首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Methanosarcina mazei S-6 grew faster and its morphology changed to individual coccoid cells in medium with elevated concentrations of divalent cations and a large amount of catabolic substrate.  相似文献   

2.
A methanogenic coccoid organism, Methanosarcina mazei LYC, was isolated from alkaline sediment obtained from an oil exploration drilling site. The isolate resembled M. mazei S-6 by exhibiting different morphophases during its normal growth cycle. It differed from M. mazei S-6 by undergoint a spontaneous shift from large, irregular aggregates of cells to small, individual, irregular, coccoid units. In batch cultures at pH 7.0, M. mazei LYC grew as aggregates during the early growth stage. As the batch culture began exponential growth, the cell aggregates spontaneously dispersed: the culture liquid became turbid, and myriads of tiny (diameter, 1 to 3 μm) coccoid units were observed under phase-contrast microscopy. Disaggregation apparently was accomplished by the production of an enzyme which hydrolyzed the heteropolysaccharide component of the cell wall; the enzyme was active on other Methanosarcina strains as well. Although the enzyme was active when tested at pH 6.0, it apparently was not produced at that pH: when strain LYC was grown at pH 6.0, only cell aggregates were present throughout batch growth. Individual coccoid cells of M. mazei LYC were sensitive to sodium dodecyl sulfate, but the large aggregates of cells were not. Strain LYC rapidly used H2-CO2, in addition to methanol, and mono-, di-, and trimethylamine as methanogenic substrates; acetate was used very slowly. Its optimum growth temperature was 40°C, and its optimum pH was 7.2.  相似文献   

3.
When monomethylamine was the growth substrate, spontaneous disaggregation of Methanosarcina mazei S-6 commenced at the mid-exponential phase and resulted in the formation of a suspension containing 108 to 109 free cells per ml. Free cells were osmotically fragile and amenable to extraction of DNA. Hypertonic media for the manipulation and regeneration of free cells into aggregates were developed, and plating efficiencies of 100% were achieved for M. mazei S-6 and LYC. Free cells of strain S-6 required MgCl2 (10 mM) for growth, whereas aggregates did not. Specific growth rates of strains S-6 and LYC were increased by MgCl2. Treatment with pronase caused sphere formation and removal of the protein wall of cells of strain S-6, but protoplasts could not be regenerated. The disaggregating enzyme produced by strain S-6 facilitated the preparation of suspensions of free cells of some strains of Methanosarcina barkeri. Although this provided a means of extracting high-molecular-weight DNA from M. barkeri, less than 0.1% of free cells were viable.  相似文献   

4.
The gene sequences encoding disaggregatase (Dag), the enzyme responsible for dispersion of cell aggregates of Methanosarcina mazei to single cells, were determined for three strains of M. mazei (S-6T, LYC and TMA). The dag genes of the three strains were 3234 bp in length and had almost the same sequences with 97% amino acid sequence identities. Dag was predicted to comprise 1077 amino acid residues and to have a molecular mass of 120 kDa containing three repeats of the DNRLRE domain in the C terminus, which is specific to the genus Methanosarcina and may be responsible for structural organization and cell wall function. Recombinant Dag was overexpressed in Escherichia coli and preparations of the expressed protein exhibited enzymatic activity. The RT-PCR analysis showed that dag was transcribed to mRNA in M. mazei LYC and indicated that the gene was expressed in vivo. This is the first time the gene involved in the morphological change of Methanosarcina spp. from aggregate to single cells has been identified.  相似文献   

5.
6.
Colonial aggregates of Methanosarcina (= Methanococcus) mazei were examined with scanning and transmission electron microscopy. Cells are irregular and grouped into multicellular sarcinal colonies, which may disaggregate in older cultures. The protoplast is bounded by a typical trilaminar plasma membrane, outside of which is a matrix of loose fibrils. The presence and compactness of matrix material are responsible for the close packing of cells, and colony disaggregation seems to be the result of matrix shedding and degradation. The cell envelope contains complex hetero polysaccharides of N-acetylgalactosamine and galacturonic and glucuronic acids. Polymers extruded by M. mazei are likely quite adhesive in nature, accounting for its strong adherence to surfaces and hardiness compared with many other methanogens.  相似文献   

7.
The events responsible for the transition of Lactobacillus bulgaricus 1243-F from long filamentous chains to short bacilloid rods were examined in a cation-depleted liquid medium. In the presence of magnesium only, cells grew as long chains of unseparated cells. The addition of 100 μM to 1 mM calcium or manganese to this medium resulted in the dechaining of these cells to short bacilloid rods. Fe2+, Zn2+, Co2+, and Cu2+ failed to induce dechaining. Induction of calcium and manganese dechaining functioned under controlled pH maintained at 5.0 and 6.0 but not at pH 7.0. This was consistent with a previous report showing failure in synthesis of dechaining enzymes by L. bulgaricus under pH conditions approaching alkalinity (S. K. Rhee and M. Y. Pack, J. Bacteriol. 144:865-868, 1980). We conclude that under pH conditions which permit synthesis of dechaining enzymes, calcium and manganese are necessary for dechaining activity.  相似文献   

8.
The cultivation of mouse epidermal cells in medium of reduced calcium concentration (0.02–0.1 mM) selects for basal cell growth. Elevation of medium calcium levels above 0.1 mM results in rapid and well defined differentiative changes. This model was utilized to determine which cell type in mouse epidermis responds to the phorbol ester tumor promoter, 12-0-tetradecanoyl-phorbol-13-acetate (TPA), by an induction of the enzyme ornithine decarboxylase (ODC). Previous data had shown that TPA induces ODC in primary mouse epidermal cells only during the first 36 hr after plating in medium containing 1.44 mM Ca2+. In contrast, the induction in cells grown in low calcium medium was 2–10-fold greater, and inducibility persisted for at least 4 weeks. The greater inducibility of ODC in low calcium cells is not paralleled by increased thymidine incorporation after TPA treatment, probably because these cells are already proliferating at a maximum rate. When low calcium cells grown in 0.07 mM Ca2+ medium were switched to 1.2 mM Ca2+, there was a rapid loss of ODC inducibility. These results strongly suggest that the basal cells of the epidermis constitute the major target cells for the induction of ODC by TPA. The induction of ODC by ultraviolet light was not enhanced by growth of cells in low calcium medium, indicating that extracellular calcium concentration per se does not determine ODC inducibility. When epidermal cells grown in 1.2 mM or 0.07 mM Ca2+ medium were exposed to both UV light and TPA, there was a significant synergistic effect of combined treatment over the sum of each individual response, suggesting that factors in addition to differentiation determine the extent of ODC induction.  相似文献   

9.
When cells of Saccharomyces cerevisiae were grown aerobically under glucose-repressed conditions, ethanol production displayed a hyperbolic relationship over a limited range of magnesium concentrations up to around 0.5 mM. A similar relationship existed between available Mg2+ and ethanol yield, but over a narrower range of Mg2+ concentrations. Cellular demand for Mg2+ during fermentation was reflected in the accumulation patterns of Mg2+ by yeast cells from the growth medium. Entry of cells into the stationary growth phase and the time of maximum ethanol and minimum sugar concentration correlated with a period of maximum Mg2+ transport by yeast cells. The timing of Mg2+ transport fluxes by S. cerevisiae is potentially useful when conditioning yeast seed inocula prior to alcohol fermentations. Received 04 March 1996/ Accepted in revised form 21 August 1996  相似文献   

10.
Ricin toxin, which consists of two distinct polypeptide moieties, A and B chains, is cytotoxic to the cultured macrophage cell line, J774A.1. Ricin is a protein synthesis inhibitor, and incubating macrophages for 4 hours with ricin (1 pM to 10 nM) in standard medium containing calcium and magnesium inhibited 3H-leucine incorporation into protein (97%, at 1 nM ricin). However, in Ca2+-free medium, protein synthesis was inhibited only 19%. EGTA pretreatment (to deplete intracellular calcium) also partly protected cells from protein synthesis inhibition, in spite of added calcium (2 mM) in the incubation medium. Decreased toxicity in the absence of extracellular calcium resulted from decreased toxin binding. Adding or deleting Mg2+ did not affect protein synthesis or binding of 125I-ricin in cultured macrophages. We conclude that calcium is required for ricin to exert its inhibitory effect on protein synthesis in cultured macrophages.  相似文献   

11.
Methanosarcina barkeri 227 and Methanosarcina mazei S-6 grew with acetate as the substrate; we found little effect of H2 on the rate of aceticlastic growth in the presence of various H2 pressures between 2 and 810 Pa. We used physical (H2 addition or flushing the headspace to remove H2) and biological (H2-producing or -utilizing bacteria in cocultures) methods for controlling H2 pressure in Methanosarcina cultures growing on acetate. Added H2 (ca. 100 Pa) was removed rapidly (a few hours) by M. barkeri and slowly (within a day) by M. mazei. When the H2 produced by the aceticlastic methanogens was removed by coculturing with an H2-using Desulfovibrio sp., the H2 pressure was about 2.2 Pa. Under these conditions the stoichiometry of aceticlastic methanogenesis did not change. H2-grown inocula of M. barkeri grew with acetate as the sole catabolic substrate if the inoculum culture was transferred during logarithmic growth to acetate-containing medium or if the transfer was accomplished within 1 or 2 days after exhaustion of H2. H2-grown cultures incubated for 4 or more days after exhaustion of H2 were able to grow with H2 but not with acetate as the sole catabolic substrate. Addition of small quantities of H2 to acetate-containing medium permitted these cultures to initiate growth on acetate.  相似文献   

12.
Kluyvera cryocrescens KA-103 showed a dispersed growth in Ca2+-free Polypepton medium, but formed flocs on addition of a sufficient concentration of Ca2+ to the bacterial cell suspension. Therefore, calcium adsorption properties and flocculation conditions were investigated using bacterial cells cultured in the Ca2+-free Polypepton medium. The bacterium required 1.5 mM Ca2+ or more for good flocculation (F>90%), but a cooperative effect of Na+ and Ca2+ on good flocculation was observed at lower concentrations of Ca2+. The Langmuir adsorption isotherm was used to describe the adsorption of Ca2+ by the bacterial cells.  相似文献   

13.
DNA of bacteriophage PM2 is a convenient test object for studying DNA-damaging genotoxic agents. The extent of DNA damage can be estimated by the ability of damaged DNA for transfection of host cells, marine bacterium Pseudoalteromonas espejiana (Pae), str. BAL-31. The efficiency of transfection of Pae lines maintained for long periods without freezing was found to be very low upon the use of a widely accepted transfection method developed by van der Schans et al. (1971). Such cultures grown in a medium with 10 mM Ca2+ standard for Pae contained cell aggregates and exopolymer material. Pae was found to be capable of growing in a medium without the calcium supplement in the presence of chelator EGTA (low-calcium medium, LCM). After growth in LCM, cells did not aggregate, cultures lacked the activity of nuclease BAL, and transfection efficiency of cells grown in LCM drastically increased. Based on these results, a novel procedure of transfection with an efficiency of 2 × 104?2 × 105 infectious centers per microgram of PM2 DNA was developed.  相似文献   

14.
Microbial nitrate-dependent, Fe(II) oxidation (NDFO) is a ubiquitous biogeochemical process in anoxic sediments. Since most microorganisms that can oxidize Fe(II) with nitrate require an additional organic substrate for growth or sustained Fe(II) oxidation, the energetic benefits of NDFO are unclear. The process may also be self-limiting in batch cultures due to formation of Fe-oxide cell encrustations. We hypothesized that NDFO provides energetic benefits via a mixotrophic physiology in environments where cells encounter very low substrate concentrations, thereby minimizing cell encrustations. Acidovorax sp. strain 2AN was incubated in anoxic batch reactors in a defined medium containing 5 to 6 mM NO3, 8 to 9 mM Fe2+, and 1.5 mM acetate. Almost 90% of the Fe(II) was oxidized within 7 days with concomitant reduction of nitrate and complete consumption of acetate. Batch-grown cells became heavily encrusted with Fe(III) oxyhydroxides, lost motility, and formed aggregates. Encrusted cells could neither oxidize more Fe(II) nor utilize further acetate additions. In similar experiments with chelated iron (Fe(II)-EDTA), encrusted cells were not produced, and further additions of acetate and Fe(II)-EDTA could be oxidized. Experiments using a novel, continuous-flow culture system with low concentrations of substrate, e.g., 100 μM NO3, 20 μM acetate, and 50 to 250 μM Fe2+, showed that the growth yield of Acidovorax sp. strain 2AN was always greater in the presence of Fe(II) than in its absence, and electron microscopy showed that encrustation was minimized. Our results provide evidence that, under environmentally relevant concentrations of substrates, NDFO can enhance growth without the formation of growth-limiting cell encrustations.  相似文献   

15.
16.
Mammary epithelial cells (HC11) chronically adapted to grow in a low‐magnesium (0.05 mM vs. 0.5 mM) or in a high‐magnesium (40 mM) medium were used to investigate on the mechanisms of cell magnesium transport under conditions of non‐physiological magnesium availability. Magnesium influx was higher in low‐magnesium cells compared to control or high‐magnesium cells, whereas magnesium efflux was higher in high‐magnesium cells compared to control and low‐magnesium cells. Magnesium efflux was partially inhibited by imipramine, inhibitor of the Na+/Mg2+ exchange. Using a monoclonal antibody detecting a ~70 kDa protein associated with Na+/Mg2+ exchange activity, we found that the expression levels of this protein were proportional to magnesium efflux capacity, that is, high‐magnesium cells > control cells > low‐magnesium cells. As for magnesium influx, this was abolished by Co(III)hexaammine, inhibitor of magnesium channels. Surprisingly, we found that cells grown in low magnesium upregulated mRNA for the magnesium channel TRPM6, but not for other channels like TRPM7 or MagT1. TRPM6 mRNA was also rapidly upregulated or downregulated in HC11 cells deprived of magnesium or in low‐magnesium cells re‐added with magnesium, respectively. TRPM6 protein levels, as assessed by Western blot and immunofluorescence, underwent similar changes under comparable conditions. We propose that mammary epithelial cells adapt to decreased magnesium availability by upregulating magnesium influx via TRPM6, and counteract increased magnesium availability by increasing magnesium efflux primarily via Na+/Mg2+ exchange. These results show, for the first time, that TRPM6 contributes to regulating magnesium influx in mammary epithelial cells, similar to what is known for intestine and kidney. J. Cell. Physiol. 222: 374–381, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The Malpighian tubules of Musca domestica secrete a fluid with a high concentration of potassium and low concentrations of sodium, calcium, magnesium and chloride compared with the isolating medium.Low secretion rates are produced by low medium potassium concentrations (< 7 mM), with low sodium concentrations (up to 5 mM) increasing secretion; higher potassium concentrations produce higher secretion rates whilst higher sodium concentrations have no further effect. Calcium and magnesium are essential for secretion.The rate of tubule secretion is inversely proportional to the osmotic pressure of the isolating medium and the osmotic pressure of the secreted fluid is slightly hyper-osmotic to the medium over a range of medium osmotic pressures.The metabolic inhibitors cyanide, iodoacetate and 2,4-dinitrophenol inhibit secretion: Cu2+ ions, arsenate and ouabain have no effect whereas ethacrynic acid abolishes secretion. 5-hydroxytryptamine, cycle AMP and theophylline have no effect on secretion. Sodium thiocyanate stimulates fluid secretion and increases the osmotic pressure and the concentration of sodium and chloride, but not potassium, in the secreted fluid.  相似文献   

18.
J.O. Tsokos  S. Bloom 《BBA》1976,423(1):42-51
Spontaneously beating myocardial fragments prepared by mechanical disaggregation have hyperpermeable sarcolemmae. Such preparations were used to study mitochondrial function in situ. The myocardial fragments suspended in a phosphate-buffered salt solution containing 1–3 mM MgCl2 showed a low rate of oxygen uptake. Addition of succinate, pyruvate plus malate or glutamate was followed by an increase in the rate of O2 uptake. Addition of ADP to fragments engaged in State 4 respiration was followed by initiation of more rapid State 3 respiration, with respiratory control ratios routinely greater than 3 for succinate and glutamate. If the fragments were suspended in the same medium containing 3 mM ATP (a medium in which contractile activity occurs), State 3 was initiated upon addition of substrate. The suspension medium used in these experiments contained about 8 μM calcium as contamination. Addition of calcium chloride to give a final concentration of 0.14 to 0.57 mM stimulated State 4 respiration of the myocardial fragments. In contrast, similar additions made during State 3 inhibited respiration. The maximum degree of inhibition brought respiration close to the State 4 rate. If calcium was added prior to ADP, respiratory stimulation by the nucleotide was diminished. Respiratory function of myocardial fragments and of mitochondria isolated from them was similar in terms of response to substrate, ADP, and calcium addition in State 4. Response to calcium in State 3 was different in that inhibition was long-lived only at low [Pi] in the case of mitochondria, but at low or high [Pi] in the case of the fragments.  相似文献   

19.
The effect of medium osmolarity on the morphology and growth of Methanosarcina barkeri, Methanosarcina thermophila, Methanosarcina mazei, Methanosarcina vacuolata, and Methanosarcina acetivorans was examined. Each strain was adapted for growth in NaCl concentrations ranging from 0.05 to 1.0 M. Methanosarcina spp. isolated from both marine and nonmarine sources exhibited similar growth characteristics at all NaCl concentrations tested, demonstrating that these species are capable of adapting to a similar range of medium osmolarities. Concomitant with the adaptation in 0.4 to 1.0 M NaCl, all strains disaggregated and grew as single cells rather than in the characteristic multicellular aggregates. Aggregated cells had a methanochondroitin outer layer, while disaggregated single cells lacked the outer layer but retained the protein S-layer adjacent to the cell membrane. Synthesis of glucuronic acid, a major component of methanochondroitin, was reduced 20-fold in the single-cell form of M. barkeri when compared with synthesis in aggregated cells. Strains with the methanochondroitin outer cell layer exhibited enhanced stability at low (<0.2 M NaCl) osmolarity and grew at higher temperatures. Disaggregated cells could be converted back to aggregated cells by gradually readapting cultures to lower NaCl (<0.2 M) and Mg2+ (<0.005 M) concentrations. Disaggregated Methanosarcina spp. could also be colonized and replica plated with greater than 95% recovery rates on solidified agar basal medium that contained 0.4 to 0.6 M NaCl and either trimethylamine, methanol, or acetate as the substrate. The ability to disaggregate and grow Methanosarcina spp. as viable, detergent-sensitive, single cells on agar medium makes these species amenable to mutant selection and screening for genetic studies and enables cells to be gently lysed for the isolation of intact genetic material.  相似文献   

20.
Plasma membranes from rat liver purified according to the procedure of Neville bind calcium ions by a concentration-dependent, saturable process with at least two classes of binding sites. The higher affinity sites bind 45 nmol calcium/mg membrane protein with a KD of 3 µM. Adrenalectomy increases the number of the higher affinity sites and the corresponding KD. Plasma membranes exhibit a (Na+-K+)-independent-Mg2+-ATPase activity which is not activated by calcium between 0.1 µM and 10 mM CaCl2. Calcium can, with less efficiency, substitute for magnesium as a cofactor for the (Na+-K+)-independent ATPase. Both Mg2+- and Ca2+-ATPase activities are identical with respect to pH dependence, nucleotide specificity and sensitivity to inhibitors. But when calcium is substituted for magnesium, there is no detectable membrane phosphorylation from [γ-32P] ATP as it is found in the presence of magnesium. The existence of high affinity binding sites for calcium in liver plasma membranes is compatible with a regulatory role of this ion in membrane enzymic mechanisms or in hormone actions. Plasma membranes obtained by the procedure of Neville are devoid of any Ca2+-activated-Mg2+-ATPase activity indicating the absence of the classical energy-dependent calcium ion transport. These results would suggest that the overall calcium-extruding activity of the liver cell is mediated by a mechanism involving no direct ATP hydrolysis at the membrane level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号