at least in part, of changes which cause an increase in the basal FSH secretion rate (secretion independent of the immediate presence of any hormones of nonanterior pituitary gland origin). The similarities between the selective rises in the basal FSH release rate and the serum FSH concentration in the ovariectomized metestrous rat and in the cyclic rat during late proestrus and estrus raise the possibility that an increase in the basal FSH release rate may be involved in many or all situations in which serum FSH concentration rises independently of LH.  相似文献   

17.
The effect of bombesin (5 ng/kg/min X 2.5 h) on basal pituitary secretion as well as on the response to thyrotropin releasing hormone (TRH; 200 micrograms) plus luteinizing hormone releasing hormone (LHRH; 100 micrograms) was studied in healthy male volunteers. The peptide did not change the basal level of growth hormone (GH), prolactin, thyroid-stimulating hormone (TSH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). On the contrary, the pituitary response to releasing hormones was modified by bombesin administration. When compared with control (saline) values, prolactin and TSH levels after TRH were lower during bombesin infusion, whereas LH and FSH levels after LHRH were higher. Thus bombesin affects in man, as in experimental animals, the secretion of some pituitary hormones.  相似文献   

18.
Serum growth hormone (GH), prolactin (PRL), cortisol, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and thyroid-stimulating hormone (TSH) levels were evaluated before and after a bicycle ergometer exercise test in 8 male competitive volleyball players and in 8 sedentary healthy males of the same age. Increased serum GH and cortisol values after exercise in both groups were found, whereas an exercise-induced PRL release was observed in athletes only. Serum levels of LH, FSH and TSH were unaffected by the test in all subjects. A possible role of training in conditioning the hypothalamopituitary exercise-induced secretion is suggested.  相似文献   

19.
We have examined the effects of third cerebroventricular (3V) injections of avian and bovine pancreatic polypeptide (APP and BPP) and the C-terminal hexapeptide amide of human PP (CHPP) on the secretion of anterior pituitary hormones in conscious ovariectomized rats. Injection of APP (2.0 micrograms; 472 pmoles) or BPP (5.0 micrograms; 1191 pmoles) decreased plasma levels of luteinizing hormone (LH) when compared to pre-injection levels in these animals or to saline-injected controls. The lower dose of BPP (0.5 micrograms; 119 pmoles) decreased plasma LH versus pre-injection levels and control animals, however, these effects diminished at later times. Plasma growth hormone (GH) also decreased following 3V injections of APP (2.0 micrograms) or BPP (5.0 micrograms). The lower dose of BPP (0.5 microgram) initially inhibited GH release, however, this effect was rapidly reversed and GH levels were significantly greater than those in controls at 60 and 120 min. Injections of BPP or APP did not alter prolactin (PRL) or thyroid stimulating hormone (TSH) secretion. Administration of 2.0 micrograms and 0.2 microgram of CHPP (2488 and 249 pmoles) produced no significant effects on plasma LH, GH, PRL or TSH. APP and BPP had no consistent effects on hormone secretion from dispersed anterior pituitary cells. The results indicate that APP and BPP exert potent central effects which inhibit LH and GH release from the pituitary gland.  相似文献   

20.
Adult male Sprague-Dawley rats, maintained under a controlled photoperiod of LD 14:10 (white lights on at 06:00 h, CST), were injected with lithium chloride and changes in the levels of plasma and pituitary homogenates of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL) were examined to evaluate the effects of this anti-manic drug on reproductive function. Two groups of rats were injected with lithium chloride intraperitoneally, twice daily at 09:00 and 16:00 h, for 2 and 7 days at a dosage of 2.5 meg/Kg body weight. Plasma and pituitary levels of LH, FSH and PRL were measured by radioimmunoassay. Plasma levels of LH were significantly (P<0.05) increased after 2 days of lithium treatment. In contrast, a significant (P<0.005) reduction in plasma levels of LH was evident when lithium injections were continued for 7 days. The plasma levels of FSH remained unaffected by lithium treatment by either time period. Lithium administered for 2 days did not bring about any significant alteration in the plasma levels of PRL, although there was a significant (P<0.002) reduction in plasma PRL levels after 7 days treatment. The concentrations of pituitary LH, FSH and PRL remained unchanged after 2 and 7 days of lithium treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号