首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The light-dark box (LDB) and the open-field (OF) tests are widespread experimental models for studying locomotion and anxiety in laboratory rats and mice. The fact that rodents are nocturnal animals and more active at night raises a critical question of whether behavioral experiments carried out in the light phase are methodologically correct. Parameters of behavior of four mouse strains (C57BL/6J, DBA2/J, AKR/J and CBA/LacJ) in the light-dark box and open-field tests in the light and dark phases were compared. No significant influence of the phase of testing on anxiety in LDB and OF tests was revealed. In the OF test CBA mice showed increased locomotor activity, whereas AKR and C57BL/6 mice showed increased defecation in the dark phase. It was concluded that: 1) the phase of testing is not crucial for the expression of anxiety in LDB and OF; 2) the sensitivity to the phase of testing depends on the genotype; 3) the indices of behavior in the genotypes sensitive to the phase of testing (locomotion in the CBA and defecation in the AKR and C57BL/6 mouse strains) are increased in the dark phase.  相似文献   

2.
Although all of the mouse genome sequences have been determined, we do not yet know the functions of most of these genes. Gene-targeting techniques, however, can be used to delete or manipulate a specific gene in mice. The influence of a given gene on a specific behavior can then be determined by conducting behavioral analyses of the mutant mice. As a test for behavioral phenotyping of mutant mice, the light/dark transition test is one of the most widely used tests to measure anxiety-like behavior in mice. The test is based on the natural aversion of mice to brightly illuminated areas and on their spontaneous exploratory behavior in novel environments. The test is sensitive to anxiolytic drug treatment. The apparatus consists of a dark chamber and a brightly illuminated chamber. Mice are allowed to move freely between the two chambers. The number of entries into the bright chamber and the duration of time spent there are indices of bright-space anxiety in mice. To obtain phenotyping results of a strain of mutant mice that can be readily reproduced and compared with those of other mutants, the behavioral test methods should be as identical as possible between laboratories. The procedural differences that exist between laboratories, however, make it difficult to replicate or compare the results among laboratories. Here, we present our protocol for the light/dark transition test as a movie so that the details of the protocol can be demonstrated. In our laboratory, we have assessed more than 60 strains of mutant mice using the protocol shown in the movie. Those data will be disclosed as a part of a public database that we are now constructing. Visualization of the protocol will facilitate understanding of the details of the entire experimental procedure, allowing for standardization of the protocols used across laboratories and comparisons of the behavioral phenotypes of various strains of mutant mice assessed using this test.  相似文献   

3.
A behavior generally comprises multiple processes. Analyzing these processes helps to reveal more characteristics of the behavior. In this report, light/dark choice-based Drosophila larval phototaxis is analyzed with a simplistic mathematical model to reveal a fast phase and a slow phase response that are involved. Larvae of the strain w1118, which is photophobic in phototaxis tests, prefer darkness to light in an immediate light/dark boundary passing test and demonstrate a significant reduction in motility in the dark condition during phototaxis tests. For tim01 larvae, which show neutral performance in phototaxis tests, larvae unexpectedly prefer light to darkness in the immediate light/dark boundary passing test and demonstrate no significant motility alteration in the dark condition. It is proposed that Drosophila larval phototaxis is determined by a fast phase immediate light/dark choice and an independent slow phase light/dark-induced motility alteration that follows.  相似文献   

4.
The literature surrounding rodent models of human anxiety disorders is discrepant concerning which models reflect anxiety-like behavior distinct from general activity and whether different models are measuring the same underlying constructs. This experiment compared the responses of 15 inbred mouse strains (129S1/SvlmJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, C57BL/6J, C57L/J, CBA/J, CE/J, DBA/2J, FVB/NJ, NZB/B1NJ, PL/J, SJL/J and SWR/J) in three anxiety-like behavioral tasks (light/dark test, elevated zero-maze and open field) to examine whether responses were phenotypically and/or genetically correlated across tasks. Significant strain differences were found for all variables examined. Principal components analyses showed that variables associated with both activity and anxiety-like behaviors loaded onto one factor, while urination and defecation loaded onto another factor. Our findings differ from previous research by suggesting that general activity and anxiety-related behaviors are linked, negatively correlated and cannot easily be dissociated in these assays. However, these findings may not necessarily generalize to other unconditioned anxiety-like behavioral tests.  相似文献   

5.
Individually ventilated caging (IVC) systems for rodents are increasingly common in laboratory animal facilities. However, the impact of such substantial change in housing conditions on animal physiology and behavior is still debated. Most importantly, there arise the questions regarding reproducibility and comparison of previous or new phenotypes between the IVC and open cages. The present study was set up for detailed and systematic comparison of behavioral phenotypes in male and female mice of three widely used inbred strains (C57BL/6JRccHsd, DBA/2JRccHsd, 129S2/SvHSd) after being kept in two housing environments (IVC and open cages) for 6 weeks (since 4 weeks of age) before behavioral testing. The tests addressed exploratory, anxiety‐like and stress‐related behavior (light‐dark box, open field, forced swim test, stress‐induced hyperthermia), social approach and species‐specific behavior (nest building, marble burying). In all tests, large and expected strain differences were found. Somewhat surprisingly, the most striking effect of environment was found for basal body temperature and weight loss after one night of single housing in respective cages. In addition, the performance in light‐dark box and open field was affected by environment. Several parameters in different tests showed significant interaction between housing and genetic background. In summary, the IVC housing did not invalidate the well‐known differences between the mouse strains which have been established by previous studies. However, within the strains the results can be influenced by sex and housing system depending on the behavioral tasks applied. The bottom‐line is that the environmental conditions should be described explicitly in all publications.  相似文献   

6.
High and Low Activity strains of mice (displaying low and high anxiety-like behavior, respectively) with 7.8–20 fold differences in open-field activity were selected and subsequently inbred to use as a genetic model for studying anxiety-like behavior in mice (DeFries et al., 1978, Behavior Genetics, 8:3-13). These strains exhibited differences in other anxiety-related behaviors as assessed using the light–dark box, elevated plus-maze, mirror chamber, and elevated square-maze tests (Henderson et al., 2004, Behavior Genetics, 34: 267-293). The purpose of these experiments was three-fold. First, we repeated a 6-day behavioral battery using updated equipment and software to confirm the extreme differences in anxiety-like behaviors. Second, we tested novel object exploration, a measure of anxiety-like behavior that does not rely heavily on locomotion. Third, we conducted a home cage wheel running experiment to determine whether these strains differ in locomotor activity in a familiar, home cage environment. Our behavioral test battery confirmed extreme differences in multiple measures of anxiety-like behaviors. Furthermore, the novel object test demonstrated that the High Activity mice exhibited decreased anxiety-like behaviors (increased nose pokes) compared to Low Activity mice. Finally, male Low Activity mice ran nearly twice as far each day on running wheels compared to High Activity mice, while female High and Low Activity mice did not differ in wheel running. These results support the idea that the behavioral differences between High and Low Activity mice are likely to be due to anxiety-related factors and not simply generalized differences in locomotor activity.  相似文献   

7.
The analysis of a behaviour and memory of mice with depressive state is conducted. The mice with "behavioral despair" obtained by forced swimming and mice with submissive stereotype generated by 20 confrontations were used. They were characterized by increased anxiety and reduced exploratory activity in tests of the elevated plus-maze and light/dark apparatus. It is shown that for want of behavioral differences in manifestation of a depressive state the process of extinction was opposite. Mice with "behavioral despair" revealed retention of a high level of memory trace retrieval down to the 21st day of testing reflecting essential delay of extinction. Submissive mice displayed fast extinction begining with the 5th day of testing.  相似文献   

8.
9.
Dark-phase light contamination can significantly disrupt chronobiologic rhythms, thereby potentially altering the endocrine physiology and metabolism of experimental animals and influencing the outcome of scientific investigations. We sought to determine whether exposure to low-level light contamination during the dark phase influenced the normally entrained circadian rhythms of various substances in plasma. Male Sprague-Dawley rats (n = 6 per group) were housed in photobiologic light-exposure chambers configured to create 1) a 12:12-h light:dark cycle without dark-phase light contamination (control condition; 123 μW/cm(2), lights on at 0600), 2) experimental exposure to a low level of light during the 12-h dark phase (with 0.02, 0.05, 0.06, or 0.08 μW/cm(2) light at night), or 3) constant bright light (123 μW/cm(2)). Dietary and water intakes were recorded daily. After 2 wk, rats underwent 6 low-volume blood draws at 4-h intervals (beginning at 0400) during both the light and dark phases. Circadian rhythms in dietary and water intake and levels of plasma total fatty acids and lipid fractions remained entrained during exposure to either control conditions or low-intensity light during the dark phase. However, these patterns were disrupted in rats exposed to constant bright light. Circadian patterns of plasma melatonin, glucose, lactic acid, and corticosterone were maintained in all rats except those exposed to constant bright light or the highest level of light during the dark phase. Therefore even minimal light contamination during the dark phase can disrupt normal circadian rhythms of endocrine metabolism and physiology and may alter the outcome of scientific investigations.  相似文献   

10.
Functional genetic analyses in mice rely on efficient and in-depth characterization of the behavioral spectrum. Automated home-cage observation can provide a systematic and efficient screening method to detect unexplored, novel behavioral phenotypes. Here, we analyzed high-throughput automated home-cage data using existing and novel concepts, to detect a plethora of genetic differences in spontaneous behavior in a panel of commonly used inbred strains (129S1/SvImJ, A/J, C3H/HeJ, C57BL/6J, BALB/cJ, DBA/2J, NOD/LtJ, FVB/NJ, WSB/EiJ, PWK/PhJ and CAST/EiJ). Continuous video-tracking observations of sheltering behavior and locomotor activity were segmented into distinguishable behavioral elements, and studied at different time scales, yielding a set of 115 behavioral parameters of which 105 showed highly significant strain differences. This set of 115 parameters was highly dimensional; principal component analysis identified 26 orthogonal components with eigenvalues above one. Especially novel parameters of sheltering behavior and parameters describing aspects of motion of the mouse in the home-cage showed high genetic effect sizes. Multi-day habituation curves and patterns of behavior surrounding dark/light phase transitions showed striking strain differences, albeit with lower genetic effect sizes. This spontaneous home-cage behavior study demonstrates high dimensionality, with a strong genetic contribution to specific sets of behavioral measures. Importantly, spontaneous home-cage behavior analysis detects genetic effects that cannot be studied in conventional behavioral tests, showing that the inclusion of a few days of undisturbed, labor extensive home-cage assessment may greatly aid gene function analyses and drug target discovery.  相似文献   

11.
Systematic behavioral phenotyping of genetically modified mice is a powerful method with which to identify the molecular factors implicated in control of animal behavior, with potential relevance for research into neuropsychiatric disorders. A number of such disorders display sex differences, yet the use of female mice in phenotyping strategies has been a rare practice because of the potential variability related to the estrous cycle. We have now investigated the behavioral effects of the estrous cycle in a battery of behavioral tests in C57BL/6J and BALB/cByJ inbred strains of mice. Whereas the performance of BALB/cByJ female mice varied significantly depending on the phase of the estrous cycle in the open field, tail flick and tail suspension tests, the behavior of C57BL/6J females, with the exception of the tail suspension performance, remained stable across all four phases of the estrous cycle in all of the tests including open field, rotarod, startle reflex and pre-pulse inhibition, tail flick and hot plate. We also found that irrespective of the estrous cycle, the behavior of C57BL/6J females was different from that of BALB/cByJ groups in all of the behavioral paradigms. Such strain differences were previously reported in male comparisons, suggesting that the same inter-group differences can be revealed by studying female or male mice. In addition, strain differences were evident even for behaviors that were susceptible to estrous cycle modulations, although their detection might necessitate the constitution of large experimental groups.  相似文献   

12.
Estradiol influences the level and distribution of daily activity, the duration of the free-running period, and the behavioral phase response to light pulses. However, the mechanisms by which estradiol regulates daily and circadian rhythms are not fully understood. We tested the hypothesis that estrogens modulate daily activity patterns via both classical and “non-classical” actions at the estrogen receptor subtype 1 (ESR1). We used female transgenic mice with mutations in their estrogen response pathways; ESR1 knock-out (ERKO) mice and “non-classical” estrogen receptor knock-in (NERKI) mice. NERKI mice have an ESR1 receptor with a mutation in the estrogen-response-element binding domain, allowing only actions via “non-classical” genomic and second messenger pathways. Ovariectomized female NERKI, ERKO, and wildtype (WT) mice were given a subcutaneous capsule with low- or high-dose estradiol and compared with counterparts with no hormone replacement. We measured wheel-running activity in a light:dark cycle and constant darkness, and the behavioral phase response to light pulses given at different points during the subjective day and night. Estradiol increased average daily wheel-running, consolidated activity to the dark phase, and shortened the endogenous period in WT, but not NERKI and ERKO mice. The timing of activity onset during entrainment was advanced in all estradiol-treated animals regardless of genotype suggesting an ESR1-independent mechanism. We propose that estradiol modifies period, activity level, and distribution of activity via classical actions of ESR1 whereas an ESR1 independent mechanism regulates the phase of rhythms.  相似文献   

13.
Genetic variations in the wild-derived inbred mouse strains are more diverse than that of classical laboratory inbred mouse strains, including C57BL/6J (B6). The sleep/wake and monoamine properties of six wild-derived inbred mouse strains (PGN2, NJL, BLG2, KJR, MSM, HMI) were characterized and compared with those of B6 mice. All examined mice were nocturnal and had a polyphasic sleep pattern with a “main sleep period” identified during the light period. However, there were three sleep/wake phenotypic differences between the wild-derived mouse strains and B6 strain. First, the amount of sleep during the dark phase was comparable with that of B6 mice. However, the amount of sleep during the light phase was more varied among strains, in particular, NJL and HMI had significantly less sleep compared with that of B6 mice. Second, PGN2, NJL, BLG2, and KJR mice showed a “highly awake period” (in which the hourly total sleep time was <10%) immediately after the onset of the dark period, which was not seen in B6 mice. Third, relative to that of B6 mice, PGN2 and KJR mice showed longer duration of wakefulness episodes during the 12-h dark phase. Differences in whole brain noradrenaline, dopamine, and 5-hydroxy-tryptamine contents between the wild-derived mouse strains and B6 strain were also found. These identified phenotypes might be potentially under strong genetic control. Hence, wild-derived inbred mice could be useful for identifying the genetic factors underlying the regulation of sleep and wakefulness.  相似文献   

14.
Behavioural experiments in mice are often carried out during the resting phase of these nocturnal animals. Ignoring the fact that mice are more active during the dark period, results from resting-phase testing has also been used to characterize these animals. Since the influence of the light/dark cycle on testing is likely to be a relevant factor for the analysis of behavioural results, the aim of this study was to evaluate the effects of the relative time of the day as well as light conditions during testing on behavioural and cognitive performance in inbred mice. Na?ve DBA/2N (DBA) mice were tested in the modified hole board (mHB) either during the dark phase under red light or during the light phase under white light. Different behavioural dimensions and cognitive functions were evaluated in parallel. Depending on the testing conditions, the results showed significant differences in behavioural activity, with DBA mice being less inhibited during dark phase. The same experimental group made fewer memory errors in a visuo-spatial task and showed a faster habituation compared with the group tested during the dark phase. From the results we conclude that testing during the light phase induces a pronounced behavioural inhibition as well as a cognitive disruption in DBA mice, which should be taken into account when cognitively testing these animals.  相似文献   

15.
The aim of the present study was to investigate the effects of individual housing on mouse behavior. The male mice of the C57BL/6J and DBA/2 strains were separated at the age of 4 weeks and kept in individual housing for 7 weeks until behavioral testing began. Their behavior was compared to the group-housed mice in a battery of tests during the following 7 weeks. The single-housed mice were hyperactive and displayed reduced habituation in the tests assessing activity and exploration. Reduced anxiety was established in the elevated plus-maze, but an opposite effect was observed in the dark-light (DL) and hyponeophagia tests. Immobility in the forced swimming test was reduced by social isolation. The DBA mice displayed higher anxiety-like behavior than the B6 mice in the plus-maze and DL exploration test, but hyponeophagia was reduced in the DBA mice. Moreover, all effects of individual housing on the exploratory and emotional behavior were more evident in the DBA than in the B6 mice. Novel object recognition and fear conditioning (FC) were significantly impaired in the single-housed mice, whereas water-maze (WM) learning was not affected. Marked strain differences were established in all three learning tests. The B6 mice performed better in the object recognition and FC tasks. Initial spatial learning in the WM was faster and memory retention slightly enhanced in the B6 mice. The DBA mice displayed lower preference to the new and enhanced preference to the old platform location than the B6 mice after reversal learning in the WM. We conclude that individual housing has strong strain- and test-specific effects on emotional behavior and impairs memory in certain tasks.  相似文献   

16.
Motor incoordination is frequently used as a behavioral index of intoxication by drugs that depress the central nervous system. Two tasks that have been used to assay incoordination in mice, the balance beam and the grid test, were evaluated to optimize aspects of apparatus and testing procedures for studying genetic differences. Mice of eight inbred strains were given one of several doses of ethanol or saline and tested for intoxication. Strains differed in sensitivity to ethanol in both tests, indicating a significant influence of genotype on ethanol sensitivity. For the balance beam, the width of the beam affected the strain sensitivity pattern, and only the widest beam worked well at all doses. For the grid test, both ethanol dose and the time after drug injection affected strains differentially. Although the behavioral sign of intoxication recorded for both tests was a foot-slip error, the correlations of strain means for ethanol sensitivity across the two tasks were generally not significant. This suggests that the genes influencing ethanol sensitivity in the two tasks are mostly different. These results make clear that a single set of task parameters is insufficient to characterize genetic influences on behavior. Several other issues affect the interpretation of data using these tests.  相似文献   

17.
Huntington's disease (HD) is a genetic neurodegenerative disorder, caused by an expanded CAG repeat in the gene encoding the huntingtin protein. At the premanifest phase, before motor symptoms occur, psychiatric and emotional disorders are observed with high prevalence in HD patients. Agitation, anxiety and irritability are often described but also depression and/or apathy, associated with a lack of emotional control. The aim of the present study was to better circumscribe and understand the emotional symptoms and assess their evolution according to the progression of the disease using a transgenic HD model, BACHD rats, at the age of 4, 12 and 18 months. To achieve this goal, we confronted animals to two types of tests: first, tests assessing anxiety like the light/dark box and the conflict test, which are situations that did not involve an obvious threat and tests assessing the reactivity to a present threat using confrontation with an unknown conspecific (social behavior test) or with an aversive stimulus (fear conditioning test). In all animals, results show an age‐dependent anxiety‐like behavior, particularly marked in situation requiring passive responses (light/dark box and fear conditioning tests). BACHD rats exhibited a more profound alteration than WT animals in these tests from an early stage of the disease whereas, in tasks requiring some kind of motivation (for food or for social contacts), only old BACHD rats showed high anxiety‐like behavior compared to WT, may be partly due to the other symptoms' occurrence at this stage: locomotor difficulties and/or apathy.  相似文献   

18.
Rating scales for difficulty in capturing and holding mice were devised that proved to be easy to use and highly sensitive to differences among mouse strains on the A and B priority lists of the Mouse Phenome Project. The simplicity of the scales makes it feasible to rate wildness during behavioral test sessions without adding much to testing time or distracting the technician from the principal task at hand. Overall wildness and placidity ratings obtained by combining capture and hold ratings provide a good impression of the difficulties encountered while working with lab mice in the course of complex experiments. Ratings of 21 inbred strains during the course of 15 behavioral tests in two laboratories demonstrated that the SPRET/Ei, PERA/Ei, CAST/Ei and SWR/J strains were particularly difficult to handle. The NOD/LtJ strain posed no special challenge in the Edmonton laboratory but was very difficult to handle in the Portland lab. The rating scales should be useful for judging the difficulties in working with novel targeted or induced mutations in mice as well as effects of a variety of environmental treatments or drugs.  相似文献   

19.
The C57BL/6JOlaHsd and 129S2/SvHsd mice were tested in a battery designed for behavioral phenotyping of genetically modified mice. The study was performed in order to reveal the effect of training history on the behavior by comparison with the experimentally naïve mice in the same tests. Significant strain differences were obtained in all experiments. Previous handling and testing reduced exploratory activity and emotionality significantly in the mice. The coordination ability was better and nociceptive sensitivity was increased in the trained mice. The contextual fear was reduced whereas the cued fear was enhanced in the experienced mice. The training history did not alter initial learning in the water maze. However, after reversal learning the naïve mice displayed significant preference for both old and new platform locations, whereas the battery animals did not exhibit preference to the old location. The experienced mice appeared to be less active in the forced swimming test and exhibited decreased conditioned taste aversion. The influence of test history was strain-dependent in certain cases. Therefore, the experience has substantial consequences on the behavior, mainly by reducing exploratory activity, and the previous experience of the animals has always to be considered in the analysis of genetically modified mice.  相似文献   

20.
Kim S  Lee S  Ryu S  Suk J  Park C 《Behavioural processes》2002,60(2):181-190
An anxiety-related behavior is an emotional response of an organism, which is quantitatively measured by several behavioral paradigms. We employed two most frequently used behavioral tests, the open field and light-dark exploration, to comparatively analyze the anxiety-like behaviors in four inbred mice. For an accurate recording of movement, motion analysis software was developed that acquires a real-time video input to generate a behavioral path. Effects of the strains on the test results were evaluated by ANOVA with the Newman-Keuls post hoc comparison. Eight different behavioral indices, four from each tests, were grouped into two classes; the results of duration, center crossing, transition, rearing, and ambulation indicate strain differences of FVB/N>C57BL/6J>/=BALB/cA>/=CBA/N (I), while stretched-attend posture, peeping, and defecation show the tendency of FVB/N=C57BL/6J相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号