首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Ischemic preconditioning (IP) may protect the lung from ischemia-reperfusion (I/R) injury following cardiopulmonary by-pass and lung or heart transplantation. The present study was undertaken to investigate the role of ATP-dependent potassium channels (K(ATP)) in IP in the isolated buffer-perfused rat lung (IBPR) under conditions of elevated pulmonary vasoconstrictor tone (PVT). Since pulmonary arterial perfusion flow and left atrial pressure were constant, changes in pulmonary arterial pressure (PAP) directly reflect changes in pulmonary vascular resistance (PVR). When compared to control value, the pulmonary vasodilator responses to histamine and acetylcholine (ACh) following 2 h of hypothermic ischemia were significantly attenuated, whereas the pulmonary vasodilator response to sodium nitroprusside (SNP) was not altered. IP in the form of two cycles of 5 min of ischemia and reperfusion applied prior to the two-hour interval of ischemia, prevented the decrease in the pulmonary vasodilator responses to histamine and ACh. Pretreatment with glybenclamide (GLB) or HMR-1098, but not 5-hydroxydecanoic acid (5-HD), prior to IP abolished the protective effect of IP. In contrast, GLB or 5-HD did not significantly alter the pulmonary vasodilator response to histamine without IP pretreatment. The present data demonstrate that IP prevents impairment of endothelium-dependent vasodilator responses in the rat pulmonary vascular bed. The present data further suggest that IP may alter the mediation of the pulmonary vasodilator response to histamine and thereby trigger a mechanism dependent on activation of sarcolemmal, and not mitochondrial, K(ATP) channels to preserve endothelial-dependent vasodilator responses and protect against I/R injury in the lung.  相似文献   

2.
Calcitonin receptor-stimulating peptide (CRSP) and intermedin (IMD) are two recently discovered peptides in the calcitonin (CT) family of peptides. CRSP and IMD, similar to CT, calcitonin gene-related peptide (CGRP), and amylin (AMY), but in contrast to adrenomedullin (ADM), inhibited bone resorption in mouse calvarial bones. CRSP and IMD, similar to CT, CGRP, AMY, but in contrast to ADM, decreased formation of osteoclasts and number of pits in bone marrow macrophage cultures stimulated by M-CSF and RANKL, with no effect on the expression of a number of genes associated with osteoclast progenitor cell differentiation. CRSP and IMD inhibited osteoclastogenesis at a late stage but had no effect on DC-STAMP mRNA. IMD, similar to CGRP, AMY, and ADM stimulated cyclic AMP formation in M-CSF expanded osteoclast progenitor cells lacking CT receptors (CTRs). RANKL induced CTRs and a cyclic AMP response also to CT and CRSP, and increased the cyclic AMP response to CGRP, AMY, and IMD but decreased the response to ADM. Our data demonstrates that CRSP and IMD share several functional properties of peptides in the CT family of peptides, including inhibition of bone resorption and osteoclast formation. The data also show that the reason why ADM does not inhibit osteoclast activity or formation is related to the fact that RANKL decreases ADM receptor signaling through the adenylate cyclase-cyclic AMP pathway. Finally, the findings indicate that activation by CGRP, AMY, and IMD may include activation of both CT and CT receptor-like receptors.  相似文献   

3.
《Life sciences》1994,56(3):PL63-PL66
Responses to synthetic human adrenomedullin (ADM), a novel hypotensive peptide initially isolated from human pheochromocytoma cells, an ADM analog (ADM15–52), and a structurally related peptide, calcitonin gene-related peptide (CGRP), were compared in the pulmonary vascular bed of the cat and rat under constant flow conditions. When tone was increased with U46619, intraarterial injections of ADM (0.03–0.3 nmol), ADM15–52 (0.03–0.3 nmol), and of CGRP (0.03–0.3 nmol) caused dose-related decreases in pulmonary arterial perfusion pressure. When the relative vasodilator activity of the peptides was compared on a nmol basis, ADM was approximately 10-fold more potent in the cat than in the rat, whereas vasodilator responses to CGRP were very similar in both species. CGRP was slightly more potent than ADM in the rat, whereas ADM was slightly more potent than CGRP in the cat. ADM and ADM15–52 had similar pulmonary vasodiltor activity in the cat, whereas the full sequence peptide was slightly more potent than ADM15–52 in the rat. The present data demonstrate that ADM has significant vasodilator activity in the pulmonary vascular beds of the cat and of the rat, and that the relative potency of the vasodilator effects of ADM and ADM15–52 are different in the two species.  相似文献   

4.
S Akiyama  H Kawasaki  A Shimogai  Y Kurosaki 《Peptides》2001,22(11):1887-1893
We have reported that the rat mesenteric resistance artery has innervation of calcitonin gene-related peptide (CGRP)-containing vasodilator nerves (CGRPergic nerves). We also demonstrated that adrenomedullin (AM) causes mesenteric vasodilation through activation of CGRP receptors. The present study was designed to examine the effect of AM on neurotransmission of CGRPergic nerves in rat mesenteric arteries. In preconstricted preparations without endothelium, periarterial nerve stimulation (PNS, 1 and 2 Hz) induced a frequency-dependent vasodilation. A bolus injection of CGRP (10 pmol) into the perfusate also caused a vasodilation. AM (0.1 to 10 nM) concentration-dependently caused 40% to 60% inhibition of the PNS-induced vasodilation, but AM did not attenuate vasodilation induced by exogenous CGRP injection. The inhibitory effect of AM (10 nM) on PNS-induced vasodilation was further potentiated by CGRP [8-37] (CGRP receptor antagonist, 50 nM), which attenuated the vasodilator response to the CGRP injection. Combined perfusion of AM [22-52] (AM receptor antagonist, 10 to 100 nM) resulted in further inhibition of PNS-induced neurogenic vasodilation without affecting the vasodilator response to the CGRP injection. CGRP [8-37] but not AM [22-52] antagonized vasodilation induced by AM perfusion. These findings suggest that AM presynaptically inhibits neurotransmission of CGRPergic nerves, probably decreasing CGRP release, via receptors different from CGRP receptors.  相似文献   

5.
Kandilci HB  Gumusel B  Lippton H 《Peptides》2008,29(8):1321-1328
The present study was designed to investigate the effects of rat intermedin/adrenomedullin2 (rIMD), an agonist for calcitonin-like calcitonin receptors (CRLR), on the isolated rat pulmonary arterial rings (PA). When PA were precontracted with 9,11-dideoxy-11alpha,9alpha-epoxymethanoprostaglandin F2alpha (U-46619), rIMD (10(-11) to 10(-6)M) induced concentration-dependent relaxation. The pulmonary vasorelaxant response (PVR) to rIMD in PA were completely inhibited by endothelium removal, NG-nitro-L-arginine-methyl-ester (L-NAME), l-N5-(1-iminoethyl)-ornithine hydrochloride (l-NIO) or 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). The PVR to rIMD were also significantly attenuated by a protein kinase inhibitor, Rp-8-bromo-beta-phenyl-1,N2-ethenoguanosine 3':5'-cyclic monophosphorothioate sodium salt hydrate (Rp-8-Br-PETcGMPs), cholera toxin and abolished by tetraethylammonium chloride (TEA), iberiotoxin and precontraction with KCl. The relaxant effect was not affected by 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536), (9S,10S,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy 1H diindolo [1,2,3fg:3',2',1'kl] pyrrolo [3,4-i] [1,6] benzodiazocine-10-carboxylic acid hexyl ester (KT5720), meclofenamate, glybenclamide or apamin. In parallel with SQ22536 and KT5720 results rolipram pretreatment did not alter the rIMD-induced PVR. The PVR to rIMD was potentialized either in the presence of zaprinast or sildenafil. Since the PVR to rIMD was also significantly reduced by rCGRP(8-37) and hADM(22-52) and rIMD(17-47), the present data suggest that rIMD produces PVR by acting in an indiscriminant manner on functional, and possibly different, endothelial CRLR. In conclusion, rIMD stimulates endothelial CRLR are coupled to release of nitric oxide, activation of guanylate cyclases, and promotion of hyperpolarization through large conductance calcium-activated K(+) channels in rat main PA.  相似文献   

6.
Intermedin(IMD)or adrenomedullin 2 is a novel peptide related to the calcitonin gene-related peptide(CGRP)family.Via calcitonin receptor-like receptor/receptor activity modifying proteins,the common receptor complexes of CGRP,IMD exerts a wide range of biological effects,especially regulation of cardiovascular homeostasis.Proteolytic processing of a larger IMD precursor yields a series of biologically active C-terminal fragments,IMD1–53,IMD1–47 and IMD8–47.IMD and its receptors are present in the cardiovascular system,and IMD is present at low levels in plasma.In the cardiovascular system,IMD has multiple functions such as regulation of blood pressure and cardiac function,pro-angiogenesis,endothelial barrier function protection,anti-oxidative stress,and anti-endoplasmic reticulum stress.IMD participates widely in the pathogenesis of atherosclerosis,hypertension,pulmonary arterial hypertension and vascular calcification.It is a vascular regulatory factor of homeostasis and a vital endogenous protective factor against vascular diseases.  相似文献   

7.
Calcitonin gene-related peptide vasodilation of human pulmonary vessels   总被引:3,自引:0,他引:3  
Human calcitonin gene-related peptide (CGRP) is localized to sensory neurons in pulmonary vessels and is a potent vasodilator. We have characterized the effects of CGRP in human pulmonary vessels and localized the receptors for this peptide by autoradiography. Fresh human lung tissue was obtained from eight patients undergoing surgery and small (200-400 microns ID) pulmonary arteries and veins were dissected free of surrounding connective and pulmonary tissue. Pairs of vessels were studied and in one of each pair the endothelium was left intact and from the other of each pair the endothelium was removed by gentle abrasion. For functional studies arteries (n = 9) and veins (n = 9) were suspended in an organ bath, precontracted with 1 microM prostaglandin F2 alpha. CGRP (10 pM to 10 microM) was added in a cumulative manner. CGRP caused a dose-dependent relaxation of endothelium intact human pulmonary arteries and veins with log EC50 values of -8.01 +/- 0.35 and -8.70 +/- 0.40, respectively (not significant). Removal of the endothelium did not diminish the vasodilator potency of CGRP in either vessel. For autoradiographic studies, cryostat sections of the small human pulmonary vessels with or without endothelium were used. 125I-CGRP densely labeled CGRP receptors on vascular smooth muscle and endothelial removal did not have any effect on grain density. We concluded that CGRP is a potent vasodilator of human pulmonary arteries and veins that is not dependent on an intact endothelium. These functional studies correlate with the distribution of CGRP receptors as localized by autoradiography.  相似文献   

8.
Responses to rat (r) adrenomedullin (ADM) and human (h) ADM were compared in the hindlimb vascular bed of the cat under conditions of controlled blood flow. Intra-arterial injections of rADM and hADM in doses of 0.03–1 nmol caused dose-related decreases in hindlimb perfusion pressure. In terms of relative vasodilator activity, rADM was similar to hADM. The time course of the vasodilator response and the recovery half times (T1/2) for the vasodilator response to rADM and hADM were not significantly different. Decreases in hindlimb perfusion pressure in response to rADM and hADM were not altered by the calcitonin gene-related peptide receptor antagonist, rCGRP(8–37), at the same time, vasodilator responses to calcitonin gene-related peptide (CGRP) were significantly reduced. The T1/2 of the vasodilator response to rADM and hADM were significantly greater after administration of the cAMP-selective, type IV phosphodiesterase inhibitor, rolipram. These data demonstrate that decreases in hindlimb perfusion pressure in response to rADM and hADM are similar and that vasodilator responses to rADM are not dependent on the activation of CGRP receptors in the hindlimb vascular bed of the cat. These data further suggest that decreases in hindlimb perfusion pressure in response to rADM are mediated by smooth muscle increases in cAMP levels.  相似文献   

9.
《Life sciences》1994,55(22):PL433-PL438
Responses to synthetic human adrenomedullin (ADM), a novel hypotensive peptide recently discovered in human pheochromocytoma cells, and calcitonin gene-related peptide (CGRP), a structurally related peptide, were investigated in the hintquarters vascular bed of the rat. Under conditions of controlled hintquarters blood flow, intraarterial injections of ADM (0.01–0.3 nmol) and of CGRP (0.03–0.3 nmol) caused dose-related decreases in hindquarters perfusion pressure and decreases in systemic arterial pressure. Following administration of the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME), hindquarters vasodilator and systemic depressor responses to ADM were significantly decreased, whereas L-NAME did not significantly decrease the vasodilator response to CGRP in either the hindquarters or systemic vascular beds. Following administration of the cyclooxygenase inhibitor, meclofenamate, vasodilator responses to ADM and to CGRP were not significantly decreased. When the relative vasodilator activity of the two peptides was compared on a nmol basis, responses to ADM were similar to responses with CGRP in the hindquarters vascular bed, whereas ADM was 30–100 fold less potent than CGRP in decreasing systemic arterial pressure. The present data demonstrate that ADM has significant vasodilator activity in the hindquarters vascular bed of the rat, that hindquarters vasodilator and systemic vasodepressor responses to ADM, but not to CGRP, are dependent upon the release of nitric oxide from the endothelium.  相似文献   

10.
Calcitonin gene-related peptide (CGRP) is a potent vasodilator. Our group has reported that exogenous CGRP may prevent or reverse hypoxic pulmonary hypertension in rats. The vasodilatory action of CGRP is mediated primarily by CGRP1 receptors. The calcitonin receptor-like receptor (CRLR) and the orphan receptor RDC-1 have been proposed as CGRP1 receptors, and recent evidence suggests that CRLR can function as either a CGRP1 receptor or an adrenomedullin (ADM) receptor. Receptor activity-modifying proteins (RAMPs) determine the ligand specificity of CRLR: coexpression of CRLR and RAMP1 results in a CGRP1 receptor, whereas coexpression of CRLR and RAMP2 or -3 results in an ADM receptor. We used qualitative, semiquantitative, and real-time quantitative RT-PCR to detect and quantitate the relative expression of these agents in the lungs of rats exposed to normoxia (n = 3) and 1 and 2 wk of chronic hypobaric hypoxia (barometric pressure 380 mmHg, equivalent to an inspired O(2) level of 10%; n = 3/time period). Our results show upregulation of RDC-1, RAMP1, and RAMP3 mRNAs in hypoxic rat lung and no change in CRLR and RAMP2 mRNAs. These findings support a functional role for CGRP and ADM receptors in regulating the adult pulmonary circulation.  相似文献   

11.
Qi YF  Xue L  Chai SB  Shi YR  Pang YZ  Tang CS 《生理学报》2001,53(5):396-400
新近研究发现,肾上腺髓质素(adrenomedullin,ADM)和降钙素基因相关肽(calcitonin gene-related peptide,CGRP)均能与降钙素受体样受体(calcitoni receptor-like receptor,CRLR)结合,其配体特异性由受体活性修饰蛋白(receptor activity-modifying protein RAMP)调控,本工作在离体培养的大鼠胸主动脉血管平滑肌细胞(vsacular smooth muscle cells,VSMCs)上观察ADM和CGRP受体脱敏现象,以探讨CRLR/RAMP假说在心血管组织方面的意义,用无血清培养基(serum-free medium,SFM)和含有10^-8mol/L ADM,CGRP和肾上腺髓素质前体原N-末端20肽(proadrenomedullin N-terminal 20 peptide PAMP)的SFM培养,再用10^-8mol/L ADM或 CGRP和磷酸二酯酶的抑制剂异丙基次黄苷(isobutyryl methyxanthine,IBMX)与VSMCs进行第二次孵育,然后收集细胞,测定VSMCs cAMP含量。10^-8mol/LADM,CGRP和PAMP单独与VSMCs孵育,VSMCs cAMP含量分别较SFM组高191%(P<0.01),385%(P<0.01)和67%(P<0.05),预先用10^-8mol/L ADM ak CGRP与VSMCs孵育可降低随后的CGRP刺激VSMCs产生cAMP,分别较单次CGRP育少44%(P<0.05)和48%(P<0.01),预先用100nmol/L蛋白激酶A(PKA)抑制剂H-89处理VSMCs,可完全阻断ADM和CGRP预处理诱导的第二次CGRP刺激的VSMCs cAMP含量减少,表明VSMCs对CGRP的脱敏过程是通过PKA途径实现的,预先用ADM,CGRP处理VSMCs后,用ADM第二次孵育,细胞内cAMP含量与单次ADM孵育无明显改变,PKA抑制H-89与VSMCs孵育,无论对欠ADM刺激或对ADM和CGRP处理的第二次刺激的cAMP生成均无影响,用PAMP处理VSMCs后,ADM和CGRP的第二次刺激的VSMCs cAMP水平无明显改变(P>0.05)。结果提示,在离体培养的大鼠VSMCs,ADM epc wsg i euk txgtdmj CGRP受体对预先用ADM和CGRP处理后的激动剂的第二次刺激都脱敏,表明ADM和CGRP的脱敏现象不一致。  相似文献   

12.
Intermedin (IMD)/adrenomedullin-2 (AM2) is a novel peptide that was independently discovered by two groups. The 47-amino acid peptide is homologous to adrenomedullin (AM) and can activate both the AM and calcitonin gene-related peptide (CGRP) receptors. IMD should therefore have actions similar to those of AM and CGRP. Indeed, like AM and CGRP, intravenous administration of IMD decreased blood pressure in rats and mice. We demonstrate here that immunoreactive IMD is present in plasma as well as heart, lung, stomach, kidney, pituitary, and brain. Because IMD is present in brain and both AM and CGRP have potent central nervous system (CNS) effects, we examined the ability of IMD within brain to regulate blood pressure and ingestive behaviors. Administration of IMD into the lateral cerebroventricle of rats caused significant, long-lasting elevations in mean arterial pressure and heart rate. These elevations are similar to the effects of CGRP and significantly greater than the effects of AM. IMD-induced elevations in mean arterial pressure were inhibited by intravenous administration of phentolamine, indicating that IMD activates the sympathetic nervous system. Intracerebroventricular administration of IMD also inhibited food and water intake in sated and in food- and water-restricted animals. The effects on feeding are likely related to activation of the CGRP receptor and are independent of the effects on water intake, which are likely through the AM receptor. Our data indicate that IMD has potent actions within the CNS that may be a result of the combined activation of both AM and CGRP receptors.  相似文献   

13.
Intermedin (IMD) is a novel vasoactive peptide from the calcitonin gene-related peptide (CGRP) implicated in cardiac regulation, yet the contractile effects of IMD remain controversial, since previous studies in vivo and isolated cardiomyocytes documented contradictory results. We hypothesized cardiac endothelial cells involvement in IMD modulation of cardiac function as an explanation for these opposing observations. With this in mind, we investigated the direct action of increasing concentrations of IMD (10(-8) to 10(-6)M) on myocardial performance parameters in rat left ventricular (LV) papillary muscles with and without endocardial endothelium (EE) and in presence of receptor antagonists and intracellular pathways inhibitors. In LV papillary muscles with intact EE, IMD induced a concentration-dependent negative inotropic action (%decrease relative to baseline, at IMD concentration of 10(-6)M, active tension of 14 ± 4%, and maximum velocity of tension rise of 10 ± 4%). These effects were blunted by EE removal, AM receptor antagonist (AM(22-52)), and CGRP receptor antagonist (CGRP(8-37)). Additionally, nitric oxide (NO) synthase inhibition with N(G)-nitro-l-arginine (l-NAME) in muscles with and without EE and guanylyl cyclase inhibition with {1H-[1,2,4]oxadiazole-[4,4-a]-quinoxalin-1-one} not only blunted the negative inotropic action of IMD but also unmasked IMD-positive inotropic effect dependent on CGRP receptor PKA activation. Western blot quantification of phosphorylated cardiac troponin I (P-cTnI) in IMD-treated papillary muscles revealed a significant increase in P-cTnI when compared with untreated muscles, while in l-NAME-pretreated papillary muscles IMD failed to increase P-cTnI. Finally, we found that stimulation of both EE and microvascular endothelial cells with IMD significantly increased NO production by 40 ± 3 and 38 ± 3%, respectively, suggesting the role of cardiac endothelial cells in NO production upon IMD stimulation. Our findings establish IMD negative inotropic effect in isolated myocardium due to NO/cGMP pathway activation with concomitant thin myofilament desensitization by increase in cTnI phosphorylation and provide a coherent explanation for the previously reported contradictory results.  相似文献   

14.
The effects of two isoforms of human endothelin (ET) on the pulmonary and systemic vascular beds were compared in the anesthetized intact-chest rabbit under conditions of constant pulmonary blood flow and left atrial pressure. Intralobar bolus injections of ET-1 (0.1-1 micrograms) and ET-3 (1-3 micrograms) produced modest vasoconstriction in the pulmonary vascular bed, whereas both peptides decreased systemic arterial pressure. The pulmonary vasoconstrictor response to ET-1 and ET-3 was inhibited by intralobar infusion of nitrendipine but was not altered by indomethacin. In contrast to the small effects of ET-1 and ET-3 on intact pulmonary resistance vessels, both peptides markedly contracted isolated pulmonary conductance vessels, with greater activity on venous than on arterial segments. Intravenous bolus injection of ET-1 (0.1-0.3 micrograms) or ET-3 (0.3-1 microgram) decreased systemic arterial pressure, increased cardiac output, and markedly decreased systemic vascular resistance. Higher doses of ET-1 produce a biphasic systemic vascular response with a prominent secondary pressor component. The present data suggest that the pulmonary vasoconstrictor activity of ET-1 is greater than that of ET-3 and their pressor activity depends on an extracellular source of calcium. The pulmonary and systemic hemodynamic effects of ET-1 and ET-3 in the rabbit do not depend on cyclooxygenase products. The systemic vasodilator response to ET-1 is not altered by first-pass lung transit. Furthermore the systemic vasodilator response to both peptides occurs independent of activation of muscarinic, beta 2-adrenergic, and platelet-activating factor receptors. Although ET-1 and ET-3 were initially reported as vasoconstrictor peptides, the present data suggest that, by having unique and potent systemic vasodilator activity, ET-1 and ET-3 act differently in the systemic and pulmonary vascular beds under resting conditions in the rabbit.  相似文献   

15.
Receptors for calcitonin gene-related peptide (CGRP), a neuropeptide known to be the most potent vasodilator, are abundantly expressed in cerebellum. A monoclonal antibody to cerebellar CGRP receptors specifically detects a 66 kDa protein from rat cerebellum and other rat and human tissues, but not from SK-N-MC cells which express calcitonin receptor-like receptor (CRLR), a recently described component of CGRP receptors. In contrast, mRNA expression for CRLR was abundant in SK-N-MC cells, but it was undetectable in rat cerebellum. Furthermore, the antibody could not detect any immunoreactive protein in HEK 293 cells transiently transfected with CRLR and receptor activity-modifying protein 1 (RAMP(1)) indicating the possible existence of another CGRP receptor, which does not involve CRLR. Due to the absence of biochemical or structural data on the existence of a CGRP(2) receptor and the new data provided in this paper, we suggest to identify the two CGRP receptors as CGRP-A and CGRP-B.  相似文献   

16.
Recently, a new member of the calcitonin gene-related peptide (CGRP) family, adrenomedullin 2 (AM2) or intermedin (IMD), was identified. AM2/IMD has been shown to have a vasodilator effect in mice and rats and an effect on urine formation in rats. In the present study, we investigated the effects of intravenously infused rat AM2 (rAM2) on blood pressure (BP), heart rate (HR), renal sympathetic nerve activity (RSNA), and renal blood flow (RBF) in conscious unrestrained rats relative to the effects of rat adrenomedullin (rAM) and proadrenomedullin NH2-terminal 20 peptide (rPAMP). Intravenous infusion of rAM2 (5 nmol/kg) significantly decreased BP and increased HR, RSNA, and RBF. These hypotensive and sympathoexcitatory effects diminished after 20 min, and HR returned to control levels 30 min after cessation of the infusion. In contrast, a significant increase in RBF was still evident 60 min after cessation of the peptide infusion. The duration of BP, HR, and RSNA responses was longer with rAM (5 nmol/kg) than with rAM2 infusion, whereas the increases in RBF induced by rAM2 and rAM were similar in their amplitude and duration. Infusion of rPAMP (200 nmol/kg) increased HR and RSNA but had no effect on RBF. Baroreceptor denervation suppressed, but did not diminish, the increases in HR and RSNA to rAM2. These findings indicate that the physiological roles of rAM2 and rAM are similar and that rAM2 also has a long-lasting vasodilator action on the renal vascular bed.  相似文献   

17.
Extracellular nucleotides, such as ATP, UDP, and UTP, regulate pulmonary vascular tone through P2X and P2Y receptors. Recently, uridine adenosine tetraphosphate (Up(4)A) was reported as a novel endothelium-derived vasoconstrictive factor. Up(4)A contains both purine and pyrimidine moieties, which potentially activate P2X and P2Y receptors. The present study examined the effect of Up(4)A on contractility of isolated rat pulmonary artery. Up(4)A at 1-100 microM stimulated contraction in a concentration-dependent manner. Up(4)A was equipotent as UTP and UDP in the endothelium-denuded artery while much more effective than UTP and UDP in endothelium-intact preparations. The vasoconstrictor effect of Up(4)A was inhibited by suramin but not IP(5)I or desensitization of P2X receptors with alpha,beta-methylene-ATP (alpha,beta-Me-ATP). Up(4)A-induced contraction was also inhibited by pretreatment with thapsigargin, nitrendipine, or EGTA but unaffected by H1152. Furthermore, unlike ATP and UTP, Up(4)A did not induce relaxation of endothelium-intact preparations precontracted with phenylephrine. These results suggest that Up(4)A is a potent vasoconstrictor, but not a vasodilator, of the rat pulmonary artery. Up(4)A likely acts through a suramin-sensitive P2Y receptor. The contractile effect of Up(4)A involves the entry of extracellular Ca(2+) and release of Ca(2+) from intracellular stores but not Ca(2+) sensitization via the RhoA/Rho kinase pathway. Up(4)A, therefore, potentially plays an important role in the regulation of pulmonary vascular tone.  相似文献   

18.
Chronic hypoxic pulmonary hypertension (HPH) is characterized by elevated pulmonary arterial pressure (P(PA)), right ventricular hypertrophy (RVH), pulmonary vascular remodeling, pulmonary edema and polycythemia. Currently, there is no safe and effective treatment for HPH. Calcitonin gene-related peptide (CGRP) is the most potent peptide vasodilator discovered thus far. We previously demonstrated that exogenous CGRP reversed HPH in rats. However, the CGRP1 receptor antagonist CGRP(8-37) and smaller inhibitory C-terminal CGRP fragments that can be formed by enzymatic cleavage in vivo may compromise the beneficial effects of endogenous or exogenous CGRP. We here examine the agonistic efficacy of N-terminal rat alpha-CGRP peptides containing the disulfide bridge (Cys(2)-Cys(7)) with amidated C-terminal in prevention of HPH. Chronic infusion of CGRP(1-8), CGRP(1-13), or CGRP(1-14) at 7 nmol/h/rat via the right jugular vein during 14 days of hypobaric hypoxia (10% inspired O(2)) significantly decreased the P(PA), RVH and pulmonary arterial medial thickness in comparison with controls, suggesting that these CGRP sequences can mitigate chronic HPH in rats. Systemic pressure was unchanged by infused peptides indicating no carry-over effect. In conclusion, N-terminal CGRP fragments (CGRP(1-8), CGRP(1-13) and CGRP(1-14)) may have a protective role in hypoxic pulmonary hypertension.  相似文献   

19.
Adrenomedullin (AM) is a powerful pulmonary vasodilator with antimitogenic properties. We investigated the role of the AM receptor (AMR) and the calcitonin gene-related peptide type-1 receptor (CGRP1R) in regulating pulmonary vascular AM levels. The AMR antagonist hAM(22-52) (120 nmol/L) significantly elevated AM release compared with controls to 250% after 2 h in isolated rat lungs and to 830% after 4 h in pulmonary artery endothelial cells (PAEC). CGRP1R blockade had no effect. AMR blockade did not influence prepro-AM mRNA levels nor did inhibition of protein synthesis by cycloheximide (0.01 mg/mL) abolish the effect of the AMR antagonist. Radioligand-binding studies with PAEC membranes revealed a decrease by 44% of the AMR density in response to AMR antagonism. Altogether, the pulmonary vascular AMR represents not only a functionally active, but also a clearance receptor; its expression is constitutively stimulated by basal AM. This identifies a novel mechanism for controlling pulmonary AM levels.  相似文献   

20.
The present study was undertaken to investigate the effects of intravenous (i.v.) administration of rat hemopressin (rHP), 30-1000 microg/kg, on systemic arterial pressure (SAP), cardiac output (CO) and systemic vascular resistance (SVR) in the anesthetized rat. Bolus i.v. injections of rHP produced mild decreases in SAP that were dose-dependent. Since CO was not altered, the decreases in SAP reflect reductions in SVR. The systemic vasodilator response to rHP was not subject to tachyphylaxis. The systemic vasodilator response to rHP was abolished by L-nitro-arginine methylester (L-NAME) but was not altered by meclofenamate. In addition, rHP lacked direct contractile and relaxant activity on isolated rat aortic rings (AA) and pulmonary arterial rings (PA). The present data suggest rHP dilates the rat systemic vascular bed through the endogenous release of nitric oxide (NO) independent of the formation of cyclooxygenase products including prostacyclin. It is possible rHP acts as an endogenous vasodilator substance to regulate local blood flow during clinical states of altered red cell turnover, microvascular disease and hemolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号