首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptors coupled to Galpha q play a key role in the development of heart failure. Studies using genetically modified mice suggest that Galpha q mediates a hypertrophic response in cardiac myocytes. Galpha q signaling in these models is modified during early growth and development, whereas most heart failure in humans occurs after cardiac damage sustained during adulthood. To determine the phenotype of animals that express increased Galpha q signaling only as adults, we generated transgenic mice that express a silent Galpha q protein (Galpha qQ209L-hbER) in cardiac myocytes that can be activated by tamoxifen. Following drug treatment to activate Galpha q Q209L-hbER, these mice rapidly develop a dilated cardiomyopathy and heart failure. This phenotype does not appear to involve myocyte hypertrophy but is associated with dephosphorylation of phospholamban (PLB), decreased sarcoplasmic reticulum Ca2+-ATPase activity, and a decrease in L-type Ca2+ current density. Changes in Ca2+ handling and decreased cardiac contractility are apparent 1 week after Galpha qQ209L-hbER activation. In contrast, transgenic mice that express an inducible Galpha q mutant that cannot activate phospholipase Cbeta (PLCbeta) do not develop heart failure or changes in PLB phosphorylation, but do show decreased L-type Ca2+ current density. These results demonstrate that activation of Galpha q in cardiac myocytes of adult mice causes a dilated cardiomyopathy that requires the activation of PLCbeta. However, increased PLCbeta signaling is not required for all of the Galpha q-induced cardiac abnormalities.  相似文献   

2.
Activation of protein kinase C (PKC) can result from stimulation of the receptor-G protein-phospholipase C (PLCbeta) pathway. In turn, phosphorylation of PLCbeta by PKC may play a role in the regulation of receptor-mediated phosphatidylinositide (PI) turnover and intracellular Ca(2+) release. Activation of endogenous PKC by phorbol 12-myristate 13-acetate inhibited both Galpha(q)-coupled (oxytocin and M1 muscarinic) and Galpha(i)-coupled (formyl-Met-Leu-Phe) receptor-stimulated PI turnover by 50-100% in PHM1, HeLa, COSM6, and RBL-2H3 cells expressing PLCbeta(3). Activation of conventional PKCs with thymeleatoxin similarly inhibited oxytocin or formyl-Met-Leu-Phe receptor-stimulated PI turnover. The PKC inhibitory effect was also observed when PLCbeta(3) was stimulated directly by Galpha(q) or Gbetagamma in overexpression assays. PKC phosphorylated PLCbeta(3) at the same predominant site in vivo and in vitro. Peptide sequencing of in vitro phosphorylated recombinant PLCbeta(3) and site-directed mutagenesis identified Ser(1105) as the predominant phosphorylation site. Ser(1105) is also phosphorylated by protein kinase A (PKA; Yue, C., Dodge, K. L., Weber, G., and Sanborn, B. M. (1998) J. Biol. Chem. 273, 18023-18027). Similar to PKA, the inhibition by PKC of Galpha(q)-stimulated PLCbeta(3) activity was completely abolished by mutation of Ser(1105) to Ala. In contrast, mutation of Ser(1105) or Ser(26), another putative phosphorylation target, to Ala had no effect on inhibition of Gbetagamma-stimulated PLCbeta(3) activity by PKC or PKA. These data indicate that PKC and PKA act similarly in that they inhibit Galpha(q)-stimulated PLCbeta(3) as a result of phosphorylation of Ser(1105). Moreover, PKC and PKA both inhibit Gbetagamma-stimulated activity by mechanisms that do not involve Ser(1105).  相似文献   

3.
In the course of delineating the regulatory mechanism underlying phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) metabolism, we have discovered three distinct phosphoinositide-specific phospholipase D (PI-PLD) isozymes from rat brain, tentatively designated as PI-PLDa, PI-PLDb, and PI-PLDc. These enzymes convert [3H]PI(3,4,5)P3 to generate a novel inositol phosphate, D-myo-[3H]inositol 3,4,5-trisphosphate ([3H]Ins(3,4,5)P3) and phosphatidic acid. These isozymes are predominantly associated with the cytosol, a notable difference from phosphatidylcholine PLDs. They are partially purified by a three-step procedure consisting of DEAE, heparin, and Sephacryl S-200 chromatography. PI-PLDa and PI-PLDb display a high degree of substrate specificity for PI(3,4, 5)P3, with a relative potency of PI(3,4,5)P3 > phosphatidylinositol 3-phosphate (PI(3)P) or phosphatidylinositol 4-phosphate (PI(4)P) > phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) > phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). In contrast, PI-PLDc preferentially utilizes PI(3)P as substrate, followed by, in sequence, PI(3,4,5)P3, PI(4)P, PI(3,4)P2, and PI(4,5)P2. Both PI(3, 4)P2 and PI(4,5)P2 are poor substrates for all three isozymes, indicating that the regulatory mechanisms underlying these phosphoinositides are different from that of PI(3,4,5)P3. None of these enzymes reacts with phosphatidylcholine, phosphatidylserine, or phosphatidylethanolamine. All three PI-PLDs are Ca2+-dependent. Among them, PI-PLDb and PI-PLDc show maximum activities within a sub-microM range (0.3 and 0.9 microM Ca2+, respectively), whereas PI-PLDa exhibits an optimal [Ca2+] at 20 microM. In contrast to PC-PLD, Mg2+ has no significant effect on the enzyme activity. All three enzymes require sodium deoxycholate for optimal activities; other detergents examined including Triton X-100 and Nonidet P-40 are, however, inhibitory. In addition, PI(4,5)P2 stimulates these isozymes in a dose-dependent manner. Enhancement in the enzyme activity is noted only when the molar ratio of PI(4,5)P2 to PI(3,4, 5)P3 is between 1:1 and 2:1.  相似文献   

4.
5.
Generation of a phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] gradient within the plasma membrane is important for cell polarization and chemotaxis in many eukaryotic cells. The gradient is produced by the combined activity of phosphatidylinositol 3-kinase (PI3K) to increase PI(3,4,5)P(3) on the membrane nearest the polarizing signal and PI(3,4,5)P(3) dephosphorylation by phosphatase and tensin homolog deleted on chromosome ten (PTEN) elsewhere. Common to both of these enzymes is the lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], which is not only the substrate of PI3K and product of PTEN but also important for membrane binding of PTEN. Consequently, regulation of phospholipase C (PLC) activity, which hydrolyzes PI(4,5)P(2), could have important consequences for PI(3,4,5)P(3) localization. We investigate the role of PLC in PI(3,4,5)P(3)-mediated chemotaxis in Dictyostelium. plc-null cells are resistant to the PI3K inhibitor LY294002 and produce little PI(3,4,5)P(3) after cAMP stimulation, as monitored by the PI(3,4,5)P(3)-specific pleckstrin homology (PH)-domain of CRAC (PH(CRAC)GFP). In contrast, PLC overexpression elevates PI(3,4,5)P(3) and impairs chemotaxis in a similar way to loss of pten. PI3K localization at the leading edge of plc-null cells is unaltered, but dissociation of PTEN from the membrane is strongly reduced in both gradient and uniform stimulation with cAMP. These results indicate that local activation of PLC can control PTEN localization and suggest a novel mechanism to regulate the internal PI(3,4,5)P(3) gradient.  相似文献   

6.
Profilin is a small (12-15 kDa) actin binding protein which promotes filament turnover. Profilin is also involved in the signaling pathway linking receptors in the cell membrane to the microfilament system within the cell. Profilin is thought to play critical roles in this signaling pathway through its interaction with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] (P.J. Lu, W.R. Shieh, S.G. Rhee, H.L. Yin, C.S. Chen, Lipid products of phosphoinositide 3-kinase bind human profilin with high affinity, Biochemistry 35 (1996) 14027-14034). To date, profilin's interaction with polyphosphoinositides (PPI) has only been studied in micelles or small vesicles. Profilin binds with high affinity to small clusters of PI(4,5)P(2) molecules. In this work, we investigated the interactions of profilin with sub-micellar concentrations of PI(4,5)P(2) and PI(3,4,5)P(3). Fluorescence anisotropy was used to determine the relevant dissociation constants for binding of sub-micellar concentrations of fluorescently labeled PPI lipids to profilin and we show that these are significantly different from those determined for profilin interaction with micelles or small vesicles. We also show that profilin binds more tightly to sub-micellar concentrations of PI(3,4,5)P(3) (K(D)=720 microM) than to sub-micellar concentrations of PI(4,5)P(2) (K(D)=985 microM). Despite the low affinity for sub-micellar concentration of PI(4,5)P(2), profilin was shown to bind to giant unilamellar vesicles in presence of 0.5% mole fraction of PI(4,5)P(2) The implications of these findings are discussed.  相似文献   

7.
The phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) is accepted to be a direct modulator of ion channel activity. The products of phosphoinositide 3-OH kinase (PI3K), PtdIns(3,4)P(2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), in contrast, are not. We report here activation of the epithelial Na(+) channel (ENaC) reconstituted in Chinese hamster ovary cells by PI3K. Insulin-like growth factor-I also activated reconstituted ENaC and increased Na(+) reabsorption across renal A6 epithelial cell monolayers via PI3K. Neither IGF-I nor PI3K affected the levels of ENaC in the plasma membrane. The effects of PI3K and IGF-I on ENaC activity paralleled changes in the plasma membrane levels of the PI3K product phospholipids, PtdIns(3,4)P(2)/PtdIns(3,4,5)P(3), as measured by evanescent field fluorescence microscopy. Both PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) activated ENaC in excised patches. Activation of ENaC by PI3K and its phospholipid products corresponded to changes in channel open probability. We conclude that PI3K directly modulates ENaC activity via PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). This represents a novel transduction pathway whereby growth factors, such as IGF-I, rapidly modulate target proteins independent of signaling elicited by kinases downstream of PI3K.  相似文献   

8.
In macrophages, enzymes that synthesize or hydrolyze phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P(3)] regulate Fcgamma receptor-mediated phagocytosis. Inhibition of phosphatidylinositol 3-kinase (PI3K) or overexpression of the lipid phosphatases phosphatase and tensin homologue (PTEN) and Src homology 2 domain-containing inositol phosphatase (SHIP-1), which hydrolyze PI(3,4,5)P(3) to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)], respectively, inhibit phagocytosis in macrophages. To examine how these enzymes regulate phagosome formation, the distributions of yellow fluorescent protein (YFP) chimeras of enzymes and pleckstrin homology (PH) domains specific for their substrates and products were analyzed quantitatively. PTEN-YFP did not localize to phagosomes, suggesting that PTEN regulates phagocytosis globally within the macrophage. SHIP1-YFP and p85-YFP were recruited to forming phagosomes. SHIP1-YFP sequestered to the leading edge and dissociated from phagocytic cups earlier than did p85-cyan fluorescent protein, indicating that SHIP-1 inhibitory activities are restricted to the early stages of phagocytosis. PH domain chimeras indicated that early during phagocytosis, PI(3,4,5)P(3) was slightly more abundant than PI(3,4)P(2) at the leading edge of the forming cup. These results support a model in which phagosomal PI3K generates PI(3,4,5)P(3) necessary for later stages of phagocytosis, PTEN determines whether those late stages can occur, and SHIP-1 regulates when and where they occur by transiently suppressing PI(3,4,5)P(3)-dependent activities necessary for completion of phagocytosis.  相似文献   

9.
Alpha-synuclein plays a key role in the pathogenesis of many neurodegenerative diseases. To date, its cellular role has yet to be determined, although it has been proposed to be connected to calcium and G protein-mediated dopamine signaling. Alpha-synuclein is known to bind strongly to model membrane surfaces where it may interact with other membrane-associated proteins. Here, we find that the membrane association of alpha-synuclein is enhanced by the presence of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] and Ca(2+). We also find that alpha-synuclein interacts with high affinity with the G protein-regulated enzyme phospholipase Cbeta(2) (PLCbeta(2)), which catalyzes the hydrolysis of PI(4,5)P(2). Binding of alpha-synuclein to PLCbeta(2) reduces its catalytic activity by 50%, but causes its level of activation by Gbetagamma subunits to increase from 4- to 24-fold. This effect is greatly reduced for A53T alpha-synuclein, which is a mutant associated with familial Parkinson's disease. PI(4,5)P(2) hydrolysis by PLCbeta(2) results in an increase in the intracellular Ca(2+) concentration, and we find that in cultured cells the presence of alpha-synuclein results in a 6-fold enhancement in the release of Ca(2+) from intracellular stores in response to agents that release Gbetagamma subunits relative to controls. Alpha-synuclein also enhances the increase in the level of inositol phosphates seen upon G protein stimulation, suggesting that it also may interact with PLCbeta(2) in cells. Given that Ca(2+) and dopamine regulation are mediated through PLCbeta and G protein signals, our results suggest that alpha-synuclein may play a role in inositol phospholipid signaling.  相似文献   

10.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) plays a central role in regulating the actin cytoskeleton as a substrate for phosphoinositide 3-kinase and phospholipase C as well as by binding directly to proteins that control the processes of actin monomer sequestration, filament severing, capping, nucleation, cross-linking, and bundling (Ma, L., Cantley, L. C., Janmey, P. A., and Kirschner, M. W. (1998) J. Cell Biol. 140, 1125-1136; Hinchliffe, K. (2000) Curr. Biol. 10, R104-R1051). Three related phosphatidylinositol 4-phosphate 5-kinases (PI(4)P 5-kinases) have been identified in mammalian cells (types Ialpha, Ibeta, and Igamma) and appear to play distinct roles in actin remodeling. Here we have identified a fourth member of this family by searching the human genome and EST data bases. This new protein, which we have designated phosphatidylinositol phosphate kinase homolog (PIPKH), is expressed at relatively high levels in brain and testis. Immunoprecipitates of PIPKH expressed in mammalian cells contain PI(4)P 5-kinase activity, but this activity is not affected by mutations in residues that inactivate other type I PI(4)P 5-kinases. We show that the PI(4)P 5-kinase activity in PIPKH immunoprecipitates can be explained by the ability of PIPKH to heterodimerize with other type I PI(4)P 5-kinases. Transfection of 293t cells with PIPKH resulted in >8-fold increase in total phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) without a significant net increase in total PI(4,5)P(2). When coexpressed with PIPKH, green fluorescent protein (GFP) fusion construct of the pleckstrin homology domain from Bruton's tyrosine kinase (GFP-BTK-PH) localized in intracellular vesicular structures, suggesting an unusual intracellular site of PI(3,4,5)P(3) production. Finally, expression of PIPKH induced the reorganization of actin from predominantly stress fibers to predominantly foci and comets similar to those observed previously in cells infected with the intracellular pathogen Listeria or transfected with recombinant PIPKIalpha. These results suggest that PIPKH acts as a scaffold to localize and regulate type I PI(4)P 5-kinases and the synthesis of PI(3,4,5)P(3).  相似文献   

11.
During embryonic development, cell movement is orchestrated by a multitude of attractants and repellents. Chemoattractants applied as a gradient, such as cAMP with Dictyostelium discoideum or fMLP with neutrophils, induce the activation of phospholipase C (PLC) and phosphoinositide 3 (PI3)-kinase at the front of the cell, leading to the localized depletion of phosphatidylinositol 4,5-bisphosphate (PI[4,5]P(2)) and the accumulation of phosphatidylinositol-3,4,5-trisphosphate (PI[3,4,5]P(3)). Using D. discoideum, we show that chemorepellent cAMP analogues induce localized inhibition of PLC, thereby reversing the polarity of PI(4,5)P(2). This leads to the accumulation of PI(3,4,5)P(3) at the rear of the cell, and chemotaxis occurs away from the source. We conclude that a PLC polarity switch controls the response to attractants and repellents.  相似文献   

12.
Our earlier studies of rat brain phospholipase D1 (rPLD1) showed that the enzyme could be activated in cells by alpha subunits of the heterotrimeric G proteins G(13) and G(q). Recently, we showed that rPLD1 is modified by Ser/Thr phosphorylation and palmitoylation. In this study, we first investigated the roles of these post-translational modifications on the activation of rPLD1 by constitutively active Galpha(13)Q226L and Galpha(q)Q209L. Mutations of Cys(240) and Cys(241) of rPLD1, which abolish both post-translational modifications, did not affect the ability of either Galpha(13)Q226L or Galpha(q)Q209L to activate rPLD1. However, the RhoA-insensitive mutants, rPLD1(K946A,K962A) and rPLD1(K962Q), were not activated by Galpha(13)Q226L, although these mutant enzymes responded to phorbol ester and Galpha(q)Q209L. On the contrary, the PKC-insensitive mutant rPLD1(DeltaN168), which lacks the first 168 amino acids of rPLD1, responded to Galpha(13)Q226L but not to Galpha(q)Q209L. In addition, we found that rPLD2 was strongly activated by Galpha(q)Q209L and phorbol ester. However, surprisingly, the enzymatic activity of rPLD2 was suppressed by Galpha(13)Q226L and constitutively active V14RhoA in COS-7 cells. Abolition of the post-translational modifications of rPLD2 did not alter the effects of Galpha(q)Q209L or Galpha(13)Q226L. The suppressive effect of Galpha(13)Q226L on rPLD2 was reversed by dominant negative N19RhoA and the C3 exoenzyme of Clostridium botulinum, further supporting a role for RhoA. In summary, Galpha(13) activation of rPLD1 in COS-7 cells is mediated by Rho, while Galpha(q) activation requires PKC. rPLD2 is activated by Galpha(q), but is inhibited by Galpha(13). Neither Ser/Thr phosphorylation nor palmitoylation is required for these effects.  相似文献   

13.
Recent work has suggested a role for the serine/threonine kinase Akt and IkappaB kinases (IKKs) in nuclear factor (NF)-kappaB activation. In this study, the involvement of these components in NF-kappaB activation through a G protein-coupled pathway was examined using transfected HeLa cells that express the B2-type bradykinin (BK) receptor. The function of IKK2, and to a lesser extent, IKK1, was suggested by BK-induced activation of their kinase activities and by the ability of their dominant negative mutants to inhibit BK-induced NF-kappaB activation. BK-induced NF-kappaB activation and IKK2 activity were markedly inhibited by RGS3T, a regulator of G protein signaling that inhibits Galpha(q), and by two Gbetagamma scavengers. Co-expression of Galpha(q) potentiated BK-induced NF-kappaB activation, whereas co-expression of either an activated Galpha(q)(Q209L) or Gbeta(1)gamma(2) induced IKK2 activity and NF-kappaB activation without BK stimulation. BK-induced NF-kappaB activation was partially blocked by LY294002 and by a dominant negative mutant of phosphoinositide 3-kinase (PI3K), suggesting that PI3K is a downstream effector of Galpha(q) and Gbeta(1)gamma(2) for NF-kappaB activation. Furthermore, BK could activate the PI3K downstream kinase Akt, whereas a catalytically inactive mutant of Akt inhibited BK-induced NF-kappaB activation. Taken together, these findings suggest that BK utilizes a signaling pathway that involves Galpha(q), Gbeta(1)gamma(2), PI3K, Akt, and IKK for NF-kappaB activation.  相似文献   

14.
15.
Phosphoinositide second messengers, generated from the action of phosphoinositide 3-kinase (PI3K), mediate an array of signaling pathways through the membrane recruitment and activation of downstream effector proteins. Although pleckstrin domains of many target proteins have been shown to bind phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and/or phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) with high affinity, published data concerning the phosphoinositide binding specificity of Src homology 2 (SH2) domains remain conflicting. Using three independent assays, we demonstrated that the C-terminal (CT-)SH2 domain, but not the N-terminal SH2 domain, on the PI3K p85alpha subunit displayed discriminative affinity for PIP(3). However, the binding affinity diminished precipitously when the acyl chain of PIP(3) was shortened. In addition, evidence suggests that the charge density on the phosphoinositol ring represents a key factor in determining the phosphoinositide binding specificity of the CT-SH2 domain. In light of the largely shared structural features between PIP(3) and PI(4,5)P(2), we hypothesized that the PIP(3)-binding site on the CT-SH2 domain encompassed a sequence that recognized PI(4,5)P(2). Based on a consensus PI(4,5)P(2)-binding sequence (KXXXXXKXKK; K denotes Arg, Lys, and His), we proposed the sequence (18)RNKAENLLRGKR(29) as the PIP(3)-binding site. This binding motif was verified by using a synthetic peptide and site-directed mutagenesis. More importantly, neutral substitution of flanking Arg(18) and Arg(29) resulted in a switch of ligand specificity of the CT-SH2 domain to PI(4,5)P(2) and PI(3,4)P(2), respectively. Together with computer modeling, these mutagenesis data suggest a pseudosymmetrical relationship in the recognition of the phosphoinositol head group at the binding motif.  相似文献   

16.
Agonist-stimulated production of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], is considered the primary output signal of activated phosphoinositide (PI) 3-kinase. The physiological targets of this novel phospholipid and the identity of enzymes involved in its metabolism have not yet been established. We report here the identification of two enzymes which hydrolyze the 5-position phosphate of PtdIns(3,4,5)P3, forming phosphatidylinositol (3,4)-bisphosphate. One of these enzymes is the 75 kDa inositol polyphosphate 5-phosphatase (75 kDa 5-phosphatase), which has previously been demonstrated to metabolize inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. We have identified a second PtdIns(3,4,5)P3 5-phosphatase in the cytosolic fraction of platelets, which forms a complex with the p85/p110 form of PI 3-kinase. This enzyme is immunologically and chromatographically distinct from the platelet 43 kDa and 75 kDa 5-phosphatases and is unique in that it removes the 5-position phosphate from PtdIns(3,4,5)P3, but does not metabolize PtdIns(4,5)P2, Ins(1,4,5)P3 or Ins(1,3,4,5)P4. These studies demonstrate the existence of multiple PtdIns(3,4,5)P3 5-phosphatases within the cell.  相似文献   

17.
Insulin stimulates glucose uptake into muscle and fat cells by translocating glucose transporter 4 (GLUT4) to the cell surface, with input from phosphatidylinositol (PI) 3-kinase and its downstream effector Akt/protein kinase B. Whether PI 3,4,5-trisphosphate (PI(3,4,5)P(3)) suffices to produce GLUT4 translocation is unknown. We used two strategies to deliver PI(3,4,5)P(3) intracellularly and two insulin-sensitive cell lines to examine Akt activation and GLUT4 translocation. In 3T3-L1 adipocytes, the acetoxymethyl ester of PI(3,4,5)P(3) caused GLUT4 migration to the cell periphery and increased the amount of plasma membrane-associated phospho-Akt and GLUT4. Intracellular delivery of PI(3,4,5)P(3) using polyamine carriers also induced translocation of myc-tagged GLUT4 to the surface of intact L6 myoblasts, demonstrating membrane insertion of the transporter. GLUT4 translocation caused by carrier-delivered PI(3,4,5)P(3) was not reproduced by carrier-PI 4,5-bisphosphate or carrier alone. Like insulin, carrier-mediated delivery of PI(3,4,5)P(3) elicited redistribution of perinuclear GLUT4 and Akt phosphorylation at the cell periphery. In contrast to its effect on GLUT4 mobilization, delivered PI(3,4,5)P(3) did not increase 2-deoxyglucose uptake in either L6GLUT4myc myoblasts or 3T3-L1 adipocytes. The ability of exogenously delivered PI(3,4,5)P(3) to augment plasma membrane GLUT4 content without increasing glucose uptake suggests that input at the level of PI 3-kinase suffices for GLUT4 translocation but is insufficient to stimulate glucose transport.  相似文献   

18.
19.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) are physiologically important second messengers. These molecules bind effector proteins to modulate activity. Several types of ion channels, including the epithelial Na(+) channel (ENaC), are phosphoinositide effectors capable of directly interacting with these signaling molecules. Little, however, is known of the regions within ENaC and other ion channels important to phosphoinositide binding and modulation. Moreover, the molecular mechanism of this regulation, in many instances, remains obscure. Here, we investigate modulation of ENaC by PI(3,4,5)P(3) and PI(4,5)P(2) to begin identifying the molecular determinants of this regulation. We identify intracellular regions near the inner membrane interface just following the second transmembrane domains in beta- and gamma- but not alpha-ENaC as necessary for PI(3,4,5)P(2) but not PI(4,5)P(2) modulation. Charge neutralization of conserved basic amino acids within these regions demonstrated that these polar residues are critical to phosphoinositide regulation. Single channel analysis, moreover, reveals that the regions just following the second transmembrane domains in beta- and gamma-ENaC are critical to PI(3,4,5)P(3) augmentation of ENaC open probability, thus, defining mechanism. Unexpectedly, intracellular domains within the extreme N terminus of beta- and gamma-ENaC were identified as being critical to down-regulation of ENaC activity and P(o) in response to depletion of membrane PI(4,5)P(2). These regions of the channel played no identifiable role in a PI(3,4,5)P(3) response. Again, conserved positive-charged residues within these domains were particularly important, being necessary for exogenous PI(4,5)P(2) to increase open probability. We conclude that beta and gamma subunits bestow phosphoinositide sensitivity to ENaC with distinct regions of the channel being critical to regulation by PI(3,4,5)P(3) and PI(4,5)P(2). This argues that these phosphoinositides occupy distinct ligand-binding sites within ENaC to modulate open probability.  相似文献   

20.
Phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P(2)) has been known to serve as a substrate for phosphatidylinositol 3-kinase (PI(3)K) and phosphoinositide-specific phospholipase C (PI-PLC), which can produce PtdIns(3,4,5)P(3) and inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) and diacylglycerol (DAG), respectively. In this study, we elucidated the role of PI-PLC during the LPS-activated mouse macrophages RAW264.7 treated with PI(3)K inhibitor wortmannin. First, wortmannin treatment enhanced Ins(1,4,5)P(3) production and iNOS expression in LPS-activated macrophages. Inhibition of PI(3)K by p85 siRNA also showed an enhancement of iNOS expression. On the other hand, overexpression of PI(3)K by ras-p110 expression plasmid significantly decreased iNOS expression in LPS-activated macrophages. In addition, overexpression of wild-type or dominant-negative Akt expression plasmid did not affect the iNOS expression in LPS-activated macrophages. Second, treatment of PI-PLC inhibitor U73122 reversed the enhancement of iNOS expression, the increase of phosphorylation level of ERK, JNK and p38, and the increase of AP-1-dependent gene expression in wortmannin-treated and LPS-activated macrophages. However, NF-kappaB activity determined by EMSA assay and reporter plasmid assay did not change during LPS-activated macrophages with or without wortmannin. We propose that the inhibition of PI(3)K by wortmannin in mouse macrophages enhances the PI-PLC downstream signals, and subsequently increases the LPS induction of iNOS expression independently of Akt pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号