首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Chlorella virus RNA triphosphatase (cvRtp1) is the smallest member of a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, protozoa, poxviruses, and baculoviruses. The primary structure of cvRtp1 is more similar to that of the yeast RNA triphosphatase Cet1 than it is to the RNA triphosphatases of other DNA viruses. To evaluate the higher order structural similarities between cvRtp1 and the fungal enzymes, we performed an alanine scan of individual residues of cvRtp1 that were predicted, on the basis of the crystal structure of Cet1, to be located at or near the active site. Twelve residues (Glu(24), Glu(26), Asp(64), Arg(76), Lys(90), Glu(112), Arg(127), Lys(129), Arg(131), Asp(142), Glu(163), and Glu(165)) were deemed essential for catalysis by cvRtp1, insofar as their replacement by alanine reduced phosphohydrolase activity to <5% of the wild-type value. Structure-activity relationships were elucidated by introducing conservative substitutions at the essential positions. The mutational results suggest that the active site of cvRtp1 is likely to adopt a tunnel fold like that of Cet1 and that a similar constellation of side chains within the tunnel is responsible for metal binding and reaction chemistry. Nonetheless, there are several discordant mutational effects in cvRtp1 versus Cet1, which suggest that different members of the phosphohydrolase family vary in their reliance on certain residues within the active site tunnel. We found that tripolyphosphate and pyrophosphate were potent competitive inhibitors of cvRtp1 (K(i) = 0.6 microm tripolyphosphate and 2.4 microm pyrophosphate, respectively), whereas phosphate had little effect. cvRtp1 displayed a weak intrinsic tripolyphosphatase activity (3% of its ATPase activity) but was unable to hydrolyze pyrophosphate.  相似文献   

2.
The 464-amino acid baculovirus LEF4 protein is a bifunctional mRNA capping enzyme with triphosphatase and guanylyltransferase activities. The N-terminal half of LEF4 constitutes an autonomous triphosphatase catalytic domain. The LEF4 triphosphatase belongs to a family of metal-dependent phosphohydrolases, which includes the RNA triphosphatases of fungi, protozoa, Chlorella virus and poxviruses. The family is defined by two glutamate-containing motifs (A and C), which form a metal-binding site. Most of the family members resemble the fungal and Chlorella virus enzymes, which have a complex active site located within the hydrophilic interior of a topologically closed eight stranded β barrel (the so-called ‘triphosphate tunnel’). Here we probed whether baculovirus LEF4 is a member of the tunnel subfamily, via mutational mapping of amino acids required for triphosphatase activity. We identified four new essential side chains in LEF4 via alanine scanning and illuminated structure–activity relationships by conservative substitutions. Our results, together with previous mutational data, highlight five acidic and four basic amino acids that are likely to comprise the LEF4 triphosphatase active site (Glu9, Glu11, Arg51, Arg53, Glu97, Lys126, Arg179, Glu181 and Glu183). These nine essential residues are conserved in LEF4 orthologs from all strains of baculoviruses. We discerned no pattern of clustering of the catalytic residues of the baculovirus triphosphatase that would suggest structural similarity to the tunnel proteins (exclusive of motifs A and C). However, there is similarity to the active site of vaccinia RNA triphosphatase. We infer that the baculovirus and poxvirus triphosphatases are a distinct lineage within the metal-dependent RNA triphosphatase family. Synergistic activation of the LEF4 triphosphatase by manganese and magnesium suggests a two-metal mechanism of γ phosphate hydrolysis.  相似文献   

3.
Cet1, the RNA triphosphatase component of the yeast mRNA capping apparatus, catalyzes metal-dependent gamma phosphate hydrolysis within the hydrophilic interior of a topologically closed 8-strand beta barrel (the "triphosphate tunnel"). We used structure-guided alanine scanning to identify 6 side chains within the triphosphate tunnel that are essential for phosphohydrolase activity in vitro and in vivo: Arg393, Glu433, Arg458, Arg469, Asp471 and Thr473. Alanine substitutions at two positions, Asp377 and Lys409, resulted in partial catalytic defects and a thermosensitive growth phenotype. Structure-function relationships were clarified by introducing conservative substitutions. Five residues were found to be nonessential: Lys309, Ser395, Asp397, Lys427 Asn431, and Lys474. The present findings, together with earlier mutational analyses, reveal an unusually complex active site in which 15 individual side chains in the tunnel cavity are important for catalysis, and each of the 8 strands of the beta barrel contributes at least one functional constituent. The active site residues fall into three classes: (i) those that participate directly in catalysis via coordination of the gamma phosphate or the metal; (ii) those that make critical water-mediated contacts with the gamma phosphate or the metal; and (iii) those that function indirectly via interactions with other essential side chains or by stabilization of the tunnel structure.  相似文献   

4.
Martins A  Shuman S 《Biochemistry》2002,41(45):13403-13409
Baculovirus phosphatase (BVP) and mammalian capping enzyme (Mce1) are members of the RNA triphosphatase branch of the cysteine phosphatase superfamily. Although RNA triphosphatases have a core alpha/beta fold similar to other cysteine phosphatases, there is little conservation of primary structure outside of the cysteine-containing P-loop motif, HCxxxxxR(S/T), that comprises the active site. However, there is extensive primary structure conservation between members of the RNA triphosphatase branch, whether from cellular or viral sources and whether they are bifunctional capping enzymes such as Mce1 or monofunctional RNA phosphatases such as BVP. To evaluate the functional significance of such sequence conservation, we performed a mutational analysis of 14 residues of BVP. We identified three side chains (Trp6, Lys25, and Arg153) as essential for triphosphatase activity in vitro, i.e., W6A, K25A, and R153A were <0.1% as active as wild-type BVP, and were unable to complement a yeast RNA triphosphatase null mutant in vivo. Six other BVP residues (Thr62, Tyr67, Tyr68, Lys82, Glu158, and Arg159) were deemed functionally important, i.e., Ala mutations reduced triphosphatase activity to <20% of wild-type. On the basis of the locations of the equivalent amino acids in the Mce1 crystal structure, we surmise that the essential/important BVP residues ensure proper conformation of the catalytic P-loop (e.g., Arg153 and Tyr68) or other elements of the tertiary structure. Our results highlight a conserved Trp6-Lys25 pi-cation pair essential for BVP function.  相似文献   

5.
6.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

7.
The mRNA capping apparatus of the pathogenic fungus Candida albicans consists of three components: a 520- amino acid RNA triphosphatase (CaCet1p), a 449-amino acid RNA guanylyltransferase (Cgt1p), and a 474-amino acid RNA (guanine-N7-)-methyltransferase (Ccm1p). The fungal guanylyltransferase and methyltransferase are structurally similar to their mammalian counterparts, whereas the fungal triphosphatase is mechanistically and structurally unrelated to the triphosphatase of mammals. Hence, the triphosphatase is an attractive antifungal target. Here we identify a biologically active C-terminal domain of CaCet1p from residues 202 to 520. We find that CaCet1p function in vivo requires the segment from residues 202 to 256 immediately flanking the catalytic domain from 257 to 520. Genetic suppression data implicate the essential flanking segment in the binding of CaCet1p to the fungal guanylyltransferase. Deletion analysis of the Candida guanylyltransferase demarcates an N-terminal domain, Cgt1(1-387)p, that suffices for catalytic activity in vitro and for cell growth. An even smaller domain, Cgt1(1-367)p, suffices for binding to the guanylyltransferase docking site on yeast RNA triphosphatase. Deletion analysis of the cap methyltransferase identifies a C-terminal domain, Ccm1(137-474)p, as being sufficient for cap methyltransferase function in vivo and in vitro. Ccm1(137-474)p binds in vitro to synthetic peptides comprising the phosphorylated C-terminal domain of the largest subunit of RNA polymerase II. Binding is enhanced when the C-terminal domain is phosphorylated on both Ser-2 and Ser-5 of the YSPTSPS heptad repeat. We show that the entire three-component Saccharomyces cerevisiae capping apparatus can be replaced by C. albicans enzymes. Isogenic yeast cells expressing "all-Candida" versus "all-mammalian" capping components can be used to screen for cytotoxic agents that specifically target the fungal capping enzymes.  相似文献   

8.
Fcp1 is an essential protein serine phosphatase that dephosphorylates the C-terminal domain (CTD) of RNA polymerase II. By testing the effects of serial N- and C-terminal deletions of the 723-amino acid Schizosaccharomyces pombe Fcp1, we defined a minimal phosphatase domain spanning amino acids 156-580. We employed site-directed mutagenesis (introducing 24 mutations at 14 conserved positions) to locate candidate catalytic residues. We found that alanine substitutions for Arg(223), Asp(258), Lys(280), Asp(297), and Asp(298) abrogated the phosphatase activity with either p-nitrophenyl phosphate or CTD-PO(4) as substrates. Structure-activity relationships were determined by introducing conservative substitutions at each essential position. Our results, together with previous mutational studies, highlight a constellation of seven amino acids (Asp(170), Asp(172), Arg(223), Asp(258), Lys(280), Asp(297), and Asp(298)) that are conserved in all Fcp1 orthologs and likely comprise the active site. Five of these residues (Asp(170), Asp(172), Lys(280), Asp(297), and Asp(298)) are conserved at the active site of T4 polynucleotide 3'-phosphatase, suggesting that Fcp1 and T4 phosphatase are structurally and mechanistically related members of the DXD phosphotransferase superfamily.  相似文献   

9.
Saccharomyces cerevisiae RNA triphosphatase (Cet1p) and RNA guanylyltransferase (Ceg1p) interact in vivo and in vitro to form a bifunctional mRNA capping enzyme complex. Cet1p binding to Ceg1p stimulates the guanylyltransferase activity of Ceg1p. Here we localize the guanylyltransferase-binding and guanylyltransferase-stimulation functions of Cet1p to a 21-amino acid segment from residues 239 to 259. The guanylyltransferase-binding domain is located on the protein surface, as gauged by protease sensitivity, and is conserved in the Candida albicans RNA triphosphatase CaCet1p. Alanine-cluster mutations of a WAQKW motif within this segment abolish guanylyltransferase-binding in vitro and Cet1p function in vivo, but do not affect the triphosphatase activity of Cet1p. Proteolytic footprinting experiments provide physical evidence that Cet1p interacts with the C-terminal domain of Ceg1p. Trypsin-sensitive sites of Ceg1p that are shielded from proteolysis when Ceg1p is bound to Cet1p are located between nucleotidyl transferase motifs V and VI.  相似文献   

10.
EndA is a sequence non-specific endonuclease that serves as a virulence factor during Streptococcus pneumoniae infection. Expression of EndA provides a strategy for evasion of the host''s neutrophil extracellular traps, digesting the DNA scaffold structure and allowing further invasion by S. pneumoniae. To define mechanisms of catalysis and substrate binding, we solved the structure of EndA at 1.75 Å resolution. The EndA structure reveals a DRGH (Asp-Arg-Gly-His) motif-containing ββα-metal finger catalytic core augmented by an interesting ‘finger-loop’ interruption of the active site α-helix. Subsequently, we delineated DNA binding versus catalytic functionality using structure-based alanine substitution mutagenesis. Three mutants, H154A, Q186A and Q192A, exhibited decreased nuclease activity that appears to be independent of substrate binding. Glu205 was found to be crucial for catalysis, while residues Arg127/Lys128 and Arg209/Lys210 contribute to substrate binding. The results presented here provide the molecular foundation for development of specific antibiotic inhibitors for EndA.  相似文献   

11.
Pnkp is the end-healing and end-sealing component of an RNA repair system present in diverse bacteria from many phyla. Pnkp is composed of three catalytic modules: an N-terminal polynucleotide 5′-kinase, a central 2′,3′ phosphatase, and a C-terminal ligase. Here we report the crystal structure of the kinase domain of Clostridium thermocellum Pnkp bound to ATP•Mg2+ (substrate complex) and ADP•Mg2+ (product complex). The protein consists of a core P-loop phosphotransferase fold embellished by a distinctive homodimerization module composed of secondary structure elements derived from the N and C termini of the kinase domain. ATP is bound within a crescent-shaped groove formed by the P-loop (15GSSGSGKST23) and an overlying helix-loop-helix “lid.” The α and β phosphates are engaged by a network of hydrogen bonds from Thr23 and the P-loop main-chain amides; the γ phosphate is anchored by the lid residues Arg120 and Arg123. The P-loop lysine (Lys21) and the catalytic Mg2+ bridge the ATP β and γ phosphates. The P-loop serine (Ser22) is the sole enzymic constituent of the octahedral metal coordination complex. Structure-guided mutational analysis underscored the essential contributions of Lys21 and Ser22 in the ATP donor site and Asp38 and Arg41 in the phosphoacceptor site. Our studies suggest a catalytic mechanism whereby Asp38 (as general base) activates the polynucleotide 5′-OH for its nucleophilic attack on the γ phosphorus and Lys21 and Mg2+ stabilize the transition state.  相似文献   

12.
Based on three-dimensional model of the bifunctional enzyme Destabilase-Lysozyme (mlDL-Ds2) in complex with trimer of N-acetylglucosoamine (NAG)3 the functional role of the stereochemically based group of amino acids (Glu14, Asp26, Ser 29, Ser31, Lys38, His92), in manifestation of glycosidase and isopeptidase activities has been elucidated. By method of site-directed mutagenesis it has been shown that mlDL glycosidase active site includes catalytic Glu14 and Asp26, and isopeptidase site functions as Ser/Lys dyad presented by catalytic residues Lys38 and Ser29. Thus, among the invertebrate lysozymes mlDL presents first example of the bifunctional enzyme with identified position of the isopeptidase active site and localization of the corresponding catalytic residues.  相似文献   

13.
Based on the three-dimensional model of the bifunctional enzyme destabilase-lysozyme of the medicinal leech (mlDL) in complex with trimer of N-acetylglucosamine (NAG)3 by site-directed mutagenesis method, the functional role of the group of amino acids (Glu14, Asp26, Ser29, Ser31, Lys38, His92) in manifestation of lysozyme (glycosidase, muramidase) and isopeptidase activities has been investigated by site-directed mutagenesis. The results obtained go well with hypothesis, that lysozyme active site of mlDL includes catalytic Glu14 and Asp26 residues, and isopeptidase site functions as Ser/Lys catalytic dyad presented by catalytic residues Ser29 and Lys38. Thus, among the invertebrate lysozymes, mlDL presents the first example of a bifunctional enzyme with identified position of the isopeptidase active site and localization of the corresponding catalytic residues.  相似文献   

14.
Sawaya R  Shuman S 《Biochemistry》2003,42(27):8240-8249
RNA guanylyltransferase is an essential enzyme that catalyzes the second of three steps in the synthesis of the 5'-cap structure of eukaryotic mRNA. Here we conducted a mutational analysis of the guanylyltransferase domain of the mouse capping enzyme Mce1. We introduced 50 different mutations at 22 individual amino acids and assessed their effects on Mce1 function in vivo in yeast. We identified 16 amino acids as being essential for Mce1 activity (Arg299, Arg315, Asp343, Glu345, Tyr362, Asp363, Arg380, Asp438, Gly439, Lys458, Lys460, Asp468, Arg530, Asp532, Lys533, and Asn537) and clarified structure-activity relationships by testing the effects of conservative substitutions. The new mutational data for Mce1, together with prior mutational studies of Saccharomyces cerevisiae guanylyltransferase and the crystal structures of Chlorella virus and Candida albicans guanylyltransferases, provide a coherent picture of the functional groups that comprise and stabilize the active site. Our results extend and consolidate the hypothesis of a shared structural basis for catalysis by RNA capping enzymes, DNA ligases, and RNA ligases, which comprise a superfamily of covalent nucleotidyl transferases defined by a constellation of conserved motifs. Analysis of the effects of motif VI mutations on Mce1 guanylyltransferase activity in vitro highlights essential roles for Arg530, Asp532, Lys533, and Asn537 in GTP binding and nucleotidyl transfer.  相似文献   

15.
RNA triphosphatase catalyzes the first step in mRNA cap formation which entails the cleavage of the β–γ phosphoanhydride bond of triphosphate-terminated RNA to yield a diphosphate end that is then capped with GMP by RNA guanylyltransferase. Here we characterize a 303 amino acid RNA triphosphatase (Pct1p) encoded by the fission yeast Schizosaccharomyces pombe. Pct1p hydrolyzes the γ phosphate of triphosphate-terminated poly(A) in the presence of magnesium. Pct1p also hydrolyzes ATP to ADP and Pi in the presence of manganese or cobalt (Km = 19 µM ATP; kcat = 67 s–1). Hydrolysis of 1 mM ATP is inhibited with increasing potency by inorganic phosphate (I0.5 = 1 mM), pyrophosphate (I0.5 = 0.4 mM) and tripolyphosphate (I0.5 = 30 µM). Velocity sedimentation indicates that Pct1p is a homodimer. Pct1p is biochemically and structurally similar to the catalytic domain of Saccharomyces cerevisiae RNA triphosphatase Cet1p. Mechanistic conservation between Pct1p and Cet1p is underscored by a mutational analysis of the putative metal-binding site of Pct1p. Pct1p is functional in vivo in S.cerevisiae in lieu of Cet1p, provided that it is coexpressed with the S.pombe guanylyltransferase. Pct1p and other yeast RNA triphosphatases are completely unrelated, mechanistically and structurally, to the metazoan RNA triphosphatases, suggesting an abrupt evolutionary divergence of the capping apparatus during the transition from fungal to metazoan species.  相似文献   

16.
Mutational analysis of the hepatitis C virus RNA helicase.   总被引:11,自引:3,他引:8       下载免费PDF全文
D W Kim  J Kim  Y Gwack  J H Han    J Choe 《Journal of virology》1997,71(12):9400-9409
The carboxyl-terminal three-fourths of the hepatitis C virus (HCV) NS3 protein has been shown to possess an RNA helicase activity, typical of members of the DEAD box family of RNA helicases. In addition, the NS3 protein contains four amino acid motifs conserved in DEAD box proteins. In order to inspect the roles of individual amino acid residues in the four conserved motifs (AXXXXGKS, DECH, TAT, and QRRGRTGR) of the NS3 protein, mutational analysis was used in this study. Thirteen mutant proteins were constructed, and their biochemical activities were examined. Lys1235 in the AXXXXGKS motif was important for basal nucleoside triphosphatase (NTPase) activity in the absence of polynucleotide cofactor. A serine in the X position of the DEXH motif disrupted the NTPase and RNA helicase activities. Alanine substitution at His1318 of the DEXH motif made the protein possess high NTPase activity. In addition, we now report inhibition of NTPase activity of NS3 by polynucleotide cofactor. Gln1486 was indispensable for the enzyme activity, and this residue represents a distinguishing feature between DEAD box and DEXH proteins. There are four Arg residues in the QRRGRTGR motif of the HCV NS3 protein, and the second, Arg1488, was important for RNA binding and enzyme activity, even though it is less well conserved than other Arg residues. Arg1490 and Arg1493 were essential for the enzymatic activity. As the various enzymatic activities were altered by mutation, the enzyme characteristics were also changed.  相似文献   

17.
Lima CD  Wang LK  Shuman S 《Cell》1999,99(5):533-543
RNA triphosphatase is an essential mRNA processing enzyme that catalyzes the first step in cap formation. The 2.05 A crystal structure of yeast RNA triphosphatase Cet1p reveals a novel active site fold whereby an eight-stranded beta barrel forms a topologically closed triphosphate tunnel. Interactions of a sulfate in the center of the tunnel with a divalent cation and basic amino acids projecting into the tunnel suggest a catalytic mechanism that is supported by mutational data. Discrete surface domains mediate Cet1p homodimerization and Cet1p binding to the guanylyltransferase component of the capping apparatus. The structure and mechanism of fungal RNA triphosphatases are completely different from those of mammalian mRNA capping enzymes. Hence, RNA triphosphatase presents an ideal target for structure-based antifungal drug discovery.  相似文献   

18.
Prolyl 4-hydroxylase (EC 1.14.11.2), an alpha2beta2 tetramer, catalyzes the formation of 4-hydroxyproline in collagens. We converted 16 residues in the human alpha subunit individually to other amino acids, and expressed the mutant polypeptides together with the wild-type beta subunit in insect cells. Asp414Ala and Asp414Asn inactivated the enzyme completely, whereas Asp414Glu increased the K(m) for Fe2+ 15-fold and that for 2-oxoglutarate 5-fold. His412Glu, His483Glu and His483Arg inactivated the tetramer completely, as did Lys493Ala and Lys493His, whereas Lys493Arg increased the K(m) for 2-oxoglutarate 15-fold. His501Arg, His501Lys, His501Asn and His501Gln reduced the enzyme activity by 85-95%; all these mutations increased the K(m) for 2-oxoglutarate 2- to 3-fold and enhanced the rate of uncoupled decarboxylation of 2-oxoglutarate as a percentage of the rate of the complete reaction up to 12-fold. These and other data indicate that His412, Asp414 and His483 provide the three ligands required for the binding of Fe2+ to a catalytic site, while Lys493 provides the residue required for binding of the C-5 carboxyl group of 2-oxoglutarate. His501 is an additional critical residue at the catalytic site, probably being involved in both the binding of the C-1 carboxyl group of 2-oxoglutarate and the decarboxylation of this cosubstrate.  相似文献   

19.
The changes in the catalytic activity resulting from amino acid substitutions in the active site region have been theoretically modeled for tyrosyl tRNA synthetase (Tyr-RS). The catalytic activity was calculated as the differential stabilization of the transition state using electrostatic approximation. The results indicate that charged residues His45, His48, Asp78, Asp176, Asp194, Lys225, Lys230, Lys233, Arg265, and Lys268 play essential roles in catalysis of aminoacyl adenylate formation in Tyr-RS, which is in general agreement with previously known experimental data for residues 45, 48, 194, 230, and 233. These catalytic residues have also been used to search for sequence homology patterns among class I aminoacyl RSs of which HIGH and KMSKS conserved sequence motifs are well known. His45 and His48 belong to the HIGH signature sequence of class I aminoacyl tRNA synthetases (aRSs), whereas Arg265 and Lys268 can constitute a part of the KMSKS charge pattern. Lys225, Lys230, and Lys233 may be part of the conservative substitution pattern [HKR]-X(4)-[HKR]-X(2)-[HKR], and Asp194 is part of the new GSDQ motif. This demonstrates that the three dimensional charge distribution near the active site is an essential feature of the catalytic activity of aRS and that the theoretical technique used in this work can be utilized in searches for the catalytically important residues that may provide a clue for a charge residue pattern conserved in evolution. The appearance of patterns I-IV in Arg-, Gln-, Met-, Ile-, Leu-, Trp-, Val-, Glu-, Cys-, and Tyr-RS indicates that all these enzymes could have the same ancestor.  相似文献   

20.
Saccharomyces cerevisiae Cet1 and Schizosaccharomyces pombe Pct1 are the essential RNA triphosphatase components of the mRNA capping apparatus of budding and fission yeast, respectively. Cet1 and Pct1 share a baroque active site architecture and a homodimeric quaternary structure. The active site is located within a topologically closed hydrophilic beta-barrel (the triphosphate tunnel) that rests on a globular core domain (the pedestal) composed of elements from both protomers of the homodimer. Earlier studies of the effects of alanine cluster mutations at the crystallographic dimer interface of Cet1 suggested that homodimerization is important for triphosphatase function in vivo, albeit not for catalysis. Here, we studied the effects of 14 single-alanine mutations on Cet1 activity and thereby pinpointed Asp280 as a critical side chain required for dimer formation. We find that disruption of the dimer interface is lethal in vivo and renders Cet1 activity thermolabile at physiological temperatures in vitro. In addition, we identify individual residues within the pedestal domain (Ile470, Leu519, Ile520, Phe523, Leu524, and Ile530) that stabilize Cet1 in vivo and in vitro. In the case of Pct1, we show that dimerization depends on the peptide segment 41VPKIEMNFLN50 located immediately prior to the start of the Pct1 catalytic domain. Deletion of this peptide converts Pct1 into a catalytically active monomer that is defective in vivo in S. pombe and hypersensitive to thermal inactivation in vitro. Our findings suggest an explanation for the conservation of quaternary structure in fungal RNA triphosphatases, whereby the delicate tunnel architecture of the active site is stabilized by the homodimeric pedestal domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号