首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated knockdown caused by four insecticides: alpha-cypermethrin, chlorfenapyr, pirimiphos-methyl and fipronil against adults of Tribolium confusum Jacquelin Duval, the confused flour beetle and Oryzaephilus surinamensis (L.), the sawtoothed grain beetle. Bioassays were conducted on concrete and metal surfaces. Adults of the tested species were exposed on both surfaces treated with the above insecticides at two doses (low and high). Knockdown assessment was done after 15, 30 and 60 min of adult exposure in the treated surfaces. Also, after 1, 3, 5, 7 and 14 d of exposure, a lethality index was calculated with an equation resulting to values from 0 to 100, where 100 indicated complete mortality and 0 complete survival. We also developed a lethality index by ranking each adult on each surface from 0 to 4, 0: adults moved normally, 1: adults were knocked down, but were able to walk for short intervals, 2: adults were knocked down and unable to walk, but with visible movement of antennae etc., 3: adults were knocked down, with very minimal movement of the tarsi and the antennae and 4: adults were dead (no movement). Knockdown of adults immediately after exposure (15–60 min) was higher for pirimiphos-methyl followed by alpha-cypermethrin, for both dose rates tested and species, but only on the metal surface. The lethality index was nearly 100 for all insecticides after 5d of exposure for O. surinamensis, while for T. confusum the adult lethality index was considerably lower for alpha-cypermethrin, suggesting that that recovery from knockdown occurred. Chlorfenapyr was the only insecticide that was more effective on concrete than on metal, while the reverse was noted for the other three insecticides. These results show that knockdown has different levels, which can be used as indicators of insect mortality or recovery.  相似文献   

2.
Bursicon is the main regulator of post molting and post eclosion processes during arthropod development. The active Bursicon hormone is a heterodimer of Burs-α and Burs-β. However, adult midguts express Burs-α to regulate the intestinal stem cell niche. Here, we examined the potential expression and function of its heterodimeric partner, Burs-β in the adult midgut. Unexpectedly, our evidence suggests that Burs-β is not significantly expressed in the adult midgut. burs-β mutants displayed the characteristic developmental defects but showed wild type-like adult midguts, thus uncoupling the developmental and adult phenotypes seen in burs-α mutants. Gain of function data and ex vivo experiments using a cAMP biosensor, demonstrated that Burs-α is sufficient to drive stem cell quiescence and to activate dLGR2 in the adult midgut.

Our evidence suggests that the post developmental transactivation of dLGR2 in the adult midgut is mediated by Burs-α and that the β subunit of Bursicon is dispensable for these activities.  相似文献   


3.
Bruchid beetle larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil (Callosobruchus maculatus) and the Mexican bean weevil (Zabrotes subfasciatus), are pests that damage stored seeds. The Mediterranean flour moth (Anagasta kuehniella) is of major economic importance as a flour and grain feeder; it is often a severe pest in flour mills. Plant lectins have been implicated as antibiosis factors against insects. Bauhinia monandra leaf lectin (BmoLL) was tested for anti-insect activity against C. maculatus, Z. subfasciatus and A. kuehniella larvae. BmoLL produced ca. 50% mortality to Z. subfaciatus and C. maculatus when incorporated into an artificial diet at a level of 0.5% and 0.3% (w/w), respectively. BmooLL up to 1% did not significantly decrease the survival of A. kuehniella larvae, but produced a decrease of 40% in weight. Affinity chromatography showed that BmoLL bound to midgut proteins of the insect C. maculatus. 33 kDa subunit BmoLL was not digested by midgut preparations of these bruchids. BmoLL-fed C. maculatus larvae increased the digestion of potato starch by 25% compared with the control. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   

4.
5.
Several carbohydrases and glycosidases from the alimentary cancal and/or salivary glands of feeding larvae of mayetiola destructor have been identified. Pectinase activity was identified in the midgut and may be present in the salivary glands. No endocellulase activity was found in larvae; however, hemicellulase activity was detected in extract of larvae. Amylase activity was present in midguts from feeding larvae and at a low level in extract of salivary glands. Amylases detected in the midgut showed mobilities during polyacrylamide gel electrophoresis similar to the two major amylases in tissues of the insect's host plant. The possibility exists that Hessian fly larvae utilize amylases obtained from their host plant in the digestion of starch. The major glycosidases detected in the midgut lumen of larve were: α-D-glucosidase and α-D-and β-D-galactosidase. The role of these enzymes in the feeding process of Hessian fly larvae is discussed as well as their potential role in feeding damage to wheat.  相似文献   

6.
Larvae of Zabrotes subfasciatus secrete α‐amylases that are insensitive to the α‐amylase inhibitor found in seeds of Phaseolus vulgaris. By analyzing amylase activities during larval development on P. vulgaris, we detected activity of the constitutive amylase and the two inducible amylase isoforms at all stages. When larvae were transferred from the non α‐amylase inhibitor containing seeds of Vigna unguiculata to P. vulgaris, the inducible α‐amylases were expressed at the same level as in control larvae fed on P. vulgaris. Interestingly, when larvae were transferred from seeds of P. vulgaris to those of V. unguiculata, inducible α‐amylases continued to be expressed at a level similar to that found in control larvae fed P. vulgaris continuously. When 10‐day‐old larvae were removed from seeds of V. unguiculata and transferred into capsules containing flour of P. vulgaris cotyledons, and thus maintained until completing 17 days (age when the larvae stopped feeding), we could detect higher activity of the inducible α‐amylases. However, when larvae of the same age were transferred from P. vulgaris into capsules containing flour of V. unguiculata, the inducible α‐amylases remained up‐regulated. These results suggest that the larvae of Z. subfasciatus have the ability to induce insensitive amylases early in their development. A short period of feeding on P. vulgaris cotyledon flour was sufficient to irreversibly induce the inducible α‐amylase isoforms. Incubations of brush border membrane vesicles with the α‐amylase inhibitor 1 from P. vulgaris suggest that the inhibitor is recognized by putative receptors found in the midgut microvillar membranes. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
A five-residue myotropic peptide, Manduca sexta midgut myotropin I (Mas-MG-MT I), was isolated from an extract of 800 midguts of fifth instar larvae of the tobacco hornworm, Manduca sexta. It was purified by reverse phase and normal phase HPLC. Myotropic activity was screened by a heterologous Locusta migratoria oviduct bioassay. Sequence analysis, amino acid composition analysis, and comparison of candidate synthetic peptides in the amide and acid form revealed the following primary structure: Ala-Glu-Pro-Tyr-Thr-NH2. This is the first fully identified peptide isolated directly from the midgut of an insect species. Few significant sequence homologies with known vertebrate and invertebrate peptides have been found. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Many stinkbugs (Insecta: Hemiptera: Heteroptera) are associated with bacterial symbionts in a posterior region of the midgut. In these stinkbugs, adult females excrete symbiont-containing materials from the anus for transmission of the beneficial symbionts to their offspring. For ensuring the vertical symbiont transmission, a variety of female-specific elaborate traits at the cellular, morphological, developmental, and behavioral levels have been reported from diverse stinkbugs of the families Plataspidae, Urostylididae, Parastrachiidae, etc. Meanwhile, such elaborate female-specific traits for vertical symbiont transmission have been poorly characterized for the largest and economically important stinkbug family Pentatomidae. Here, we investigated the midgut symbiotic system of a pentatomid stinkbug, Plautia splendens. A specific gammaproteobacterial symbiont was consistently present extracellularly in the cavity of numerous crypts arranged in four rows on the midgut fourth section. The symbiont was smeared on the egg surface upon oviposition by adult females, orally acquired by newborn nymphs, and thereby transmitted vertically to the next generation and important for growth and survival of the host insects. We found that, specifically in adult females, several rows of crypts at the posterior end region of the symbiotic midgut were morphologically differentiated and conspicuously enlarged, often discharging the symbiotic bacteria from the crypt cavity to the main tract of the symbiotic midgut. The female-specific enlarged end crypts were also found in other pentatomid stinkbugs Plautia stali and Carbula crassiventris. These results suggest that the enlarged end crypts represent a female-specific specialized morphological trait for vertical symbiont transmission commonly found among stinkbugs of the family Pentatomidae.  相似文献   

9.
10.
The essential amino acids (EAAs) arginine, histidine, lysine, and methionine, as well as cysteine (semiessential), are believed to be susceptible to reactions with reactive oxygen species (ROS) in biological systems. The decreased availability of these EAAs could harm insect nutrition, since several of them can also be limiting for protein synthesis. However, no in vivo studies have quantified the effect of ROS in the midguts of insect herbivores on EAA composition. This study examined the association between elevated levels of ROS in the midgut fluid of Lymantria dispar caterpillars and the compositions of EAAs (protein‐bound + protein‐free) in their midgut fluid and frass. Contrary to expectation, the compositions of EAAs were not significantly decreased by ROS in midgut fluid ex vivo when incubated with phenolic compounds. Two in vivo comparisons of low‐ and high‐ROS‐producing leaves also showed similar results: there were no significant decreases in the compositions of EAAs in the midgut fluids and/or frass of larvae with elevated levels of ROS in their midguts. In addition, waste nitrogen excretion was not significantly increased from larvae on high‐ROS treatments, as would be expected if ROS produced unbalanced EAA compositions. These results suggest that L. dispar larvae are able to tolerate elevated levels of ROS in their midguts without nutritionally significant changes in the compositions of susceptible EAAs in their food.  相似文献   

11.
The architectural ground plan of beetle and other insect midguts is represented by a monolayer of epithelial cells arranged in a cylindrical configuration. Proliferation and differentiation of regenerative cells maintain the integrity of this monolayer in the face of continual losses of individual cells through cytoplasmic budding and/or expulsion of entire epithelial cells. Peritrophic membranes have conventionally been considered universal features of insect midguts that function to protect vulnerable microvillar surfaces of the midgut epithelium from abrasion by ingested food; however, peritrophic membranes were found in only a small fraction of the adult beetle species examined in this study. In adult beetles, midgut epithelial cells are continually replaced by cells recruited from populations of mitotic regenerative cells that are interspersed among the differentiated epithelial monolayer. To remain contiguous with the other cells in the midgut monolayer, some of these proliferating populations have adopted evaginated configurations of cells that extend for varying distances from the basal surface of the monolayer. These configurations are referred to as regenerative crypts or pouches and consist of progenitor cells and stem cells. The presence, the relative densities, and the relative lengths of these regenerative pouches vary considerably among families of beetles. Placement of longitudinal muscles of the midgut relative to the proximodistal axes of these regenerative pouches also varies among species of beetles. The presence, the size, and the density of regenerative cell populations are related to 1) feeding habits of adult beetles, 2) presence of peritrophic membranes, and 3) expulsion of entire midgut epithelial cells or fragments of these epithelial cells into midgut lumens. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Microbial communities typically vary in composition and structure over space and time. Little is known about the inherent characteristics of communities that govern various drivers of these changes, such as random variation, changes in response to perturbation, or susceptibility to invasion. In this study, we use 16S ribosomal RNA gene sequences to describe variation among bacterial communities in the midguts of cabbage white butterfly (Pieris rapae) larvae and examine the influence of community structure on susceptibility to invasion. We compared communities in larvae experiencing the same conditions at different times (temporal variation) or fed different diets (perturbation). The most highly represented phylum was Proteobacteria, which was present in all midgut communities. The observed species richness ranged from six to 15, and the most abundant members affiliated with the genera Methylobacteria, Asaia, Acinetobacter, Enterobacter, and Pantoea. Individual larvae subjected to the same conditions at the same time harbored communities that were highly similar in structure and membership, whereas the communities observed within larval populations changed with diet and over time. In addition, structural changes due to perturbation coincided with enhanced susceptibility to invasion by Enterobacter sp. NAB3R and Pantoea stewartii CWB600, suggesting that resistance to invasion is in part governed by community structure. These findings along with the observed conservation of membership at the phylum level, variation in structure and membership at lower taxonomic levels, and its relative simplicity make the cabbage white butterfly larval community an attractive model for studying community dynamics and robustness.  相似文献   

13.
14.
A comparison of the diversity of bacterial communities in the larval midgut and adult gut of the European forest cockchafer (Melolontha hippocastani) was carried out using approaches that were both dependent on and independent of cultivation. Clone libraries of the 16S rRNA gene revealed 150 operational taxonomic units (OTUs) that belong to 11 taxonomical classes and two other groups that could be classified only to the phylum level. The most abundant classes were β, δ and γ-proteobacteria, Clostridia, Bacilli, Erysipelotrichi and Sphingobacteria. Although the insect’s gut is emptied in the prepupal stage and the beetle undergoes a long diapause period, a subset of eight taxonomic classes from the aforementioned eleven were found to be common in the guts of diapausing adults and the larval midguts (L2, L3). Moreover, several bacterial phylotypes belonging to these common bacterial classes were found to be shared by the larval midgut and the adult gut. Despite this, the adult gut bacterial community represented a subset of that found in the larvae midgut. Consequently, the midgut of the larval instars contains a more diverse bacterial community compared to the adult gut. On the other hand, after the bacteria present in the larvae were cultivated, eight bacterial species were isolated. Moreover, we found evidence of the active role of some of the bacterial species isolated in food digestion, namely, the presence of amylase and xylanolytic properties. Finally, fluorescence in situ hybridization allowed us to confirm the presence of selected species in the insect gut and through this, their ecological niche as well as the metagenomic results. The results presented here elucidated the heterogeneity of aerobic and facultative bacteria in the gut of a holometabolous insect species having two different feeding habits.  相似文献   

15.
Chikungunya virus (CHIKV) is primarily transmitted by Aedes spp. mosquitoes. The present study investigated vector competence for CHIKV in Aedes aegypti and Aedes albopictus mosquitoes found in Madurai, South India. The role of receptor proteins on midguts contributing to permissiveness of CHIKV to Aedes spp. mosquitoes was also undertaken. Mosquitoes were orally infected with CHIKV DRDE‐06. Infection of midguts and dissemination to heads was confirmed by immunofluorescence assay at different time points. A plaque assay was performed from mosquito homogenates at different time points to study CHIKV replication. Presence of putative CHIKV receptor proteins on mosquito midgut epithelial cells was detected by virus overlay protein binding assay (VOPBA). The identity of these proteins was established using mass spectrometry. CHIKV infection of Ae. aegypti and Ae. albopictus midguts and dissemination to heads was observed to be similar. A plaque assay performed with infected mosquito homogenates revealed that CHIKV replication dynamics was similar in Aedes sp. mosquitoes until 28 days post infection. VOPBA performed with mosquito midgut membrane proteins revealed that prohibitin could serve as a putative CHIKV receptor on Aedes mosquito midguts, whereas an absence of CHIKV binding protein/s on Culex quinquefasciatus midguts can partially explain the non‐permissiveness of these mosquitoes to infection.  相似文献   

16.
Bacillus thuringiensis subsp. israelensis, which is used worldwide to control Aedes aegypti larvae, produces Cry11Aa and other toxins during sporulation. In this study, pull-down assays were performed using biotinylated Cry11Aa toxin and solubilized brush border membrane vesicles prepared from midguts of Aedes larvae. Three of the eluted proteins were identified as aminopeptidease N (APN), one of which was a 140 kDa protein, named AaeAPN1 (AAEL012778 in VectorBase). This protein localizes to the apical side of posterior midgut epithelial cells of larva. The full-length AaeAPN1 was cloned and expressed in Eschericia coli and in Sf21 cells. AaeAPN1 protein expressed in Sf21 cells was enzymatically active, had a GPI-anchor but did not bind Cry11Aa. A truncated AaeAPN1, however, binds Cry11Aa with high affinity, and also Cry11Ba but with lower affinity. BBMV but not Sf21 expressed AaeAPN1 can be detected by wheat germ agglutinin suggesting the native but Sf21 cell-expressed APN1 contains N-acetylglucosamine moieties.  相似文献   

17.
Abstract In the Ozark Mountains of the U.S.A., the red oak borer Enaphalodes rufulus contributes to the destruction of red oaks. To understand nutrient digestion in E. rufulus larvae, digestive proteinases are compared in both larvae fed heartwood phloem and those transferred to artificial diet. The pH of gut extracts is approximately 6.3 in the midgut and foregut and decreases to 5.5 in the hindgut region. The hydrolysis of casein by midgut extracts from E. rufulus larvae fed either artificial diet or phloem from tree sections increases in buffers greater than pH 6.19, with maximum hydrolysis being observed at pH 10.1. Casein zymogram analysis reveals two major proteinase activities in larval midgut extracts of diet‐fed larvae, with molecular masses of approximately 25 and 40–60 kDa, whereas phloem‐fed larvae have proteinase activities corresponding to 40, 45, 60, 80 and >100 kDa. Substrate analysis indicates at least one major trypsin‐like activity in both gut extracts with a molecular mass of >100 kDa, but two chymotrypsin‐like activities of approximately 25 and >200 kDa are found only in diet‐fed larvae. Inhibitors of serine proteinases are most effective in reducing the general proteolytic activity of midgut extracts from larvae fed either food source. The data indicate that serine proteinase inhibitors have the potential to reduce E. rufulus larval damage to oaks. In particular, transgenic technologies incoporating trypsin inhibitors may be effective in reducing protein digestion in phloem‐feeding larvae.  相似文献   

18.
The Asian Corn Borer Ostrinia furnacalis is a major agricultural pest. In this study, a full‐length neuropeptide Y (npy) gene in O. furnacalis was sequenced and cloned from cDNA library, which contains an ORF of 273 bp by encoding 90 amino acid residues. The mature OfurNPY is composed of 29 amino acids with amidation in C‐terminal. The spatiotemporal expression analysis showed that npy highest expression level was in the midgut of the fifth instar larvae (the gluttony period). When the expression of npy was knocked down by feeding or injecting dsNPY, larval food consumption, body size, and body weight were significantly inhibited compared to controls. These results indicate that NPY is an important regulator in the control of feeding of O. furnacalis.  相似文献   

19.
Wnt信号通路是进化中高度保守的一条信号转导途径,在调控动物的胚胎轴向正常发育、胚胎分化、决定细胞极性、维持成体动态平衡等方面发挥重要作用. 该信号通路的异常激活还与肿瘤的发生密切相关. 本实验将体外人工合成的Wingless(Wg)/Wnt1基因dsRNA显微注射入赤拟谷盗晚期幼虫体内,研究Wingless/Wnt1蛋白在赤拟谷盗发育过程中发挥的作用. 实验结果显示,注射 Wingless(wg)/Wnt1基因dsRNA后,赤拟谷盗发育形成的蛹,翅膀宽度减小,翅间距明显增大,且羽化过程也受到严重影响. 此外,qPCR结果表明,赤拟谷盗Wingless(Wg)/Wnt1基因被沉默后,Cadherin-like 和 Smoothened (Smo)基因的表达显著上调,Armadillo-2基因略上调. 这些结果揭示,Wnt-1 信号通路和赤拟谷盗翅膀发育以及成虫羽化过程密切相关. 蛹翅宽减小,翅间距增大,可能是由于调控细胞粘连及细胞形态的Cadherin-like 和Armadillo-2基因的上调所引起.更重要的是,Smo基因的上调,表明了Wnt信号通路和Hedgehog信号通路在赤拟谷盗发育过程中有交互作用.  相似文献   

20.
The focus of the present study was to compare ultrastructure in the midguts of larvae of the Hessian fly, Mayetiola destructor (Say), under different feeding regimens. Larvae were either fed on Hessian fly-resistant or -susceptible wheat, and each group was compared to starved larvae. Within 3 h of larval Hessian fly feeding on resistant wheat, midgut microvilli were disrupted, and after 6 h, microvilli were absent. The disruption in microvilli in larvae feeding on resistant wheat were similar to those reported for midgut microvilli of European corn borer, Ostrinia nubilasis (Hubner), larvae fed a diet containing wheat germ agglutinin. Results from the present ultrastructural study, coupled with previous studies documenting expression of genes encoding lectin and lectin-like proteins is rapidly up-regulated in resistant wheat to larval Hessian fly, are indications that the midgut is a target of plant resistance compounds. In addition, the midgut of the larval Hessian fly is apparently unique among other dipterans in that no peritrophic membrane was observed. Ultrastructural changes in the midgut are discussed from the prospective of their potential affects on the gut physiology of Hessian fly larvae and the mechanism of antibiosis in the resistance of wheat to Hessian fly attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号