首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
C Ungermann  W Wickner 《The EMBO journal》1998,17(12):3269-3276
The vacuole v-t-SNARE complex is disassembled by Sec17p/alpha-SNAP and Sec18p/NSF prior to vacuole docking and fusion. We now report a functional characterization of the vacuolar SNARE Vam7p, a SNAP-25 homolog. Although Vam7p has no hydrophobic domains, it is tightly associated with the vacuolar membrane. Vam7p is a constituent of the vacuole SNARE complex and is released from this complex by the Sec17p/Sec18p/ATP-mediated priming of the vacuoles. Even in the absence of the vacuolar v-SNARE Nyv1p, a subcomplex which includes Vam7p and the t-SNARE Vam3p is preserved. Vam7p is necessary for the stability of the vacuolar SNARE complex, since vacuoles from mutants deleted in VAM7 do not have a Vam3p-Nyv1p complex. Furthermore, Vam7p alone, in the absence of Nyv1p and Vam3p, cannot mediate fusion with wild-type vacuoles, whereas vacuoles with only Nyv1p or Vam3p alone can fuse with wild-type vacuoles in the absence of the other two SNAREs. Thus, Vam7p is important for the stable assembly and efficient function of the vacuolar SNARE complex and maintenance of the vacuolar morphology. This functional characterization of Vam7p suggests a general role for SNAP-25 homologs, not only on the plasma membrane but along the secretory pathway.  相似文献   

2.
Ca2+ transients trigger many SNARE-dependent membrane fusion events. The homotypic fusion of yeast vacuoles occurs after a release of lumenal Ca2+. Here, we show that trans-SNARE interactions promote the release of Ca2+ from the vacuole lumen. Ypt7p-GTP, the Sec1p/Munc18-protein Vps33p, and Rho GTPases, all of which function during docking, are required for Ca2+ release. Inhibitors of SNARE function prevent Ca2+ release. Recombinant Vam7p, a soluble Q-SNARE, stimulates Ca2+ release. Vacuoles lacking either of two complementary SNAREs, Vam3p or Nyv1p, fail to release Ca2+ upon tethering. Mixing these two vacuole populations together allows Vam3p and Nyv1p to interact in trans and rescues Ca2+ release. Sec17/18p promote sustained Ca2+ release by recycling SNAREs (and perhaps other limiting factors), but are not required at the release step itself. We conclude that trans-SNARE assembly events during docking promote Ca2+ release from the vacuole lumen.  相似文献   

3.
Although diacylglycerol (DAG) can trigger liposome fusion, biological membrane fusion requires Rab and SNARE proteins. We have investigated whether DAG and phosphoinositide-specific phospholipase C (PLC) have a role in the Rab- and SNARE-dependent homo-typic vacuole fusion in Saccharomyces cerevisiae. Vacuole fusion was blocked when DAG was sequestered by a recombinant C1b domain. DAG underwent ATP-dependent turnover during vacuole fusion, but was replenished by the hydrolysis of phosphatidylinositol 4,5-bisphosphate to DAG by PLC. The PLC inhibitors 3-nitrocoumarin and U73122 blocked vacuole fusion in vitro, whereas their inactive homologues did not. Plc1p is the only known PLC in yeast. Yeast cells lacking the PLC1 gene have many small vacuoles, indicating defects in protein trafficking to the vacuole or vacuole fusion, and purified Plc1p stimulates vacuole fusion. Docking-dependent Ca(2+) efflux is absent in plc1Delta vacuoles and was restored only upon the addition of both Plc1p and the Vam7p SNARE. However, vacuoles purified from plc1Delta strains still retain PLC activity and significant 3-nitrocoumarin- and U73122-sensitive fusion, suggesting that there is another PLC in S. cerevisiae with an important role in vacuole fusion.  相似文献   

4.
Jun Y  Xu H  Thorngren N  Wickner W 《The EMBO journal》2007,26(24):4935-4945
Intracellular membrane fusion requires SNARE proteins in a trans-complex, anchored to apposed membranes. Proteoliposome studies have suggested that SNAREs drive fusion by stressing the lipid bilayer via their transmembrane domains (TMDs), and that SNARE complexes require a TMD in each docked membrane to promote fusion. Yeast vacuole fusion is believed to require three Q-SNAREs from one vacuole and the R-SNARE Nyv1p from its fusion partner. In accord with this model, we find that fusion is abolished when the TMD of Nyv1p is replaced by lipid anchors, even though lipid-anchored Nyv1p assembles into trans-SNARE complexes. However, normal fusion is restored by the addition of both Sec18p and the soluble SNARE Vam7p. In restoring fusion, Sec18p promotes the disassembly of trans-SNARE complexes, and Vam7p enhances their assembly. Thus, either the TMD of this R-SNARE is not essential for fusion, and TMD-mediated membrane stress is not the only mode of trans-SNARE complex action, or these SNAREs have more flexibility than heretofore appreciated to form alternate functional complexes that violate the 3Q:1R rule.  相似文献   

5.
The fusion of yeast vacuolar membranes depends on the disassembly of cis–soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes and the subsequent reassembly of new SNARE complexes in trans. The disassembly of cis-SNARE complexes by Sec17/Sec18p releases the soluble SNARE Vam7p from vacuolar membranes. Consequently, Vam7p needs to be recruited to the membrane at future sites of fusion to allow the formation of trans-SNARE complexes. The multisubunit tethering homotypic fusion and vacuole protein sorting (HOPS) complex, which is essential for the fusion of vacuolar membranes, was previously shown to have direct affinity for Vam7p. The functional significance of this interaction, however, has been unclear. Using a fully reconstituted in vitro fusion reaction, we now show that HOPS facilitates membrane fusion by recruiting Vam7p for fusion. In the presence of HOPS, unlike with other tethering agents, very low levels of added Vam7p suffice to induce vigorous fusion. This is a specific recruitment of Vam7p rather than an indirect stimulation of SNARE complex formation through tethering, as HOPS does not facilitate fusion with a low amount of a soluble form of another vacuolar SNARE, Vti1p. Our findings establish yet another function among the multiple tasks that HOPS performs to catalyze the fusion of yeast vacuoles.  相似文献   

6.
Membrane fusion requires priming, the disassembly of cis-SNARE complexes by the ATP-driven chaperones Sec18/17p. Yeast vacuole priming releases Vam7p, a soluble SNARE. Vam7p reassociation during docking allows trans-SNARE pairing and fusion. We now report that recombinant Vam7p (rVam7p) enters into complex with other SNAREs in vitro and bypasses the need for Sec17p, Sec18p, and ATP. Thus, the sole essential function of vacuole priming in vitro is the release of Vam7p from cis-SNARE complexes. In 'bypass fusion', without ATP but with added rVam7p, there are sufficient unpaired vacuolar SNAREs Vam3p, Vti1p, and Nyv1p to interact with Vam7p and support fusion. However, active SNARE proteins are not sufficient for bypass fusion. rVam7p does not bypass requirements for Rho GTPases,Vps33p, Vps39p, Vps41p, calmodulin, specific lipids, or Vph1p, a subunit of the V-ATPase. With excess rVam7p, reduced levels of PI(3)P or functional Ypt7p suffice for bypass fusion. High concentrations of rVam7p allow the R-SNARE Ykt6p to substitute for Nyv1p for fusion; this functional redundancy among vacuole SNAREs may explain why nyv1delta strains lack the vacuole fragmentation seen with mutants in other fusion catalysts.  相似文献   

7.
Membrane fusion within the endomembrane system follows a defined order of events: membrane tethering, mediated by Rabs and tethers, assembly of soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complexes, and lipid bilayer mixing. Here we present evidence that the vacuolar HOPS tethering complex controls fusion through specific interactions with the vacuolar SNARE complex (consisting of Vam3, Vam7, Vti1, and Nyv1) and the N-terminal domains of Vam7 and Vam3. We show that homotypic fusion and protein sorting (HOPS) binds Vam7 via its subunits Vps16 and Vps18. In addition, we observed that Vps16, Vps18, and the Sec1/Munc18 protein Vps33, which is also part of the HOPS complex, bind to the Q-SNARE complex. In agreement with this observation, HOPS-stimulated fusion was inhibited if HOPS was preincubated with the minimal Q-SNARE complex. Importantly, artificial targeting of Vam7 without its PX domain to membranes rescued vacuole morphology in vivo, but resulted in a cytokinesis defect if the N-terminal domain of Vam3 was also removed. Our data thus support a model of HOPS-controlled membrane fusion by recognizing different elements of the SNARE complex.  相似文献   

8.
Ca2+-triggered exocytosis of synaptic vesicles is controlled by the Ca2+-binding protein synaptotagmin (syt) I. Fifteen additional isoforms of syt have been identified. Here, we compared the abilities of three syt isoforms (I, VII, and IX) to regulate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion in vitro in response to divalent cations. We found that different isoforms of syt couple distinct ranges of Ca2+, Ba2+, and Sr2+ to membrane fusion; syt VII was approximately 400-fold more sensitive to Ca2+ than was syt I. Omission of phosphatidylserine (PS) from both populations of liposomes completely abrogated the ability of all three isoforms of syt to stimulate fusion. Mutations that selectively inhibit syt.target-SNARE (t-SNARE) interactions reduced syt stimulation of fusion. Using Sr2+ and Ba2+, we found that binding of syt to PS and t-SNAREs can be dissociated from activation of fusion, uncovering posteffector-binding functions for syt. Our data demonstrate that different syt isoforms are specialized to sense different ranges of divalent cations and that PS is an essential effector of Ca2+.syt action.  相似文献   

9.
Homotypic vacuole fusion occurs in ordered stages of priming, docking, and fusion. Priming, which prepares vacuoles for productive association, requires Sec17p (the yeast homolog of alpha-SNAP), Sec18p (the yeast NSF, an ATP-driven chaperone), and ATP. Sec17p is initially an integral part of the cis-SNARE complex together with vacuolar SNARE proteins and Sec18p (NSF). Previous studies have shown that Sec17p is rapidly released from the vacuole membrane during priming as the cis-SNARE complex is disassembled, but the order and causal relationship of these subreactions has not been known. We now report that the addition of excess recombinant his(6)-Sec17p to primed vacuoles can block subsequent docking. This inhibition is reversible by Sec18p, but the reaction cannot proceed to the tethering and trans-SNARE pairing steps of docking while the Sec17p block is in place. Once docking has occurred, excess Sec17p does not inhibit membrane fusion per se. Incubation of cells with thermosensitive Sec17-1p at nonpermissive temperature causes SNARE complex disassembly. These data suggest that Sec17p can stabilize vacuolar cis-SNARE complexes and that the release of Sec17p by Sec18p and ATP allows disassembly of this complex and activates its components for docking.  相似文献   

10.
The Saccharomyces cerevisiae vacuole contains five ATP-binding cassette class C (ABCC) transporters, including Ycf1p, a family member that was originally characterized as a Cd2+ transporter. Ycf1p has also been found to physically interact with a wide array of proteins, including factors that regulate vacuole homeostasis. In this study, we examined the role of Ycf1p and other ABCC transporters in the regulation of vacuole homotypic fusion. We found that deletion of YCF1 attenuated in vitro vacuole fusion by up to 40% relative to wild-type vacuoles. Plasmid-expressed wild-type Ycf1p rescued the deletion phenotype; however, Ycf1p containing a mutation of the conserved Lys-669 to Met in the Walker A box of the first nucleotide-binding domain (Ycf1pK669M) was unable to complement the fusion defect of ycf1Δ vacuoles. This indicates that the ATPase activity of Ycf1p is required for its function in regulating fusion. In addition, we found that deleting YCF1 caused a striking decrease in vacuolar levels of the soluble SNARE Vam7p, whereas total cellular levels were not altered. The attenuated fusion of ycf1Δ vacuoles was rescued by the addition of recombinant Vam7p to in vitro experiments. Thus, Ycf1p contributes in the recruitment of Vam7p to the vacuole for efficient membrane fusion.  相似文献   

11.
The homotypic fusion of yeast vacuoles requires Sec18p (NSF)-driven priming to allow vacuole docking, but the mechanism that links priming and docking is unknown. We find that a large multisubunit protein called the Vam2/6p complex is bound to cis-paired SNAP receptors (SNAREs) on isolated vacuoles. This association of the Vam2/6p complex with the cis-SNARE complex is disrupted during priming. The Vam2/6p complex then binds to Ypt7p, a guanosine triphosphate binding protein of the Rab family, to initiate productive contact between vacuoles. Thus, cis-SNARE complexes can contain Rab/Ypt effectors, and these effectors can be mobilized by NSF/Sec18p-driven priming, allowing their direct association with a Rab/Ypt protein to activate docking.  相似文献   

12.
A study was made on the correlation between the degree of membrane fusion and surface tension increase of phosphatidic acid membranes caused by divalent cations. Membrane fusion was followed by the Tb3+/dipicolinic acid assay, monitoring the fluorescent intensity for mixing of the internal aqueous contents of small unilamellar lipid vesicles. The surface tension and surface potential of monolayers made of the same lipids as used in the fusion experiments were measured as a function of divalent cation concentration. It was found that the 'threshold' concentration to induce massive vesicle membrane fusion was the same for Ca2+ and Mg2+, and that the surface tension increase in the monolayer, induced by changing divalent cation concentration from zero to a concentration which corresponds to its threshold value, inducing vesicle membrane fusion, was approximately the same: 6.3 dyn/cm for both Ca2+ and Mg2+. Both the divalent cation's threshold concentrations as well as the surface tension change corresponding to the threshold concentration for the phosphatidic acid membrane were smaller than those for the phosphatidylserine membrane. The different fusion capability of these divalent cations for phosphatidic acid and phosphatidylserine membranes is discussed in terms of the different ion binding capabilities of these ions to the membranes.  相似文献   

13.
Activated fatty acids stimulate budding and fusion in several cell-free assays for vesicular transport. This stimulation is thought to be due to protein palmitoylation, but relevant substrates have not yet been identified. We now report that Vac8p, a protein known to be required for vacuole inheritance, becomes palmitoylated when isolated yeast vacuoles are incubated under conditions that allow membrane fusion. Similar requirements for Vac8p palmitoylation and vacuole fusion, the inhibition of vacuole fusion by antibodies to Vac8p and the strongly reduced fusion of vacuoles lacking Vac8p suggest that palmitoylated Vac8p is essential for homotypic vacuole fusion. Strikingly, palmitoylation of Vac8p is blocked by the addition of antibodies to Sec18p (yeast NSF) only. Consistent with this, a portion of Vac8p is associated with the SNARE complex on vacuoles, which is lost during Sec18p- and ATP-dependent priming. During or after SNARE complex disassembly, palmitoylation occurs and anchors Vac8p to the vacuolar membrane. We propose that palmitoylation of Vac8p is regulated by the same machinery that controls membrane fusion.  相似文献   

14.
15.
Intracellular membrane fusion in eukaryotic cells is mediated by SNARE (soluble N-ethylmaleimide sensitive factor (NSF) attachment protein receptor) proteins and is known to involve assembly of cognate subunits to heterooligomeric complexes. For synaptic SNAREs, it has previously been shown that the transmembrane segments drive homotypic and support heterotypic interactions. Here, we demonstrate that a significant fraction of the yeast vacuolar SNARE Vam3p is a homodimer in detergent extracts of vacuolar membranes. This homodimer exists in parallel to the heterooligomeric SNARE complex. A Vam3p homodimer also formed from the isolated recombinant protein. Interestingly, homodimerization depended on the transmembrane segment. In contrast, formation of the quaternary SNARE complex from recombinant Vam3p, Nyv1p, Vti1p, and Vam7p subunits did not depend on the transmembrane segment of Vam3p nor on the transmembrane segments of its partner proteins. We conclude that Vam3p homodimerization, but not quaternary SNARE complex formation, is promoted by TMS-TMS interaction. As the transmembrane segments of Vam3p and other SNARE homologues were previously shown to be critical for membrane fusion downstream of membrane apposition, our results may shed light on the functional significance of SNARE TMS-TMS interactions.  相似文献   

16.
Syntaxins and Sec1/munc18 proteins are central to intracellular membrane fusion. All syntaxins comprise a variable N-terminal region, a conserved SNARE motif that is critical for SNARE complex formation, and a transmembrane region. The N-terminal region of neuronal syntaxin 1A contains a three-helix domain that folds back onto the SNARE motif forming a 'closed' conformation; this conformation is required for munc18-1 binding. We have examined the generality of the structural properties of syntaxins by NMR analysis of Vam3p, a yeast syntaxin essential for vacuolar fusion. Surprisingly, Vam3p also has an N-terminal three-helical domain despite lacking apparent sequence homology with syntaxin 1A in this region. However, Vam3p does not form a closed conformation and its N-terminal domain is not required for binding to the Sec1/munc18 protein Vps33p, suggesting that critical distinctions exist in the mechanisms used by syntaxins to govern different types of membrane fusion.  相似文献   

17.
Regulated membrane fusion requires organelle tethering, enrichment of selected proteins and lipids at the fusion site, bilayer distortion, and lipid rearrangement. Yeast vacuole homotypic fusion requires regulatory lipids (ergosterol, diacylglycerol, and phosphoinositides), the Rab family GTPase Ypt7p, the multisubunit Ypt7p-effector complex HOPS (homotypic fusion and vacuole protein sorting), and four SNAREs. One SNARE, Vam7p, has an N-terminal PX domain which binds to phosphatidylinositol 3-phosphate (PI(3)P) and to HOPS and a C-terminal SNARE domain but no apolar membrane anchor. We have exploited an in vitro reaction of vacuole fusion to analyze the functions of each domain, removing the PX domain or mutating it to abolish its PI(3)P affinity. Lowering the PI(3)P affinity of the PX domain, or even deleting the PX domain, affects the fusion K(m) for Vam7p but not the maximal fusion rate. Fusion driven by the SNARE domain alone is strikingly enhanced by the PLC inhibitor U73122 through enhanced binding of Vam7p SNARE domain to vacuoles, and the further addition of Plc1p blocks this U73122 effect. The PX domain, through its affinities for phosphoinositides and HOPS, is thus exclusively required for enhancing the targeting of Vam7p rather than for execution of the Vam7p functions in HOPS.SNARE complex assembly and fusion.  相似文献   

18.
Assembly of cognate SNARE proteins into SNARE complexes is required for many intracellular membrane fusion reactions. However, the mechanisms that govern SNARE complex assembly and disassembly during fusion are not well understood. We have devised a new in vitro cross-linking assay to monitor SNARE complex assembly during fusion of endoplasmic reticulum (ER)-derived vesicles with Golgi-acceptor membranes. In Saccharomyces cerevisiae, anterograde ER-Golgi transport requires four SNARE proteins: Sec22p, Bos1p, Bet1p, and Sed5p. After tethering of ER-derived vesicles to Golgi-acceptor membranes, SNARE proteins are thought to assemble into a four-helix coiled-coil bundle analogous to the structurally characterized neuronal and endosomal SNARE complexes. Molecular modeling was used to generate a structure of the four-helix ER-Golgi SNARE complex. Based on this structure, cysteine residues were introduced into adjacent SNARE proteins such that disulfide bonds would form if assembled into a SNARE complex. Our initial studies focused on disulfide bond formation between the SNARE motifs of Bet1p and Sec22p. Expression of SNARE cysteine derivatives in the same strain produced a cross-linked heterodimer of Bet1p and Sec22p under oxidizing conditions. Moreover, this Bet1p-Sec22p heterodimer formed during in vitro transport reactions when ER-derived vesicles containing the Bet1p derivative fused with Golgi membranes containing the Sec22p derivative. Using this disulfide cross-linking assay, we show that inhibition of transport with anti-Sly1p antibodies blocked formation of the Bet1p-Sec22p heterodimer. In contrast, chelation of divalent cations did not inhibit formation of the Bet1p-Sec22p heterodimer during in vitro transport but potently inhibited Golgi-specific carbohydrate modification of glyco-pro-alpha factor. This data suggests that Ca(2+) is not directly required for membrane fusion between ER-derived vesicles and Golgi-acceptor membranes.  相似文献   

19.
Phosphatidylinositol 3-phosphate (PI(3)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) are essential for rapid SNARE-dependent fusion of yeast vacuoles and other organelles. These phosphoinositides also regulate the fusion of reconstituted proteoliposomes. The reconstituted reaction allows separate analysis of phosphoinositide-responsive subreactions: fusion with SNAREs alone, with the addition of the HOPS tethering factor, and with the further addition of the SNARE complex disassembly chaperones Sec17p and Sec18p. Using assays of membrane tethering, trans-SNARE pairing, and lipid mixing, we found that PI(3)P and PI(4,5)P(2) have distinct functions that are asymmetric with respect to R-SNARE (Nyv1p) and the 3Q-SNAREs (Vam3p, Vti1p, and Vam7p). Fusion reactions with the Q-SNAREs and R-SNARE on separate membranes showed that PI(3)P has two distinct functions. PI(3)P on Q-SNARE proteoliposomes promoted Vam7p binding and association with the other two Q-SNAREs. PI(3)P on R-SNARE proteoliposomes was recognized by the PX domain of Vam7p on Q-SNARE proteoliposomes to promote tethering, although this function could be supplanted by the tethering activity of HOPS. PI(4,5)P(2) stimulated fusion when it was on R-SNARE proteoliposomes, apposed to Q-SNARE proteoliposomes bearing PI(3)P. These functions are essential for the phosphoinositide-dependent synergy between HOPS and Sec17p/Sec18p in promoting rapid fusion.  相似文献   

20.
The activity of membrane-bound and purified ATPase (EC 3.6.1.3) was potentiated by several divalent cations. Highest rates of ATP hydrolysis were obtained when the activity was measured with the (cation-ATP)2- complex. Free ATP and free divalent cations in excess were found to be competitive inhibitors to the complex. The apparent Km (complex) values were lower than the Ki values for free ATP indicating that the (cation-ATP)2- complex is bound more tightly to the enzyme than the free ATP. Based on these results, a binding of the complex to the active site at two points is suggested, namely through the ATP and through the cation. Removal of the coupling factor from the membrane apparently caused conformational changes which resulted in a pronounced alteration of the kinetic parameters of ATPase activity. Whereas highest values in chromatophore-bound ATPase activity were observed in the presence of Mg2+, the purified enzyme became even more active in the presence of Ca2+. The Ki values for free ATP decreased upon solubilization of the enzyme. Free Mg2+ in excess was more inhibitory on the purified ATPase than Ca2+, while free Ca2+ in excess was more inhibitory on the membrane-bound enzyme if compared to Mg2+. Ki values for product inhibition by ADP and Pi were determined. Kinetic analyses of photophosphorylation activity revealed that the (cation-ADP)- complex is the functional substrate. The apparent Km values for the complex and for Pi were estimated. Excess of free cations and ADP inhibited competitively the phosphorylation. Ki(ADP), Ki(Ca2+), and Ki(Mg2+) were calculated by Dixon analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号