首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Wnt信号通路包括经典通路和非经典通路两种,其中Wnt经典通路又称为Wnt/β-catenin通路,其在成骨细胞的分化、增殖过程中发挥这重要的作用。Wnt信号通路实现过程中有多种因子参与,包括Wnt蛋白、β-catenin、蛋白激酶GSK-3β以及APC蛋白等多种。Wnt蛋白家族是由19种Wnt蛋白组成的,主要分为经典Wnt蛋白和非经典Wnt蛋白,其本质是一系列高度保守的分泌性糖蛋白,并且不同的Wnt蛋白对成骨细胞发挥着不同的作用,其中经典Wnt蛋白通过经典Wnt信号作用于成骨细胞对成骨细胞的增殖、分化有着重要的影响。本综述通过对Wnt经典信号通路过程中的多种因子与成骨细胞分化、增殖的关系进行分析总结,了解Wnt/β-catenin通路对成骨细胞的作用。  相似文献   

2.
Wnt signal transduction has emerged as an increasingly complex pathway due to the numerous ligands, receptors, and modulators identified in multiple developmental systems. Wnt signaling has been implicated in the renewal of the intestinal epithelium within adult animals and the progression of cancer in the colon. The Wnt family, however, has not been explored for function during embryonic gut development. Thus, to dissect the role of Wnt signaling in the developing gastrointestinal tract, it is necessary to first obtain a complete picture of the spatiotemporal expression of the Wnt signaling factors with respect to the different tissue layers of the gut. Here, we offer an in depth in situ gene expression study of Wnt ligands, frizzled receptors, and frizzled related modulators over several days of chicken gut development. These data show some expected locations of Wnt signaling as well as a surprising lack of expression of factors in the hindgut. This paper describes the first comprehensive characterization of the dynamic expression of Wnt signaling molecules during gut development. These data form the basis for future studies to determine the role of Wnt signaling in the developing gastrointestinal tract.  相似文献   

3.
4.
Wnt信号分子是一类在无脊椎与脊椎动物的多种组织中广泛表达且进化上高度保守的信号刺激分子,他们在生长、发育、代谢和干细胞调节等多种生物学过程中发挥重要作用。在健康成人的器官中Wnt信号是沉默的,但是在病理情况下Wnt信号激活。近年发现Wnt信号通路在心血管疾病的发生发展过程中扮演重要角色。本文将详细介绍Wnt信号通路,及其与高血压疾病的研究进展,试图将对Wnt信号通路的调控作为治疗高血压疾病的新的方向。  相似文献   

5.
6.
7.
8.
9.
Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6.   总被引:25,自引:0,他引:25  
BACKGROUND: Dickkopf-1 (Dkk-1) is a head inducer secreted from the vertebrate head organizer and induces anterior development by antagonizing Wnt signaling. Although several families of secreted antagonists have been shown to inhibit Wnt signal transduction by binding to Wnt, the molecular mechanism of Dkk-1 action is unknown. The Wnt family of secreted growth factors initiates signaling via the Frizzled (Fz) receptor and its candidate coreceptor, LDL receptor-related protein 6 (LRP6), presumably through Fz-LRP6 complex formation induced by Wnt. The significance of the Fz-LRP6 complex in signal transduction remains to be established. RESULTS: We report that Dkk-1 is a high-affinity ligand for LRP6 and inhibits Wnt signaling by preventing Fz-LRP6 complex formation induced by Wnt. Dkk-1 binds neither Wnt nor Fz, nor does it affect Wnt-Fz interaction. Dkk-1 function in head induction and Wnt signaling inhibition strictly correlates with its ability to bind LRP6 and to disrupt the Fz-LRP6 association. LRP6 function and Dkk-1 inhibition appear to be specific for the Wnt/Fz beta-catenin pathway. CONCLUSIONS: Our results demonstrate that Dkk-1 is an LRP6 ligand and inhibits Wnt signaling by blocking Wnt-induced Fz-LRP6 complex formation. Our findings thus reveal a novel mechanism for Wnt signal modulation. LRP6 is a Wnt coreceptor that appears to specify Wnt/Fz signaling to the beta-catenin pathway, and Dkk-1, distinct from Wnt binding antagonists, may be a specific inhibitor for Wnt/beta-catenin signaling. Our findings suggest that Wnt-Fz-LRP6 complex formation, but not Wnt-Fz interaction, triggers Wnt/beta-catenin signaling.  相似文献   

10.
Canonical Wnt signaling instructively promotes sensory neurogenesis in early neural crest stem cells (eNCSCs) (Lee, H.Y., M. Kleber, L. Hari, V. Brault, U. Suter, M.M. Taketo, R. Kemler, and L. Sommer. 2004. Science. 303:1020-1023). However, during normal development Wnt signaling induces a sensory fate only in a subpopulation of eNCSCs while other cells maintain their stem cell features, despite the presence of Wnt activity. Hence, factors counteracting Wnt signaling must exist. Here, we show that bone morphogenic protein (BMP) signaling antagonizes the sensory fate-inducing activity of Wnt/beta-catenin. Intriguingly, Wnt and BMP act synergistically to suppress differentiation and to maintain NCSC marker expression and multipotency. Similar to NCSCs in vivo, NCSCs maintained in culture alter their responsiveness to instructive growth factors with time. Thus, stem cell development is regulated by combinatorial growth factor activities that interact with changing cell-intrinsic cues.  相似文献   

11.
Wnt is a major signaling pathway involved in multifaceted roles of various biological processes. Bones are dynamic tissues which are able to remodel and maintain the tissue homeostasis. Wnt signaling cascade leads to the promotion of bone formation and suppression of bone resorption, leading to a balance in bone remodeling. Recent evidence has reinforced the inevitable role of Wnt signaling in osteoporosis. The complex genetic and epigenetic regulations of Wnt signaling factors and their interaction with other master signaling pathways such as TGF-β, BMP, PI3K/AKT, and Hedgehog outline their importance in diagnosis and treatment of osteoporosis. In this review, we highlighted the recent advances in function of Wnt signaling-related epigenetic regulation, different signaling pathways interacting with Wnt, and their roles in osteoporosis. Finally, we discussed novel promises in molecular targeted therapy of osteoporosis.  相似文献   

12.
Multiple signaling pathways regulate proliferation and differentiation of neural progenitor cells during early development of the central nervous system (CNS). In the spinal cord, dorsal signaling by bone morphogenic protein (BMP) acts primarily as a patterning signal, while canonical Wnt signaling promotes cell cycle progression in stem and progenitor cells. However, overexpression of Wnt factors or, as shown here, stabilization of the Wnt signaling component beta-catenin has a more prominent effect in the ventral than in the dorsal spinal cord, revealing local differences in signal interpretation. Intriguingly, Wnt signaling is associated with BMP signal activation in the dorsal spinal cord. This points to a spatially restricted interaction between these pathways. Indeed, BMP counteracts proliferation promoted by Wnt in spinal cord neuroepithelial cells. Conversely, Wnt antagonizes BMP-dependent neuronal differentiation. Thus, a mutually inhibitory crosstalk between Wnt and BMP signaling controls the balance between proliferation and differentiation. A model emerges in which dorsal Wnt/BMP signal integration links growth and patterning, thereby maintaining undifferentiated and slow-cycling neural progenitors that form the dorsal confines of the developing spinal cord.  相似文献   

13.
14.
15.
Wnt蛋白是一类分泌型蛋白生长因子,通过自分泌和旁分泌作用调节多种细胞的发生和发育.新近研究表明,Wnt信号通路在前体脂肪细胞的增殖分化中发挥着重要作用.Wnt蛋白的配基通过与细胞膜上的特异性受体Frizzled1/2/5及辅助受体LRP5/6结合,激活经典或非经典的Wnt信号通路,影响下游靶基因产物的磷酸化作用,进而抑制C/EBPα、PPARγ等脂肪细胞关键转录因子,使细胞保持未分化状态,从而抑制脂肪的形成.本文就Wnt信号通路的研究史和主要分支、作用方式及其抑制脂肪细胞的机制方面进行了综述,并对今后的研究方向和应用作了展望.  相似文献   

16.
Wnt/β-catenin信号通路又被称为经典Wnt信号通路,在早期胚胎发育、成体组织稳态维持、干细胞干性调控和肿瘤发生等过程中均发挥重要作用.经典Wnt信号通路的核心信号转导因子β-catenin与核内转录因子TCF/LEF家族成员结合后,通过募集或替换一系列协同作用因子,诱导染色质结构变化,调控Wnt信号靶基因的转录.本文将从Wnt信号靶基因转录调控的基本模式、分子机制、表观遗传学调控和意义等方面,总结近年来有关Wnt信号靶基因转录调控的研究成果,方便读者更好地理解Wnt信号通路靶基因的转录调控.  相似文献   

17.
18.
19.
The Wnt gene family, which encodes secreted growth and differentiation factors, has been implicated in kidney organogenesis. The Wnts control both ureteric bud development and signaling, but they also serve as inductive factors to regulate nephrogenesis in the mesenchcymal cells. Several of the Wnt genes are expressed in the developing kidney, and gene knock-out studies have revealed specific developmental functions for these. Consistent with this, changes in Wnt ligands and pathway components are associated with many kidney diseases, including kidney cancers, renal fibrosis, cystic kidney diseases, acute renal failure, diabetic nephropathy and ischaemic injury. It is these associations of the Wnt signaling system with kidney development and kidney diseases that form to topic of this review.Key words: Wnt signaling, tubule induction, ureter development, kidney diseases, kidney cancer  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号