首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Store-operated Ca(2+) channels, which are activated by the emptying of intracellular Ca(2+) stores, provide one major route for Ca(2+) influx. Under physiological conditions of weak intracellular Ca(2+) buffering, the ubiquitous Ca(2+) releasing messenger InsP(3) usually fails to activate any store-operated Ca(2+) entry unless mitochondria are maintained in an energized state. Mitochondria rapidly take up Ca(2+) that has been released by InsP(3), enabling stores to empty sufficiently for store-operated channels to activate. Here, we report a novel role for mitochondria in regulating store-operated channels under physiological conditions. Mitochondrial depolarization suppresses store-operated Ca(2+) influx independently of how stores are depleted. This role for mitochondria is unrelated to their actions on promoting InsP(3)-sensitive store depletion, can be distinguished from Ca(2+)-dependent inactivation of the store-operated channels and does not involve changes in intracellular ATP, oxidants, cytosolic acidification, nitric oxide or the permeability transition pore, but is suppressed when mitochondrial Ca(2+) uptake is impaired. Our results suggest that mitochondria may have a more fundamental role in regulating store-operated influx and raise the possibility of bidirectional Ca(2+)-dependent crosstalk between mitochondria and store-operated Ca(2+) channels.  相似文献   

2.
Parekh AB 《Cell calcium》2008,44(1):6-13
In eukaryotic cells, one major route for Ca(2+) influx is through store-operated CRAC channels, which are activated following a fall in Ca(2+) content within the endoplasmic reticulum. Mitochondria are key regulators of this ubiquitous Ca(2+) influx pathway. Respiring mitochondria rapidly take up some of the Ca(2+) released from the stores, resulting in more extensive store depletion and thus robust activation of CRAC channels. As CRAC channels open, the ensuing rise in cytoplasmic Ca(2+) feeds back to inactivate the channels. By buffering some of the incoming Ca(2+) mitochondria reduce Ca(2+)-dependent inactivation of the CRAC channels, resulting in more prolonged Ca(2+) influx. However, mitochondria can release Ca(2+) close to the endoplasmic reticulum, accelerating store refilling and thus promoting deactivation of the CRAC channels. Mitochondria thus regulate all major transitions in CRAC channel gating, revealing remarkable versatility in how this organelle impacts upon Ca(2+) influx. Recent evidence suggests that mitochondria also control CRAC channels through mechanisms that are independent of their Ca(2+)-buffering actions and ability to generate ATP. Furthermore, pyruvic acid, a key intermediary metabolite and precursor substrate for the Krebs cycle, reduces the extent of Ca(2+)-dependent inactivation of CRAC channels. Hence mitochondrial metabolism impacts upon Ca(2+) influx through CRAC channels and thus on a range of key downstream cellular responses.  相似文献   

3.
Putney JW 《Cell calcium》2007,42(2):103-110
Activation of phospholipase C by G-protein-coupled receptors results in release of intracellular Ca(2+) and activation of Ca(2+) channels in the plasma membrane. The intracellular release of Ca(2+) is signaled by the second messenger, inositol 1,4,5-trisphosphate. Ca(2+) entry involves signaling from depleted intracellular stores to plasma membrane Ca(2+) channels, a process referred to as capacitative calcium entry or store-operated calcium entry. The electrophysiological current associated with capacitative calcium entry is the calcium-release-activated calcium current, or I(crac). In the 20 years since the inception of the concept of capacitative calcium entry, a variety of activation mechanisms have been proposed, and there has been considerable interest in the possibility of transient receptor potential channels functioning as store-operated channels. However, in the past 2 years, two major players in both the signaling and permeation mechanisms for store-operated channels have been discovered: Stim1 (and possibly Stim2) and the Orai proteins. Activation of store-operated channels involves an endoplasmic reticulum Ca(2+) sensor called Stim1. Stim1 acts by redistributing within a small component of the endoplasmic reticulum, approaching the plasma membrane, but does not appear to translocate into the plasma membrane. Stim1, either directly or indirectly, signals to plasma membrane Orai proteins which constitute pore-forming subunits of store-operated channels.  相似文献   

4.
Abnormal vascular smooth muscle cell (VSMC) proliferation contributes to occlusive and proliferative disorders of the vessel wall. Salicylate and other nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit VSMC proliferation by an unknown mechanism unrelated to anti-inflammatory activity. In search for this mechanism, we have studied the effects of salicylate and other NSAIDs on subcellular Ca(2+) homeostasis and Ca(2+)-dependent cell proliferation in rat aortic A10 cells, a model of neointimal VSMCs. We found that A10 cells displayed both store-operated Ca(2+) entry (SOCE) and voltage-operated Ca(2+) entry (VOCE), the former being more important quantitatively than the latter. Inhibition of SOCE by specific Ca(2+) released-activated Ca(2+) (CRAC/Orai) channels antagonists prevented A10 cell proliferation. Salicylate and other NSAIDs, including ibuprofen, indomethacin, and sulindac, inhibited SOCE and thereby Ca(2+)-dependent, A10 cell proliferation. SOCE, but not VOCE, induced mitochondrial Ca(2+) uptake in A10 cells, and mitochondrial depolarization prevented SOCE, thus suggesting that mitochondrial Ca(2+) uptake controls SOCE (but not VOCE) in A10 cells. NSAIDs depolarized mitochondria and prevented mitochondrial Ca(2+) uptake, suggesting that they favor the Ca(2+)-dependent inactivation of CRAC/Orai channels. NSAIDs also inhibited SOCE in rat basophilic leukemia cells where mitochondrial control of CRAC/Orai is well established. NSAIDs accelerate slow inactivation of CRAC currents in rat basophilic leukemia cells under weak Ca(2+) buffering conditions but not in strong Ca(2+) buffer, thus excluding that NSAIDs inhibit SOCE directly. Taken together, our results indicate that NSAIDs inhibit VSMC proliferation by facilitating the Ca(2+)-dependent inactivation of CRAC/Orai channels which normally is prevented by mitochondria clearing of entering Ca(2+).  相似文献   

5.
Cytosolic Ca(2+) signals are transferred into mitochondria over a huge concentration range. In our recent work we described uncoupling proteins 2 and 3 (UCP2/3) to be fundamental for mitochondrial uptake of high Ca(2+) domains in mitochondria-ER junctions. On the other hand, the leucine zipper EF hand-containing transmembrane protein 1 (Letm1) was identified as a mitochondrial Ca(2+)/H(+) antiporter that achieved mitochondrial Ca(2+) sequestration at small Ca(2+) increases. Thus, the contributions of Letm1 and UCP2/3 to mitochondrial Ca(2+) uptake were compared in endothelial cells. Knock-down of Letm1 did not affect the UCP2/3-dependent mitochondrial uptake of intracellularly released Ca(2+) but strongly diminished the transfer of entering Ca(2+) into mitochondria, subsequently, resulting in a reduction of store-operated Ca(2+) entry (SOCE). Knock-down of Letm1 and UCP2/3 did neither impact on cellular ATP levels nor the membrane potential. The enhanced mitochondrial Ca(2+) signals in cells overexpressing UCP2/3 rescued SOCE upon Letm1 knock-down. In digitonin-permeabilized cells, Letm1 exclusively contributed to mitochondrial Ca(2+) uptake at low Ca(2+) conditions. Neither the Letm1- nor the UCP2/3-dependent mitochondrial Ca(2+) uptake was affected by a knock-down of mRNA levels of mitochondrial calcium uptake 1 (MICU1), a protein that triggers mitochondrial Ca(2+) uptake in HeLa cells. Our data indicate that Letm1 and UCP2/3 independently contribute to two distinct, mitochondrial Ca(2+) uptake pathways in intact endothelial cells.  相似文献   

6.
The cytotoxicity of infectious agents can be mediated by disruption of calcium signaling in target cells. Outer membrane proteins of the spirochete Treponema denticola, a periodontal pathogen, inhibit agonist-induced Ca(2+) release from internal stores in gingival fibroblasts, but the mechanism is not defined. We determined here that the major surface protein (Msp) of T. denticola perturbs calcium signaling in human fibroblasts by uncoupling store-operated channels. Msp localized in complexes on the cell surface. Ratio fluorimetry showed that in cells loaded with fura-2 or fura-C18, Msp induced cytoplasmic and near-plasma membrane Ca(2+) transients, respectively. Increased conductance was confirmed by fluorescence quenching of fura-2-loaded cells with Mn(2+) after Msp treatment. Calcium entry was blocked with anti-Msp antibodies and inhibited by chelating external Ca(2+) with EGTA. Msp pretreatment reduced the amplitude of [Ca(2+)](i) transients upon challenge with ATP or thapsigargin. In experiments using cells loaded with mag-fura-2 to report endoplasmic reticulum Ca(2+), Msp reduced Ca(2+) efflux from endoplasmic reticulum stores when ATP was used as an agonist. Msp alone did not induce Ca(2+) release from these stores. Msp inhibited store-operated influx of extracellular calcium following intracellular Ca(2+) depletion by thapsigargin and also promoted the assembly of subcortical actin filaments. This actin assembly was blocked by chelating intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester. The reduced amplitude of agonist-induced transients and inhibition of store-operated Ca(2+) entry due to Msp were reversed by latrunculin B, an inhibitor of actin filament assembly. Thus, Msp retards Ca(2+) release from endoplasmic reticulum stores, and it inhibits subsequent Ca(2+) influx by uncoupling store-operated channels. Actin filament rearrangement coincident with conformational uncoupling of store-operated calcium fluxes is a novel mechanism by which surface proteins and toxins of pathogenic microorganisms may damage host cells.  相似文献   

7.
The uncoupling proteins UCP2 and UCP3 have been postulated to catalyze Ca(2+) entry across the inner membrane of mitochondria, but this proposal is disputed, and other, unrelated proteins have since been identified as the mitochondrial Ca(2+) uniporter. To clarify the role of UCPs in mitochondrial Ca(2+) handling, we down-regulated the expression of the only uncoupling protein of HeLa cells, UCP3, and measured Ca(2+) and ATP levels in the cytosol and in organelles with genetically encoded probes. UCP3 silencing did not alter mitochondrial Ca(2+) uptake in permeabilized cells. In intact cells, however, UCP3 depletion increased mitochondrial ATP production and strongly reduced the cytosolic and mitochondrial Ca(2+) elevations evoked by histamine. The reduced Ca(2+) elevations were due to inhibition of store-operated Ca(2+) entry and reduced depletion of endoplasmic reticulum (ER) Ca(2+) stores. UCP3 depletion accelerated the ER Ca(2+) refilling kinetics, indicating that the activity of sarco/endoplasmic reticulum Ca(2+) (SERCA) pumps was increased. Accordingly, SERCA inhibitors reversed the effects of UCP3 depletion on cytosolic, ER, and mitochondrial Ca(2+) responses. Our results indicate that UCP3 is not a mitochondrial Ca(2+) uniporter and that it instead negatively modulates the activity of SERCA by limiting mitochondrial ATP production. The effects of UCP3 on mitochondrial Ca(2+) thus reflect metabolic alterations that impact on cellular Ca(2+) homeostasis. The sensitivity of SERCA to mitochondrial ATP production suggests that mitochondria control the local ATP availability at ER Ca(2+) uptake and release sites.  相似文献   

8.
Gilabert JA  Parekh AB 《The EMBO journal》2000,19(23):6401-6407
In eukaryotic cells, hormones and neurotransmitters that engage the phosphoinositide pathway evoke a biphasic increase in intracellular free Ca(2+) concentration: an initial transient release of Ca(2+) from intracellular stores is followed by a sustained phase of Ca(2+) influx. This influx is generally store dependent. Most attention has focused on the link between the endoplasmic reticulum and store-operated Ca(2+) channels in the plasma membrane. Here, we describe that respiring mitochondria are also essential for the activation of macroscopic store-operated Ca(2+) currents under physiological conditions of weak intracellular Ca(2+) buffering. We further show that Ca(2+)-dependent slow inactivation of Ca(2+) influx, a widespread but poorly understood phenomenon, is regulated by mitochondrial buffering of cytosolic Ca(2+). Thus, by enabling macroscopic store-operated Ca(2+) current to activate, and then by controlling its extent and duration, mitochondria play a crucial role in all stages of store-operated Ca(2+) influx. Store-operated Ca(2+) entry reflects a dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane.  相似文献   

9.
Mitochondria shape Ca(2+) signaling and exocytosis by taking up calcium during cell activation. In addition, mitochondrial Ca(2+) ([Ca(2+)](M)) stimulates respiration and ATP synthesis. Insulin secretion by pancreatic beta-cells is coded mainly by oscillations of cytosolic Ca(2+) ([Ca(2+)](C)), but mitochondria are also important in excitation-secretion coupling. Here, we have monitored [Ca(2+)](M) in single beta-cells within intact mouse islets by imaging bioluminescence of targeted aequorins. We find an increase of [Ca(2+)](M) in islet-cells in response to stimuli that induce either Ca(2+) entry, such as extracellular glucose, tolbutamide or high K(+), or Ca(2+) mobilization from the intracellular stores, such as ATP or carbamylcholine. Many cells responded to glucose with synchronous [Ca(2+)](M) oscillations, indicating that mitochondrial function is coordinated at the whole islet level. Mitochondrial Ca(2+) uptake in permeabilized beta-cells increased exponentially with increasing [Ca(2+)], and, particularly, it became much faster at [Ca(2+)](C)>2 microM. Since the bulk [Ca(2+)](C) signals during stimulation with glucose are smaller than 2 microM, mitochondrial Ca(2+) uptake could be not uniform, but to take place preferentially from high [Ca(2+)](C) microdomains formed near the mouth of the plasma membrane Ca(2+) channels. Measurements of mitochondrial NAD(P)H fluorescence in stimulated islets indicated that the [Ca(2+)](M) changes evidenced here activated mitochondrial dehydrogenases and therefore they may modulate the function of beta-cell mitochondria. Diazoxide, an activator of K(ATP), did not modify mitochondrial Ca(2+) uptake.  相似文献   

10.
In most non-excitable cells, calcium (Ca(2+)) release from the inositol 1,4,5-trisphosphate (InsP(3))-sensitive intracellular Ca(2+) stores is coupled to Ca(2+) influx through the plasma membrane Ca(2+) channels whose molecular composition is poorly understood. Several members of mammalian TRP-related protein family have been implicated to both receptor- and store-operated Ca(2+) influx. Here we investigated the role of the native transient receptor potential 3 (TRPC3) homologue in mediating the store- and receptor-operated calcium entry in A431 cells. We show that suppression of TRPC3 protein levels by small interfering RNA (siRNA) leads to a significant reduction in store-operated calcium influx without affecting the receptor-operated calcium influx. With single-channel analysis, we further demonstrate that reduction of TRPC3 levels results in suppression of specific subtype of store-operated calcium channels and activation of store-independent channels. Our data suggest that TRPC3 is required for the formation of functional store-operated channels in A431 cells.  相似文献   

11.
Sustained Ca(2+) influx through plasma membrane Ca(2+) released-activated Ca(2+) (CRAC) channels is essential for T cell activation. Since inflowing Ca(2+) inactivates CRAC channels, T cell activation is only possible if Ca(2+)-dependent inactivation is prevented. We have previously reported that sustained Ca(2+) influx through CRAC channels requires both mitochondrial Ca(2+) uptake and mitochondrial translocation towards the plasma membrane in order to prevent Ca(2+)-dependent channel inactivation. Here, we show that morphological changes following formation of the immunological synapse (IS) modulate Ca(2+) influx through CRAC channels. Cell shape changes were dependent on the actin cytoskeleton, and they sustained Ca(2+) entry by bringing mitochondria and the plasma membrane in closer proximity. The increased percentage of mitochondria beneath the plasma membrane following shape changes occurred in all 3 dimensions and correlated with an increase in the amplitude of Ca(2+) signals. The shape change-dependent mitochondrial localization close to the plasma membrane prevented CRAC channel inactivation even in T cells in which dynein motor protein-dependent mitochondria movements towards the plasma membrane were completely abolished, highlighting the importance of the shape change-dependent control of Ca(2+) influx. Our results suggest that morphological changes do not only facilitate an efficient contact with antigen presenting cells but also strongly modulate Ca(2+) dependent T cell activation.  相似文献   

12.
Hepatocytes are highly differentiated and spatially polarised cells which conduct a wide range of functions, including intermediary metabolism, protein synthesis and secretion, and the synthesis, transport and secretion of bile acids. Changes in the concentrations of Ca(2+) in the cytoplasmic space, endoplasmic reticulum (ER), mitochondria, and other intracellular organelles make an essential contribution to the regulation of these hepatocyte functions. While not yet fully understood, the spatial and temporal parameters of the cytoplasmic Ca(2+) signals and the entry of Ca(2+) through Ca(2+)-permeable channels in the plasma membrane are critical to the regulation by Ca(2+) of hepatocyte function. Ca(2+) entry across the hepatocyte plasma membrane has been studied in hepatocytes in situ, in isolated hepatocytes and in liver cell lines. The types of Ca(2+)-permeable channels identified are store-operated, ligand-gated, receptor-activated and stretch-activated channels, and these may vary depending on the animal species studied. Rat liver cell store-operated Ca(2+) channels (SOCs) have a high selectivity for Ca(2+) and characteristics similar to those of the Ca(2+) release activated Ca(2+) channels in lymphocytes and mast cells. Liver cell SOCs are activated by a decrease in Ca(2+) in a sub-region of the ER enriched in type1 IP(3) receptors. Activation requires stromal interaction molecule type 1 (STIM1), and G(i2alpha,) F-actin and PLCgamma1 as facilitatory proteins. P(2x) purinergic channels are the only ligand-gated Ca(2+)-permeable channels in the liver cell membrane identified so far. Several types of receptor-activated Ca(2+) channels have been identified, and some partially characterised. It is likely that TRP (transient receptor potential) polypeptides, which can form Ca(2+)- and Na(+)-permeable channels, comprise many hepatocyte receptor-activated Ca(2+)-permeable channels. A number of TRP proteins have been detected in hepatocytes and in liver cell lines. Further experiments are required to characterise the receptor-activated Ca(2+) permeable channels more fully, and to determine the molecular nature, mechanisms of activation, and precise physiological functions of each of the different hepatocyte plasma membrane Ca(2+) permeable channels.  相似文献   

13.
Capacitative regulation of calcium entry is a major mechanism of Ca2+ influx into electrically non-excitable cells, but it also operates in some excitable ones. It participates in the refilling of intracellular calcium stores and in the generation of Ca2+ signals in excited cells. The mechanism which couples depletion of intracellular calcium stores located in the endoplasmic reticulum with opening of store-operated calcium channels in the plasma membrane is not clearly understood. Mitochondria located in close proximity to Ca2+ channels are exposed to high Ca2+ concentration, and therefore, they are able to accumulate this cation effectively. This decreases local Ca2+ concentration and thereby affects calcium-dependent processes, such as depletion and refilling of the intracellular calcium stores and opening of the store-operated channels. Finally, mitochondria modulate the intensity and the duration of calcium signals induced by extracellular stimuli. Ca2+ uptake by mitochondria requires these organelles to be in the energized state. On the other hand, Ca2+ flux into mitochondria stimulates energy metabolism. To sum up, mitochondria couple cellular metabolism with calcium homeostasis and signaling.  相似文献   

14.
In nonexcitable cells, the predominant mechanism for regulated entry of Ca(2+) is capacitative calcium entry, whereby depletion of intracellular Ca(2+) stores signals the activation of plasma membrane calcium channels. A number of other regulated Ca(2+) entry pathways occur in specific cell types, however, and it is not know to what degree the different pathways interact when present in the same cell. In this study, we have examined the interaction between capacitative calcium entry and arachidonic acid-activated calcium entry, which co-exist in HEK293 cells. These two pathways exhibit mutual antagonism. That is, capacitative calcium entry is potently inhibited by arachidonic acid, and arachidonic acid-activated entry is inhibited by the pre-activation of capacitative calcium entry with thapsigargin. In the latter case, the inhibition does not seem to result from a direct action of thapsigargin, inhibition of endoplasmic reticulum Ca(2+) pumps, depletion of Ca(2+) stores, or entry of Ca(2+) through capacitative calcium entry channels. Rather, it seems that a discrete step in the pathway signaling capacitative calcium entry interacts with and inhibits the arachidonic acid pathway. The findings reveal a novel process of mutual antagonism between two distinct calcium entry pathways. This mutual antagonism may provide an important protective mechanism for the cell, guarding against toxic Ca(2+) overload.  相似文献   

15.
An increase in the cytoplasmic-free Ca(2+) concentration mediates cellular responses to environmental signals that influence a range of processes, including gene expression, motility, secretion of hormones and neurotransmitters, changes in energy metabolism, and apoptosis. Mitochondria play important roles in cellular Ca(2+) homeostasis and signaling, but the roles of specific mitochondrial proteins in these processes are unknown. Uncoupling proteins (UCPs) are a family of proteins located in the inner mitochondrial membrane that can dissociate oxidative phosphorylation from respiration, thereby promoting heat production and decreasing oxyradical production. Here we show that UCP4, a neuronal UCP, influences store-operated Ca(2+) entry, a process in which depletion of endoplasmic reticulum Ca(2+) stores triggers Ca(2+) influx through plasma membrane "store-operated" channels. PC12 neural cells expressing human UCP4 exhibit reduced Ca(2+) entry in response to thapsigargin-induced endoplasmic reticulum Ca(2+) store depletion. The elevations of cytoplasmic and intramitochondrial Ca(2+) concentrations and mitochondrial oxidative stress induced by thapsigargin were attenuated in cells expressing UCP4. The stabilization of Ca(2+) homeostasis and preservation of mitochondrial function by UCP4 was correlated with reduced mitochondrial reactive oxygen species generation, oxidative stress, and Gadd153 up-regulation and increased resistance of the cells to death. Reduced Ca(2+)-dependent cytosolic phospholipase A2 activation and oxidative metabolism of arachidonic acid also contributed to the stabilization of mitochondrial function in cells expressing human UCP4. These findings demonstrate that UCP4 can regulate cellular Ca(2+) homeostasis, suggesting that UCPs may play roles in modulating Ca(2+) signaling in physiological and pathological conditions.  相似文献   

16.
Orai1 and hTRPC1 have been presented as essential components of store-operated channels mediating highly Ca(2+) selective I(CRAC) and relatively Ca(2+) selective I(SOC), respectively. STIM1 has been proposed to communicate the Ca(2+) content of the intracellular Ca(2+) stores to the plasma membrane store-operated Ca(2+) channels. Here we present evidence for the dynamic interaction between endogenously expressed Orai1 and both STIM1 and hTRPC1 regulated by depletion of the intracellular Ca(2+) stores, using the pharmacological tools thapsigargin plus ionomycin, or by the physiological agonist thrombin, independently of extracellular Ca(2+). In addition we report that Orai1 mediates the communication between STIM1 and hTRPC1, which is essential for the mode of activation of hTRPC1-forming Ca(2+) permeable channels. Electrotransjection of cells with anti-Orai1 antibody, directed toward the C-terminal region that mediates the interaction with STIM1, and stabilization of an actin cortical barrier with jasplakinolide prevented the interaction between STIM1 and hTRPC1. Under these conditions hTRPC1 was no longer involved in store-operated calcium entry but in diacylglycerol-activated non-capacitative Ca(2+) entry. These findings support the functional role of the STIM1-Orai1-hTRPC1 complex in the activation of store-operated Ca(2+) entry.  相似文献   

17.
Augmented vasoconstriction contributes to arterial stiffness associated with diabetes. It has been shown that capacitative calcium entry induced by sarcoplasmic-endoplasmic reticulum calcium ATPase blocker cyclopiazonic acid (CPA) in endothelial cells stimulates production of constrictor prostaglandins, which causes contractions of vascular smooth muscle cells. The aim of the work was to study the effect of diabetes on the vasoconstrictor response induced by calcium entry into endothelial and smooth muscle cells. Force was measured in isolated aortae of diabetic ob/ob and control C57BL/6J mice under isometric conditions. Contractions caused by 10 mumol/l CPA in diabetic mouse aortae featured higher amplitudes and longer durations in comparison with nondiabetic aortae. These contractions were abolished by a COX inhibitor indomethacin (10 mumol/l) or a specific thromboxane A2 receptor blocker SQ 29548 (1 mumol/l) and were not observed in denuded aortae. The contractions were sensitive to extracellular Ca (2+) and store-operated channel blockers. All together this suggests that vasoconstriction was caused by thromboxane A2 synthesis in endothelial cells induced by Ca (2+) entry through store-operated channels. Higher concentrations of CPA (30 mumol/l) or thapsigargin (1 mumol/l) elicited indomethacin-resistant tonic contractions of aortae with 2-fold amplitude in diabetic mice compared to their nondiabetic littermates, which were sensitive to store-operated channel blockers, but not to indomethacin, SQ 29548, or denudation. In conclusions, increases in intracellular Ca (2+) cause augmented vasoconstriction in diabetic vasculature through endothelial synthesis of contractile prostaglandins. In addition capacitative Ca (2+) entry is enhanced in diabetic vascular smooth muscle. These mechanisms indicate possible targets for clinical applications.  相似文献   

18.
19.
To maintain cellular ATP levels, hypoxia leads to Na,K-ATPase inhibition in a process dependent on reactive oxygen species (ROS) and the activation of AMP-activated kinase α1 (AMPK-α1). We report here that during hypoxia AMPK activation does not require the liver kinase B1 (LKB1) but requires the release of Ca(2+) from the endoplasmic reticulum (ER) and redistribution of STIM1 to ER-plasma membrane junctions, leading to calcium entry via Ca(2+) release-activated Ca(2+) (CRAC) channels. This increase in intracellular Ca(2+) induces Ca(2+)/calmodulin-dependent kinase kinase β (CaMKKβ)-mediated AMPK activation and Na,K-ATPase downregulation. Also, in cells unable to generate mitochondrial ROS, hypoxia failed to increase intracellular Ca(2+) concentration while a STIM1 mutant rescued the AMPK activation, suggesting that ROS act upstream of Ca(2+) signaling. Furthermore, inhibition of CRAC channel function in rat lungs prevented the impairment of alveolar fluid reabsorption caused by hypoxia. These data suggest that during hypoxia, calcium entry via CRAC channels leads to AMPK activation, Na,K-ATPase downregulation, and alveolar epithelial dysfunction.  相似文献   

20.
Receptor-activated Ca(2+) entry is usually thought to occur via capacitative or store-operated Ca(2+) channels. However, at physiological levels of stimulation, where Ca(2+) store depletion is only transient and/or partial, evidence has suggested that an arachidonic acid-dependent noncapacitative Ca(2+) entry is responsible. Recently, we have described a novel arachidonate-regulated Ca(2+)-selective (ARC) conductance that is entirely distinct from store-operated conductances in the same cell. We now show that these ARC channels are indeed specifically activated by low agonist concentrations and provide the predominant route of Ca(2+) entry under these conditions. We further demonstrate that sustained elevations in cytosolic Ca(2+), such as those resulting from activation of store-operated Ca(2+) entry by high agonist concentrations, inhibit the ARC channels. This explains earlier failures to detect the presence of this noncapacitative pathway in experiments where store-operated entry had already been fully activated. The result is that the respective activities of ARC and store-operated Ca(2+) channels display a unique reciprocal regulation that is related to the specific nature of the [Ca(2+)](i) signals generated at different agonist concentrations. Importantly, these data show that at physiologically relevant levels of stimulation, it is the noncapacitative ARC channels that provide the predominant route for the agonist-activated entry of Ca(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号